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Abstract

Transcription factor (TF) networks are a key determinant of cell fate decisions in mammalian 

development and adult tissue homeostasis, and are frequently corrupted in disease. However, our 

inability to experimentally resolve and interrogate the complexity of mammalian TF networks has 

hampered the progress in this field. Recent technological advances, in particular large-scale 

genome-wide approaches, single-cell methodologies, live-cell imaging, and genome editing, are 

emerging as important technologies in TF network biology. Several recent studies even suggest a 

need to re-evaluate established models of mammalian TF networks. Here, we provide a brief 

overview of current and emerging methods to define mammalian TF networks. We also discuss 

how these emerging technologies facilitate new ways to interrogate complex TF networks, 

consider the current open questions in the field, and comment on potential future directions and 

biomedical applications.

Introduction

During mammalian development, hundreds of unique cell types are specified in a complex 

spatio-temporal patterning process. In adults, stem and progenitor cell populations replenish 

mature cell types to maintain tissue homeostasis throughout life. Concerted gene expression 

programs are responsible for these fundamental biological processes and the underlying cell 

fate decisions. Transcription represents a major control point in gene expression (Figure 1A) 

and occurs within the context of chromatin. Precise spatial and temporal expression of 

combinations of a limited number of genes (~20,000 in humans) appears to be responsible 

for the intricate cellular processes of developmental specification and adult tissue 

homeostasis.
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Sequence-specific transcription factors (TFs) are a large class of DNA binding protein that 

play central roles in regulating gene transcription, and account for almost 7% of genes 

(~1,400) in the human genome (Vaquerizas et al., 2009). TFs regulate gene promoter 

activity, but often act via interactions with other genomic locations that can be distant in 

primary DNA sequence. These are broadly defined as gene regulatory regions (Kellis et al., 

2014), with an important subclass of positive regulatory regions being termed enhancers. 

Enhancers are composed of TF binding sites (TFBSs) or DNA motifs, which are are 

commonly short (4-12 nucleotides) (Jolma et al., 2013). Such motifs therefore frequently 

occur by chance in mammalian genomes and individual TF-DNA interactions can be weak. 

TF-DNA interactions must compete with histone-DNA interactions for stable and productive 

binding. Cooperativity in TF binding is therefore common, such as through protein-protein 

interactions with other TFs, co-activators, and/or co-repressors (Vaquerizas et al., 2009).

TFs can be thought of as “readers” of enhancers, with the combination (and spacing) of 

encoded TFBSs defining combinatorial binding capacity and stability. TF binding may 

directly activate or repress an enhancer and/or gene promoter, through recruitment of co-

activators or co-repressors, or may act indirectly to influence gene expression such as 

through histone displacement (Figure 1B). The multi-protein complex Mediator is an 

important enhancer co-activator, which is thought to coordinate enhancer-promoter 

interactions and stimulate transcription (Malik and Roeder, 2010). TFs may also recruit 

other co-activators, such as histone methyltransferases, histone acetyltransferases, and 

chromatin-modifying complexes (Kouzarides, 2007). By contrast, enhancers and genes 

become repressed through TF recruitment of co-repressors such as histone demethylases 

(Whyte et al., 2012), histone deacetylases (HDACS), and polycomb complexes (Reynolds et 

al., 2013).

TFs have the ability to directly regulate their own expression through binding to enhancer(s) 

that control their own gene transcription. This can be thought of as a simple molecular 

circuit, a feedback loop. By understanding the concept that a TF can regulate its own 

expression, and expression of other TFs, it is possible to envisage the resulting TF circuits 

and networks that may be active within mammalian cells (Davidson, 2010). TF proteins, 

their genes and enhancers can be considered as the building blocks or constituents of a 

complex TF network (Alon, 2007). However, such a TF network is commonly not active in 

its entirety, but instead exists in various network states, comprising of active TF sub-

networks. Of course, TFs not only regulate the transcription of TF genes, but also of genes 

involved in cellular structure/function. Therefore, the TF network state determines the global 

transcriptional program and the cell-type specific gene expression patterns that define cell 

identity and function.

Over the last thirty years, numerous experimental approaches have been used to define 

mammalian TF networks (Box 1). However, the inherent biological complexity (Box 2) has 

hampered these efforts. Recent technological innovations are now helping to define TF 

networks at unprecedented detail and accurately interrogate network logic and function, 

particularly in stem cell and cancer systems (Box 3). Several recent reports are even 

questioning established TF network models and suggest that some current paradigms may 

need updating. This Perspective aims to provide non-expert biologists with an overview of 
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exciting recent developments in mammalian TF network biology, alongside a discussion of 

the open questions, the field’s future directions, and its potential applications in 

biomedicine.

Box 1

Defining TF networks in mammals

To define mammalian TF networks, we must be able to identify its constituents and 

understand its underlying network logic. Numerous technological advances have helped 

us to define enhancer location and gene targets, measure enhancer activity, determine TF 

activity and function, and develop TF network models to predict logic. These are briefly 

summarized below, but further details can be found elsewhere (Brent, 2016, Blais and 

Dynlacht, 2005).

Defining enhancer location and gene targets

Putative enhancers were initially identified from conservation in non-coding elements 

within the genome, although we now know that sequence conservation is often a poor 

method to identify TFBSs (Villar et al., 2015). Numerous approaches have since been 

developed to identify putative enhancers, including DNase I hypersensitivity site (DHS) 

assays and chromatin immunoprecipitation (ChIP) (Noonan and McCallion, 2010), and 

more recently ATAC-seq (Buenrostro et al., 2013). Additionally, chromatin conformation 

capture (3C) methods (Dostie et al., 2006) and particularly the genome-wide adaptation 

of this method (Hi-C) are helping to better define enhancer-promoter interactions as well 

as spatial chromatin structure information including topologically-associated domains 

(Pombo and Dillon, 2015). Certain histone modifications, particularly histone 3 lysine 4 

mono-methylation (H3K4me1) (Heintzman et al., 2007) and H3K27 acetylation, are 

commonly used to identify putative enhancers (Creyghton et al., 2010, Rada-Iglesias et 

al., 2011). Large (~10 kb) regions of H3K27Ac enrichment within the genome have 

recently been defined as “super-enhancers”, which appear to often contain numerous 

TFBSs (and perhaps multiple individual enhancers) (Hnisz et al., 2013, Whyte et al., 

2013). However, the functional relevance of this classification is still unclear (Hay et al., 

2016). While histone modification, TF enrichment, or open chromatin are often fairly 

good indicators of active enhancers, we do not yet have a universal active enhancer 

“mark” (Dogan et al., 2015).

Measuring enhancer activity

Enhancers are classically defined as functional DNA sequences with the ability to 

activate (enhance) the rate of transcription from a heterologous promoter, independent of 

location and orientation (Maniatis et al., 1987, Kim and Shiekhattar, 2015). This is the 

basis of the widely used enhancer assay: a putative enhancer is cloned up or downstream 

of a minimal promoter that drives expression of a reporter gene (Noonan and McCallion, 

2010) (Figure 2A). However, recent technological advances are now allowing 

endogenous enhancers to be functionally interrogated (see the Emerging Technologies 
section). Synthetic TFs such as Zinc Fingers, Transcription Activator-Like Effectors 

(TALEs), and Cas9, can also be used to perturb endogenous enhancer activity and study 
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TF networks. This is achieved by fusing genome-specific synthetic DNA binding 

domains to transcriptional effector domains such as the VP64 (activator) and KRAB 

(repressor) domains (Gao et al., 2013, Wilkinson et al., 2014). These approaches provide 

an opportunity to inducibly activate or silence enhancers, or synthetically engineer more 

complex transcriptional circuitry.

Determining TF function

The genome-editing revolution associated with CRISPR/Cas9 technologies (Cho et al., 

2013, Cong et al., 2013, Mali et al., 2013) now allows TF genes, as well as enhancer 

regions, to be deleted and mutated easily. Importantly, these methods also allow for the 

first time, large-scale analysis within human cells, where efficiencies of homologous 

recombination are normally too low for traditional targeted genetic manipulation (see 

Emerging Technologies section).

Defining TFBSs

TF DNA-binding specificity can be determined by in vitro assays such as electrophoretic 

mobility shift assays (EMSAs) or systematic evolution of ligands by exponential 

enrichment (SELEX) (Figure 2B). DNase-seq is also being used to describe the binding 

patterns of TF-DNA interactions through deep sequencing, which allows TF binding 

motifs or “footprints” within DHSs to be resolved (Hesselberth et al., 2009). Although 

such DNase footprinting only generates candidate assignments for a class of TF (not a 

specific TF), this methodology has provided fundamental insights into TF network 

topology, and its conservation within mammals (Stergachis et al., 2014, Boyle et al., 

2014).

Developing TF network models

By combining our knowledge of TF binding events within TF gene loci with enhancer 

assays and functional analysis, we can build models of TF networks to predict biological 

behavior in silico (Figure 2C). To date, most network models are relatively simple, often 

consisting of simple diagrams of TF sub-networks annotated with nodes and edges. 

However, Boolean (Xu et al., 2014, Dunn et al., 2014, Moignard et al., 2015) and 

Bayesian (Dowell et al., 2014) modeling approaches have been built from such 

information to provide dynamic and executable network models. PetriNets, a 

mathematical modeling approach to graphically model networks, have also been 

successfully used to computationally encode TF networks (Bonzanni et al., 2013). 

Alternative methods have been used to “reverse engineer” networks from gene expression 

data, such as by using mutual information or partial correlation analysis including the 

ARACNE algorithm (Margolin et al., 2006), and have been recently applied to single cell 

gene expression data (Wilkinson et al., 2014, Moignard et al., 2015). We refer readers to 

recent reviews of TF network modeling for further information (Woodhouse et al., 2016, 

Le Novère, 2015).
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Box 2

Emerging concepts in the regulation of TF networks

TF network states are not static but dynamic and often unstable. It is well understood that 

phenotypically different cells will contain different TF network states. However, 

phenotypically identical cells also have considerable functional heterogeneity, even with 

highly purified cell populations (Yamamoto et al., 2013), and differ in their response to 

extracellular signals (Satija and Shalek, 2014). Such functional heterogeneity highlights 

that TF network states can also differ between individual phenotypically similar 

(identical) cells. Extracellular signaling plays a major role in influencing the TF network 

state in mammalian cells, although numerous intrinsic mechanisms also influence TF 

network state stability and transitions between them, including intrinsic dynamics within 

the TF network (and its constituents), indirect TF interactions, cell cycle progression, and 

metabolic state (Figure 3). It is worth highlighting that different TF sub-networks 

(regulating particular biological functions such as cell cycle or response to stress) may be 

overlapping or independent of each other. Recent examples of these mechanisms of TF 

network regulation are briefly summarized below, and can be found in more detail 

elsewhere (Long et al., 2016, Davidson, 2010).

Extracellular signaling

All multicellular organisms require intercellular signaling pathways to allow the 

coordinated formation and maintenance of complex tissues. Signaling pathways often 

have multiple functions at different stages of development and in different cell types 

(Massagué, 2012). This can at least partially be explained by the transcriptional response 

to a stimulus being dependent on the TF network state (Trompouki et al., 2011, Mullen et 

al., 2011). Many signaling pathway effectors are themselves TFs, and therefore directly 

integrate with the TF network. The downstream transcriptional targets of these signaling 

effectors also often include TF genes (Kageyama et al., 2007), which go on to influence 

future TF network states.

TF network states are dynamic and heterogeneous

Positive feedback loops help to reinforce TF expression, and can thereby stabilize a TF 

network state. By contrast, TF antagonism causes inherent instability and appears to play 

important roles in cell fate decisions. One of the best-described examples is the 

antagonism between the TFs Gata1 and PU.1 in erythroid-myeloid lineage specification 

during hematopoietic differentiation (Burda et al., 2010) (although this TF antagonism 

has recently been questioned – see the Emerging Technologies section). Of course, TF 

antagonism can occur by various mechanisms, for example, competition for binding to 

the same TFBS (Bresnick et al., 2010).

TF stability and dose-dependence

The stability of the TF network as a whole depends on the stability of its constituents, 

particularly protein stability, rates of transcription and mRNA stability. While the DNA 

encoding TF genes and enhancers is permanent (although copy number can change, as in 

polyploidy and aneuploidy), relative accessibility of these genomic regions can be 
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modulated by epigenetic modification. TF protein concentration appears to be 

particularly important for their function, with several TFs having dosage-dependent 

functions in development and homeostasis (Sigvardsson, 2012).

Indirect interactions and regulation of TF activity

Considering only TFs, enhancers and gene loci as the TF regulatory networks 

oversimplifies the biological complexity. Numerous levels of regulation overlay each 

other to “fine tune” gene expression. For example, numerous microRNAs post-

transcriptionally regulate TF genes and mediate indirect TF network interactions 

(Martinez and Walhout, 2009). The function of other noncoding RNAs such as enhancer 

RNAs (eRNAs), RNA transcripts that originate from active enhancers, are yet to be fully 

understood (Kim and Shiekhattar, 2015). It is important to also remember that TFs are 

frequently post-translationally modified, which can profoundly influence TF activity and 

localization (Filtz et al., 2014).

Cell cycle

A major cause of intrinsic destabilization is the cell cycle. Cell cycle progression and 

division directly impacts on DNA accessibility (Ma et al., 2015) as well as TF protein 

(and mRNA) concentration. It is important to remember that the TF network plays a key 

role in regulating cell cycle progression (Müller, 1995), while cell cycle stage itself 

influences rates of gene expression (Bertoli et al., 2013) and cell fate decisions (Pauklin 

and Vallier, 2013).

Metabolic status and intracellular signaling

A cell must be able to adapt to its intracellular and extracellular metabolic status. There 

are several highly conserved metabolic signaling pathways that regulate such cellular 

adaption (Efeyan et al., 2015). While these pathways, in particular the Integrated Stress 

Response (ISR) pathway and mTOR signaling, can alter TF networks through altering 

rates of global translation, these pathways also more directly influence transcriptional 

states (de Nadal et al., 2011). For example, activation of the ISR pathway suppresses 

global translation, it acts to increase translation of certain TFs, notably its canonical 

effector ATF4 (Wek et al., 2006).

Box 3

Using stem cells and cancer models to understand TF network regulation 
and dysregulation

While TF networks have been investigated in numerous mammalian cell types, such 

networks have been most intensively studied in pluripotent stem cells (Ng and Surani, 

2011, Orkin et al., 2008), adult muscle stem cells (Buckingham and Rigby, 2014, 

Tapscott, 2005), and adult hematopoietic stem cells (Göttgens, 2015) (Figure 4). 

Additionally, TF network dysregulation is a common theme in cancer, particularly 

leukemia (Sive and Gottgens, 2014).

Pluripotent stem cells
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Pluripotent stem cells (PSCs) have the capacity to form any embryonic type (Figure 4B) 

(Murry and Keller, 2008). In vitro PSC self-renewal and differentiation provides an 

important and widely used tractable model of early developmental cell fate decisions. 

Induced pluripotent stem (iPS) cell reprogramming experiments have highlighted the 

importance of TFs (all four Yamanaka factors are TFs) in the acquisition and 

maintenance of the pluripotent state (Takahashi and Yamanaka, 2006). Live cell imaging 

and single cell RNA-seq methods have recently revealed unexpected heterogeneity of the 

TF network associated with pluripotency (Filipczyk et al., 2015, Kolodziejczyk et al., 

2015), suggesting we still do not fully understand this TF network state. Consistent with 

this, several pluripotency TF network models recently built from detailed knowledge of 

the key TFs regulating pluripotency (Xu et al., 2014, Dunn et al., 2014, Dowell et al., 

2014) were unable to fully predict cellular behavior.

Adult stem cells

Adult stem cells are thought to provide life-long homeostasis of several adult mammalian 

tissues. TF interactions regulating the generation, self-renewal, and differentiation of 

unipotent muscle stem cells and multipotent hematopoietic stem cells (HSCs) are 

arguably the best understood (Figure 4B). The TF MyoD is a central regulator of muscle 

formation; it is upregulated in differentiating muscle stem cells and its overexpression in 

a number of cell types can induce trans-differentiation to muscle (Tapscott et al., 1988, 

Davis et al., 1987). Numerous TFs have been found to regulate HSC function, and can be 

found reviewed elsewhere (Wilkinson and Gottgens, 2013). Several laboratories have 

recently developed methods to reprogram, trans-differentiate and forward program cells 

into hematopoietic stem and progenitor cells (Riddell et al., 2014, Xie et al., 2004, 

Sandler et al., 2014). All the methods published so far have used TF overexpression 

(usually in multi-TF combinations), highlighting the instructive role of TFs, and their 

combinatorial interactions, in initiating and maintaining hematopoietic cell identity.

Dysregulation in cancer

A diverse set of molecular mechanisms has so far been described to interfere with normal 

TF network logic in cancer including the mutation of TFs, co-activators/co-repressors, 

and enhancer regions. Two novel mechanism by which enhancer regions are mutated are 

particularly noteworthy. First, a chromosomal inversion event has been shown to cause 

spatial rearrangement of a GATA2 enhancer to be proximal to the EVI1. This alteration in 

the TF regulatory network logic results in oncogenic EVI1 overexpression, which results 

in leukemogenesis (Groschel et al., 2014, Yamazaki et al., 2014). Second, somatic 

mutation of an enhancer upstream of the TAL1 gene has been shown to introduce a novel 

Myb DNA motif, which drives oncogenic TAL1 overexpression and acute lymphoblastic 

leukaemia (Mansour et al., 2014).

Recent insights from emerging technologies

New technologies remain major drivers in advancing our understanding of TF network 

biology. Most recently, single cell transcriptomics, live-cell imaging, and CRISPR/Cas9 

genome editing have been applied to the field. These technologies are providing new angles 
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from which to approach TF network biology, and alongside ongoing large-scale annotation 

approaches, including epigenome annotation, are helping to shed new light on mammalian 

TF networks.

Large-scale and high-throughput annotation

While TF ChIP-seq experiments have been possible for several years (Johnson et al., 2007) 

(Box 1), the reduction in next generation sequencing (NGS) costs are now allowing large-

scale ChIP-seq studies. From assessing the binding of multiple TFs within the same and 

different cell types, it is possible to build a comprehensive annotation of TF network 

interactions. Several large-scale TF ChIP-seq studies have been undertaken, and have 

identified highly interconnected TF networks in several cell types (Tsankov et al., 2015, 

Wilson et al., 2016, Goode et al., 2016). Just as sequencing of mammalian genomes has 

provided a blueprint to study mammalian genomics, these studies provide a central resource 

to investigate TF binding events within multiple cell types. By undertaking ChIP-seq 

experiments in similar cell types from different mammals, insights into evolutionary 

conservation of TF binding events and enhancer function are also being gained (Boyle et al., 

2014, Cheng et al., 2014, Villar et al., 2015).

Recently large-scale efforts, including those by the Human Epigenome, ENCODE, and 

BLUEPRINT consortiums, have provided unprecedented resolution of the epigenetic state 

and conformation of chromatin in numerous cell types. For example, recent large-scale Hi-C 

analysis of almost 40 human cell types have helped to define topologically-associated 

domains (TADs) and assign enhancer-promoter interactions (both constitutive and cell-type 

specific) (Schmitt et al., 2016, Javierre et al., 2016). Such approaches are providing an 

important and data-rich annotation of mammalian epigenomes that is necessary for 

comprehensive TF network assignment. Interestingly, single cell DNase-seq, ATAC-seq, Hi-

C and ChIP-seq protocols have also recently been published (Jin et al., 2015, Buenrostro et 

al., 2015, Cusanovich et al., 2015, Nagano et al., 2013, Rotem et al., 2015), suggesting 

single cell level chromatin structure and accessibility can also be employed to investigate TF 

network states in single cells.

Large-scale approaches have also been applied to understand cooperative TF binding. For 

example, Consecutive Affinity-Purification Systematic Evolution of Ligands by Exponential 

Enrichment (CAP-SELEX) (Jolma et al., 2015) has been developed to provide high-

throughput TF pair binding site characterization, which have yielded important insights into 

cooperative TF binding events. Additionally, Fuxman Bass and co-workers recently 

provided a yeast one-hybrid based method to quantify human TF binding to enhancers, and 

probe the effects of genetic variation on TF interactions (Fuxman Bass et al., 2015). Such 

methods afford high-throughput analysis from which general principles of mammalian TF 

cooperativity may be extracted.

High-throughput genome engineering

While CRISPR/Cas9 technologies can be used to make single genetic mutations, these 

methods are amenable to high-throughput studies, which allows for genome-wide coverage 

(Parnas et al., 2015) or saturation of a single genomic region (Canver et al., 2015). Several 
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CRISPR gRNA libraries have recently been published (Sanjana et al., 2014, Tzelepis et al., 

2016, Horlbeck et al., 2016), for both genetic deletion and transcriptional activation/

repression. As with any screening method, it will be important to develop appropriate 

readouts and/or reporters for these assays. However, such tools are poised to provide 

significant insights into enhancer regulation and TF network interactions within mammalian 

cell types.

Canver et al. (2015) provided an elegant demonstration of the application of CRISPR/Cas9 

for saturating mutagenesis of a single enhancer of BCL11A, allowing functional element 

mapping over a 12kb enhancer region (Canver et al., 2015). Importantly, such an approach 

allows for mutational analysis of endogenous enhancers, rather than the traditional reliance 

on heterologous enhancer reporter assays. Large-scale application of these CRISPR/Cas9 

methods is likely to provide important fundamental insights into TF network architecture 

and principles.

Single cell transcriptomics

Fluorescent-Activated Cell Sorting (FACS) has long been used to purify single cells (Osawa 

et al., 1996), and has highlighted functional variability in highly purified cell populations 

(Yamamoto et al., 2013). In combination with microfluidics technologies, FACS has recently 

afforded single cell gene expression analysis. Multiplexed qPCR initially allowed expression 

of 10–100 genes to be quantified in 100s of FACS-isolated single cells (Sanchez-Freire et 

al., 2012, White et al., 2011). Such methods have been particularly useful to investigate TF 

networks during embryogenesis and in adult stem cell populations, where limited cell 

numbers have often prevented population level analysis (Moignard et al., 2013, Moignard et 

al., 2015, Wilson et al., 2015). However, given the limited number of genes that could be 

simultaneously quantified by such methods, TF networks could not be comprehensively 

studied.

The advent of single-cell whole transcriptome RNA-seq methodologies (Tang et al., 2010, 

Picelli et al., 2013, Macosko et al., 2015) has provided important new opportunities. Several 

recent reports have demonstrated the potential of single cell RNA-seq to provide new 

resolution of TF network architecture (Kolodziejczyk et al., 2015, Olsson et al., 2016, 

Scialdone et al., 2016). It is of course important to remember the experimental caveats. First, 

mRNA levels do not always correspond to TF protein level (or activity). Second, single cell 

RNA-seq alone cannot distinguish indirect vs. direct TF interactions, although here, its 

combination with genetic deletion of specific TFs has yielded important resolution (Olsson 

et al., 2016, Scialdone et al., 2016). Third, current single cell RNA-seq approaches generally 

have lower sequencing coverage than bulk cell analyses, which may influence the transcript 

detection and/or observed intercellular heterogeneity.

For example, single cell RNA-seq has recently been used to re-evaluate the role of the TF 

Tal1 (also known as Scl) in mesoderm specification into hematopoietic and cardiac fates 

(Scialdone et al., 2016). Tal1 has been thought to autonomously activate (and stabilize) a 

hematopoietic TF network state while actively repressing a cardiac state, as its deletion 

blocks developmental blood cell formation and induces cardiomyocyte formation (Van 

Handel et al., 2012, Ismailoglu et al., 2008). While single cell RNA-seq analysis confirmed 
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that loss of Tal1 inhibited activation of blood-associated TFs, it failed to identity a 

corresponding immediate upregulation of a cardiac transcriptional program. These results 

suggest aberrant cardiac formation is likely a slower, and perhaps secondary consequence of 

Tal1 deletion, rather than a direct lineage fate switch.

Recently, CRISPR/Cas9 screening has been combined with single cell RNA-seq in an 

approach that promises to provide detailed resolution of TF network circuitry in single cells 

(Dixit et al., 2016, Jaitin et al., 2016). Given that TF network states are heterogeneous at 

single cell level, the approaches by Dixit et al. (2016) and Jaitin et al. (2016) promise to 

provide a data-rich method to analyze CRISPR screening. Importantly, the approaches 

provide high-throughput and quantitative analysis of the direct transcriptomic consequences 

of genetic mutations. Through such methods, it should be possible to derive a 

comprehensive TF network map, and through profiling many single cells, infer fundamental 

principles of network state dynamics. However, to do so we will need to develop new 

bioinformatics methods to analyze and integrate these large and multidimensional datasets.

Live-cell imaging

While single cell transcriptomics determines the expression of many TFs, these technologies 

provide only a snapshot of gene expression. By lysing the cell for such gene expression 

studies, its future fate and potential cannot be simultaneously assessed (Hoppe et al., 2014). 

Live-cell imaging provides a powerful method to study the dynamics of TFs and allow TF 

network states to be correlated with cell fate decisions (within future generations of the cell). 

By tracking fluorescent reporters linked to TF expression (often directly fused to the TF of 

interest), live-cell imaging has provided important insights into the relationship between TF 

expression and the cell cycle (Kueh et al., 2013), TF network plasticity (Filipczyk et al., 

2015), TF antagonism (Hoppe et al., 2016), and extracellular signaling interactions (Kueh et 

al., 2016).

An early application of live-cell imaging was provided by Kueh et al. (2013), who focused 

on the transcription factor PU.1 and its interaction with the cell cycle. PU.1 is known to play 

a dose-dependent and context-dependent role in driving proliferation vs. terminal 

differentiation within hematopoietic cells (Mak et al., 2011). By tracking PU.1 expression 

over multiple cell divisions during differentiation into lymphoid and myeloid cell 

commitment, Kueh and colleagues were able to demonstrate that cell cycle kinetics could 

directly influence accumulation or loss of PU.1 over several generations, and thereby alter 

cell fate decisions. By regulating cell cycle progression, PU.1 could itself influence its own 

accumulation, outside of its regulation of positive auto-feedback at the transcriptional level 

(Kueh et al., 2013). One caveat of this study was that PU.1 levels were indirectly measured 

using a PU.1-IRES-GFP reporter, rather than a directly fused PU.1-fluorescent reporter. 

However, directly fused TF-fluorescent reporters hold their own caveats, such as potentially 

altering TF function and dynamics (TF-DNA or TF-TF interactions), as well as protein half-

life.

More recently, quantitative live-cell imaging has been further used to investigate PU.1 within 

the context of PU.1-Gata1 antagonism in the erythroid vs. myeloid cell fate decision during 

hematopoietic stem cell (HSC) differentiation (Hoppe et al., 2016). Bulk cell analyses have 
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implicated a direct cross-antagonism of Gata1 and PU.1 proteins, and this is widely used as 

an example of mammalian TF circuit interactions (Burda et al., 2010). However, live-cell 

imaging of Gata1-mCherry and PU.1-eYFP expression during the differentiation of 

individual HSCs questioned these long-held assumptions as few cells co-express Gata1 and 

PU.1 simultaneously, a requirement for cross-antagonism. Instead of being responsible for 

the cell fate decision, upregulation of Gata1 or PU.1 appears to only occur following cell 

fate decisions, and therefore more likely acts to reinforce a pre-determined cell fate decision. 

While it is currently unclear what is upstream, and thereby responsible for the erythroid vs. 

myeloid fate decision, these data question the simplistic TF network models for mammalian 

cell fate decisions.

An alternative to tagging TFs with fluorescent proteins is the use of HaloTag ligand-based 

technology to tag TFs with organic dyes, which even affords subcellular TF localization in 

live cells using light-sheet microscopy. For example, Liu et al (2014) used this powerful 

approach to track Sox2-DNA binding in human ESCs and 3D diffusion within the nucleus 

(Liu et al., 2014). However, it is worth noting that live cell imaging methods are currently 

limited in the number of TFs that can be simultaneous detected (due to fluorescent spectral 

overlap). However, it is clear such powerful approaches are providing important quantitative 

insights into TF network biology.

Open questions and future directions

As described above, recent technical advances are helping to drive forward our 

characterization of mammalian TF regulatory networks. However, many of these 

technologies are yet to reach their full potential. Several key questions remain open. We 

hope that these technologies and others will be able to provide answers in the future.

Moving towards protein level quantification

Cell fate decisions are made at the single cell level. Important biological understanding is 

therefore being yielded from the single cell approaches described above. Single cell RNA-

seq technologies certainly provide unprecedented single cell resolution of transcriptional 

programs, but we must remember that TF proteins are the functional products that determine 

TF network activity. While current technical limitations prevent single cell proteomics, new 

technologies are moving towards this goal, including mass cytometry (Bendall et al., 2011) 

and single cell protein expression using microfluidic systems and protein-PCR based 

quantification (Macaulay and Voet, 2014). Ultimately however, we need to develop in vivo 
live cell imaging systems to measure multiple endogenous proteins simultaneously.

Dynamic modeling of a comprehensive TF network

While several in silico computational modeling methods have been used to study TF 

networks, these have so far largely failed to accurately predict biological systems. More 

complex modeling approaches are needed to better predict and extract the biological logic of 

TF networks. Here, it will be important to move from static models to dynamic models of 

TF regulatory networks, which better reflect biological complexity. In silico models of 

mammalian TF networks have also so far tended to investigate limited sub-networks within 
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the larger TF network. By moving towards larger-scale comprehensive analysis of enhancer 

activity and TF network interactions, such as methods used in other organisms (Arnold et al., 

2013, MacNeil et al., 2015), modeling of entire mammalian TF regulatory networks should 

be possible. For example, Arnold et al. recently developed a powerful genome-wide assay 

called STARR-seq to quantitiate enhancer activity genome-wide in Drosophila (Arnold et 

al., 2013). Additionally, by integrating data from various experimental sources, greater 

predictive power is possible. For example, by integrating data from ChIP-seq and enhancer 

assays into dynamic Bayesian computational modeling, accurate TF sub-network modeling 

has been possible (Schütte et al., 2016).

General principles in mammalian TF network biology

While many general principles that govern mammalian gene expression, enhancer activity, 

and TF interactions, have been described, we still have few general principles that hold for 

explaining mammalian TF networks. We hope that through integrating the above 

technologies, along with others, we will soon start to be able to develop meaningful 

principles that govern this key biological decision-making process.

Applications of TF network biology

Understanding the human TF regulatory network has important implications for health and 

disease. These include improving disease diagnosis and developing new therapeutic 

strategies, as outlined below.

Disease diagnosis

Central to the realization of personalized medicine is the ability to discriminate whether a 

patient will respond to a particular treatment or develop resistance, will relapse or go into 

remission, etc. Accurate biomarkers are key to this predict power. TF network components 

are often mutated in cancers (see Box 3), but genetic mutations alone often fail to accurately 

predict disease progression. Understanding the TF network states associated with a certain 

disease, and unique output (e.g. gene expression profile), may help to accurately predict 

clinical response and outcome. For example, regression analysis has recently been applied to 

large gene expression datasets from leukemia patients to identify a highly predictive and 

clinically informative 17-gene signature for therapy resistance (Ng et al., 2016). The 

application of our understanding of TF networks associated with (and specific to) human 

diseases also has significant potential in identifying novel therapeutic targets.

Cellular engineering

Reprogramming, forward programming, and trans-differentiation approaches hold important 

promise for regenerative medicine (Graf and Enver, 2009). However, the generation of 

transplantation-grade cells is a major hurdle for the clinical application of these approaches. 

TFs are most commonly used in these approaches, with the best combinations of TFs being 

identified from experimental screening. However, such approaches are often expensive, 

time-consuming and fail to generate fully functional cell types. Several network biology-

based bioinformatics tools have been developed to predict TF combinations optimal for 

reprogramming and trans-differentiation, such as the CellNet platform (Cahan et al., 2014, 
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Morris et al., 2014). Recently, a more comprehensive bioinformatics platform has been 

developed, called Mogrify, which combines gene expression datasets from over 300 cell 

types with TF network information to predict TFs for cellular reprogramming and trans-

differentiation (Rackham et al., 2016). Given the importance of TF network state for cellular 

function and potential, such approaches and in silico modeling methodologies will likely 

play an increasingly important role in future translational research efforts.

Conclusion

TF regulatory network biology is an inter-disciplinary research field, with molecular, 

cellular, genetic, genomic, and computational approaches currently driving forward our 

understanding in a range of mammalian cell lineages and developmental stages. It is 

particularly exciting that human TF regulatory network biology is becoming an increasing 

research focus within the field, with its significance in understanding human health and 

disease. Using recent technological advances, we can now quantify global gene expression 

at single cell resolution, track TF dynamics within live cells, and investigate the impact of 

multiple mutations on cellular (and molecular) function. These new approaches are 

questioning some of the long-held assumptions in TF network biology. We expect that future 

advances will further drive forwards our understanding of mammalian TF networks.
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Glossary

Sequence-specific transcription factor (TF)
A sequence-specific DNA binding protein that regulates gene expression. These differ from 

other classes of transcription factors, such as general transcription factors, that regulate gene 

expression but do not bind DNA with sequence specificity.

TF network
The entire collection of TFs, their genes, and enhancer regions, within a cell that directly or 

indirectly interact to form a complex, interconnected molecular circuit.

Network state
The subset of the TF network, including the TFs and genes/enhancers that are expressed/

active at a given moment.

Enhancer region
A genomic region (often composed of multiple DNA elements) that positively regulates 

(enhances) transcription from a gene promoter. An enhancer may be proximal to or distal 

from its target sequence in primary DNA sequence.

Transcription factor binding site (TFBS)
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A specific (usually short) DNA sequence or motif to which a TF binds, a functional DNA 

element within an enhancer region.
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Figure 1. Central dogma of molecular biology and functions of transcription factors
(A) Gene expression is the process of gene transcription into messenger (m)RNA followed 

by translation into protein. Genes are encoded within genomic DNA and packaged within 

the nucleus as chromatin. Genomic sequencing has allowed protein-coding genes to be 

identified and annotated. A range of techniques have been developed to investigate 

chromatin structure, including DNase I hypersensitivity assays (such as DNase-seq), 

chromatin immunoprecipitation (such as ChIP-seq for histone modifications and TF 

enrichment) and chromatin conformation capture (3C) methods. Gene products can be 

measured at both RNA and protein levels by a range of techniques.

(B) Regulation of TF expression, activity and function. TFs are regulated at transcriptional, 

post-transcriptional and post-translational levels. TFs (green) can function by multiple 

mechanisms including: (i) recruitment of co-activators (yellow) that may add activating 

histone modifications (H3K4me or H3K27Ac; denoted as orange histones) or recruit RNA 

pol II to promote gene transcription; (ii) recruitment of co-repressors (red) that apply 

repressive histone modifications (such as H3K29me; denoted by black histones) to promote 

histone compaction and gene silencing; or (iii) DNA binding that results in histone 

displacement, which allows other TFs (blue) to bind;. TFs usually bind cooperatively and 

regulation of TF expression levels (and post-translational modifications) may influence TF 

function and activities.
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Figure 2. Approaches to build TF regulatory network models
(A) Enhancers. Putative enhancers can be identified by a number features including DNase I 

hypersensitivity sites (DHSs), histone modifications (such as H3K4me), TF enrichment and 

DNA looping (measured by chromatin conformation capture methods such as Hi-C). 

Enhancer activity can be assessed using in vivo or in vitro enhancer assays, and the function 

of the TFBSs (DNA motifs) identified within such enhancers can assessed by mutational 

analysis.

(B) Transcription factors. TFs can be identified by their DNA binding domains. TFs also 

contain effector domains, which are responsible for protein-protein interactions. A range of 

methods including electrophoretic mobility shift assays (EMSAs) and systematic evolution 

of ligands by exponential enrichment (SELEX) have been used to determine individual and 

cooperative TF DNA binding specificities.

(C) Building TF network models. Methods in (A) and (B) can be combined with functional 

assays (such as enhancer mutagenesis), gene expression analysis and/or TF pertubation 

analysis to build and train TF regulatory network models that can be “executed” in silico. 

These models provide important insights into the biological logic underpinning mammalian 

cell fate decisions, which feedback into experimental research.
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Figure 3. Mechanism of TF network regulation
(A) A summary of mechanisms that influence TF network state stability. Numerous extrinsic 

and intrinsic mechanisms regulate TF network stability. These mechanisms are also often 

influenced by TF network state). TF network stabilization results in maintenance of a cell 

identity/function, such as stem cell self-renewal, while TF network destabilization induces 

TF network state transitions can lead to changing cellular identity/function and cellular 

differentiation.

(B) A schematic of how different signalling pathways activate certain sub-networks or states 

of a TF network. Depending on the logic of TF interactions and signalling inputs, states may 

be (i) stabilized or (ii) destabilized (resulting in state transitions). The set of TFs expressed 

determines the selection of genes regulated/expressed, which influences cellular identity and 

function. This review focuses on the TF networks, rather than upstream signaling inputs or 

downstream regulated genes/patterns of expression. For simplicity, the TF protein, its 

enhancer(s) and gene are represented as a single circle (A-G). As described in the main text, 

TF proteins regulate the activity of enhancers of other TFs, to activate or repress gene 

transcription (and may also be involved in auto-feedback regulation).
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Figure 4. Commonly used mammalian systems to study TF networks
Mammalian TF networks have been commonly investigated in the context of pluripotency, 

muscle formation and hematopoiesis. (i) Pluripotent stem cells (embryonic stem cells or 

induced pluripotent stem cells) can self-renew or differentiate into any embryonic cell type 

through commitment to mesoderm, endoderm or ectoderm germ layers. (ii) Muscle stem 

cells (or satellite cells) can self-renew or differentiate into muscle cells. (iii) Hematopoietic 

stem cells (HSCs) have the ability to self-renew or differentiate into any mature blood cell 

type, through increasingly lineage-restricted haematopoietic progenitor cells. Red blood 

cells (RBCs), megakaryocytes (MKs), myeloid cells and lymphoid cells can be specified 

from HSCs.
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