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Introduction
High-throughput technologies, including next-generation sequencing, microarrays, mass spectrometry, and 
protein chips, now allow measurement of  many thousands of  biological variables at relatively low cost. While 
next-generation-based DNA sequencing panels are now affecting clinical practice (1, 2) for diagnosis of  genet-
ic disease, gene expression data are far less frequently utilized in routine clinical practice. A large number of  
studies have examined the utility of  gene expression data in prognosis and classification of  tumors (3, 4); 
however, in other fields in which affected tissue is of  more limited availability, the clinical effect of  transcrip-
tomics has been minimal. One of  the main challenges in utilizing these technologies is identifying the useful 
biological signal in such complex data. Combining transcriptomics with machine learning approaches has 
proven useful in disease classification in autism (5). Here, we show how the utility of  transcriptomic data for 
diagnosis can be refined using a combination of  machine learning and network based prioritization.

Many diagnostic tests in endocrinology require administration of  pharmacological agents, multiple 
blood sampling, and hospital admission, making them expensive and unpleasant for patients. This study, 
using growth hormone deficiency (GHD) as an exemplar, demonstrates how a single blood test with 
extracted mRNA applied to a microarray could replace endocrine stimulation tests.

BACKGROUND. The effect of gene expression data on diagnosis remains limited. Here, we show 
how diagnosis and classification of growth hormone deficiency (GHD) can be achieved from a single 
blood sample using a combination of transcriptomics and random forest analysis.

METHODS. Prepubertal treatment-naive children with GHD (n = 98) were enrolled from the PREDICT 
study, and controls (n = 26) were acquired from online data sets. Whole blood gene expression was 
correlated with peak growth hormone (GH) using rank regression and a random forest algorithm 
tested for prediction of the presence of GHD and in classification of GHD as severe (peak GH <4 μg/l) 
and nonsevere (peak ≥4 μg/l). Performance was assessed using area under the receiver operating 
characteristic curve (AUC-ROC).

RESULTS. Rank regression identified 347 probe sets in which gene expression correlated with 
peak GH concentrations (r = ± 0.28, P < 0.01). These 347 probe sets yielded an AUC-ROC of 0.95 for 
prediction of GHD status versus controls and an AUC-ROC of 0.93 for prediction of GHD severity.

CONCLUSION. This study demonstrates highly accurate diagnosis and disease classification for GHD 
using a combination of transcriptomics and random forest analysis.

TRIAL REGISTRATION. NCT00256126 and NCT00699855.

FUNDING. Merck and the National Institute for Health Research (CL-2012-06-005).
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GHD is a rare but important cause of  short stature in childhood, with a prevalence of  approximately 
1:4,000 (6). Consensus guidelines recommend an approach to the diagnosis of  childhood GHD that inte-
grates clinical, biochemical, and auxological data (7). Biochemical investigations are key to the diagnosis, par-
ticularly pharmacological growth hormone (GH) stimulation testing where a cutoff  level is used, below which 
children are diagnosed with GHD. There are, however, many problems associated with these stimulation 
tests — they display poor reproducibility (8) and, in addition, the peak GH level achieved varies with body 
composition (9, 10), pharmacological stimuli (11), and assay (12) used. The first cutoff  level proposed for the 
diagnosis of  GHD was 5 μg/l (13) in 1968 on the basis that this seemed to best identify children with a GHD 
phenotype. With the increased availability of  GH, this cutoff  was subsequently increased to 7 μg/l and then 
10 μg/l based on very limited evidence. Dependent upon the assay used, recent studies classifying children 
as GHD or not-GHD, based on auxological criteria, have suggested cutoff  levels between 4 and 7 μg/l (12). 
Clearly, there remains uncertainty as to the optimal cutoff  level for the diagnosis or GHD. Given the multiple 
problems associated with pharmacologic stimulation tests, there is also no clear cutoff  for the differentiation 
between “mild” and “severe” GHD. A peak GH cutoff  of  10 μg /l was used to define GHD in the PREDICT 
study, and, in the present analysis, we have chosen a cutoff  of  4 μg /l to define “severe” GHD.

There is, therefore, a need to develop new tools that are not susceptible to the many problems asso-
ciated with pharmacological stimulation tests to aid with the diagnosis and classification of  childhood 
GHD. The PREDICT study (14) was a 1-month, phase IV, open-label, prospective multicenter study in 
GH treatment–naive children with GHD (NCT00256126) that aimed to identify genetic and transcrip-
tomic markers of  response to GH therapy. Children enrolled in the study all had a peak GH level of  
<10 μg/l on two stimulation tests, blood samples taken for whole-genome gene expression analysis, and 
candidate SNP genotyping prior to starting treatment.

Using this cohort along with gene expression data from healthy control children, this exploratory study 
aimed to (a) define the set of  genes whose expression correlates with peak GH levels; (b) determine the use-
fulness of  these gene expression data in the diagnosis and classification of  GHD; (c) identify the biological 
function and regulators of  these genes; and (d) identify SNPs associated with peak GH levels and examine 
the utility of  these SNPs, either alone or in combination with the gene expression data and/or demograph-
ic/biochemical data, for classification of  GHD subjects.

Results
SNPs associated with peak GH. Eighteen SNPs in twelve genes were associated with peak GH concentra-
tions (see Table 1). Sixteen of  the eighteen SNPs are intronic, with one synonymous exonic SNP and one 
missense exonic SNP. None of  the SNPs were rare (defined as a minor allele frequency <1%), with 16 
of  18 SNPs having a minor allele frequency >10%. The function of  the genes associated with the SNPs 
included pituitary developmental transcription (POU1F1), generation of  estrogen (CYP19A1), IGF bind-
ing (IGFBP1), apoptosis (BCL2 and SHC1), cell cycle (CCND3 and CDK2), angiogenesis (CYR61), growth 
(TGFA), transcription (SREBF1), and signal transduction (PTPN1, RARA).

Principal component analysis and gene expression profiling in GHD and control children. No differences were 
observed in the overall distribution of  gene expression between GHD and control subjects using unsuper-
vised principal component analysis (PCA) on the transcriptomic data from the different studies described 
(Supplemental Figure 1; supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.93247DS1). This determined that there was no overall effect of  study or associated covariates on 
the data sets and therefore that further direct comparison was meaningful.

Rank regression identified 347 probe sets (representing 271 unique genes) in which expression cor-
related with peak GH concentrations in the 98 GHD children (188 probe sets correlated positively and 159 
correlated negatively, r ± 0.28, P < 0.01), and these 347 probe sets were also present in control arrays (see 
Supplemental Table 1). Of  these 347 probe sets, 65 were identified as also being expressed in the human 
growth plate. The gene expression of  the 347 probe sets is displayed on a heatmap for both children with 
GHD and normal children (assigned to a peak GH of  10 μg/l) in Figure 1A. A clear distinction can be seen 
between the normal subjects and the subjects with GHD, and, in addition, a point of  inflexion can be seen 
in the GHD subjects at a peak GH of  4.75 μg/l (Figure 1A).

These 347 probe sets were then displayed on a heatmap with 2-way hierarchical clustering using both 
the control and GHD subjects (Figure 1B). On the x axis of  the dendrogram, 4 clusters of  GHD subjects 
are shown, and, in addition, there were 45 subjects (20 GHD, 25 controls) who could not be classified into 
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any cluster (Figure 1B). Only one control subject was classified into one of  the 4 clusters, with the remain-
ing being GHD subjects. There were no significant differences in age, sex, height standard deviation score 
(SDS), weight SDS, or BMI SDS between the 20 GHD subjects not classified into the 4 GHD clusters and 
the 78 GHD subjects classified into one of  those 4 clusters.

An additional heatmap of  the 347 probe sets identified by rank regression using peak GH as a con-
tinuous variable in the GHD group only was generated (Figure 2A). In this heatmap, 5 clusters of  gene 
expression — 2 related to genes where there was a positive correlation with peak GH and 3 related to genes 
where there was a negative correlation with peak GH — were identified. In this heatmap, all subjects could 
be classified via a Euclidian metric into one of  the 5 clusters.

Supervised principal component and isomap multidimensional scaling identified 3 distinct groups of  
GHD patients (Figure 2B). There were significant differences between groups in peak GH levels, distance 
to target height SDS, and baseline insulin-like growth factor 1 (IGF1) SDS (see Table 2).

Network analysis. Using the genes identified by the rank regression, a network with 2,427 nodes and 3,604 
links was generated. Decomposition into a hierarchical modular structure revealed 43 network modules. 
Functionality was assessed on the top 15 modules as ranked by network centrality (Figure 3). Of  the 15 mod-
ules, 5 were related to circadian clock, 4 related to growth factor signaling, and 3 related to DNA replication.

The gene expression clusters (Figure 2) were overlapped with the network modules (see Figure 3 and Sup-
plemental Figure 2). Overlapping simply involved comparing the list of  genes present in the gene expression 
clusters and network modules (those with ≥3 shared genes considered to be linked). Gene cluster 1 linked to 
only 1 network module (HSD17B14) related to cell cycle, while gene cluster 5 also linked to only 1 network 
module (CASP2) related to apoptosis pathways. Gene cluster 2 associated with the second, third, fourth, and 
tenth network modules related to circadian clock, chromatin organization, and growth factor signaling. Gene 
clusters 3 and 4 each linked to 4 network modules covering the whole spectrum of pathways identified, except 
for apoptosis. SSX2IP, STRN3, and PTGDS contained within the first and second (SSX2IP), third (STRN3), 
and fifth (PTGDS), clusters as determined by centrality hierarchy (Supplemental Figure 2), had previously 
been identified in the top 10 genes with variable importance in the random forest model.

Table 1. SNPs associated with peak GH concentrations

Gene SNP MAF Region Genotype 
categorization

Phenotype variable 
type P value

BCL2 rs4987786 0.0397 Intron Minor allele carriage Categorical 0.036
CCND3 rs3218100 0.0242 Intron Nominal genotype Categorical  <0.001
CDK2 rs2069408 0.1849 Intron Major allele carriage Continuous  <0.001

CYP19A1

rs10459592 0.4433 Intron Minor allele carriage Continuous  <0.001
rs4545755 0.2780 Intron Major allele carriage Continuous  <0.001

rs700518 0.3259 Exon 
Synonymous Major allele carriage Continuous  <0.001

rs7172156 0.3884 Intron Nominal genotype Continuous 0.001
rs767199 0.2933 Intron Major allele carriage Continuous 0.001

CYR61 rs2297141 0.4675 Intron Major allele carriage Continuous 0.024

IGFBP1 rs4619 0.3760 Exon 
Missense Nominal genotype Continuous 0.012

POU1F1 rs12486159 0.2504 Intron Minor allele carriage Categorical  <0.001
rs17189466 0.1651 Intron Minor allele carriage Categorical  <0.001

PTPN1
rs6126033 0.1272 Intron Major allele carriage Continuous  <0.001
rs941798 0.4251 Intron Minor allele carriage Continuous  <0.001

RARA rs2715553 0.4050 Intron Major allele carriage Categorical  <0.001
SHC1 rs4845401 0.4904 Intron Minor allele carriage Categorical 0.002

SREBF1 rs9899634 0.3351 Intron Major allele carriage Categorical  <0.001
TGFA rs6749533 0.1571 Intron Minor allele carriage Categorical 0.035

Genotype categorization indicates whether peak GH is associated with minor allele carriage and major allele carriage or whether a relationship with peak 
GH exists across all 3 genotypes (i.e., major homozygote, heterozygote, minor homozygote) and is labeled as nominal genotype. For continuous analysis, a 
Kruskal-Wallis test was used and a Fisher’s exact test was used for categorical analysis; P values are Bonferroni corrected. MAF, minor allele frequency.
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Causal network analysis (CNA) (15) identified 4 causal elements within the network model, which 
mapped to the 15 network modules (see Figure 4). This provides robust supporting evidence for the functional 
pathways described by the network modules. Master regulators identified included APC2, which regulated 
the STRN3 network module related to apoptosis and gene cluster 4. SOX2, PI3KR3, and SIRT2 were identi-
fied as regulators of  the ARHGAP1, TRIM54, and SUFU network modules linked to gene clusters 3 and 4, 
and they affected Hedgehog signaling, circadian clock, mitochondrial biogenesis, and myogenesis pathways.

Figure 1. Heatmap of gene expression for those probe sets whose expression correlated with peak GH levels. (A) Normal children (n = 26) were combined 
with GHD patients (n = 98), rank regression analysis was adjusted for sex and age as covariates, and clusters of similar gene expression were identified 
using the Euclidean metric and marked using a dendrogram and white boxes (347 probe sets, 271 unique genes). The distinction between normal subjects 
is marked by the break in the heatmap; GHD is defined by a cutoff level of 10 μ/l growth hormone, as measured by provocation testing. The vertical white 
line demarcates the point of inflexion for gene expression at a peak GH level of 4.75 μ/l, while the horizontal white line demarcates those probe sets 
positively and negatively associated with peak GH levels (< or >4.75 μ/l). (B) Two-way cluster analysis of gene expression in GHD and control subjects. Four 
distinct clusters of GHD subgroups can be seen from the dendrogram on the horizontal axis derived via a Euclidian metric. There is, however, a large num-
ber of subjects it was not possible to classify (right of white line). This group contained all but 1 of the normal control subjects and 20 GHD subjects.
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Prediction of  GHD status and classification of  GH severity. Random forest analysis for predicting GHD ver-
sus control subjects yielded an area under the receiver operating characteristic curve (AUC-ROC) of  0.95 
(95%CI 0.91–0.99), with sensitivity of  96%, specificity of  100%, and an out-of-box AUC-ROC (OOB-AUC) 
of  0.99. 53 probe sets representing 40 named and 13 unnamed genes were confirmed by Boruta as contain-
ing predictive capacity (see Supplemental Table 2). Of  the 53 probe sets identified by Boruta, 10 of  these 
were also expressed in the growth plate. This represents an enrichment of  growth plate genes in comparison 
to those selected just by the rank regression model (hypogeometric P = 1.14 × 10–12). Although the predic-
tive capacity given by the transcriptomic data was excellent, we also assessed the ability of  network biology 
to improve prediction by selecting probe sets ranked by network centrality. Selecting the top 10 probe sets 
ranked by network centrality yielded an AUC-ROC of  0.94 (95% CI 0.91–0.95), while 4 different combi-
nations of  10 probe sets (randomly selected from the probe sets where expression was correlated with peak 
GH) yielded an inferior AUC-ROC of  0.84 (95% CI 0.78–0.90).

Demographic, biochemical, genomic, and transcriptomic data were used with random forest analysis to 
assess their predictive value in determining severe GHD (defined by peak GH <4 μg/l). Each of these data cat-
egories were assessed separately and then in combination (see Table 3). The transcriptomic data (AUC-ROC of  
0.93) performed better than the genomic (AUC-ROC of 0.85) or biochemical/demographic data (AUC-ROC 
of 0.88). The addition of the genomic or biochemical/demographic data (either alone or in combination) to 
the transcriptomic data did not improve the AUC-ROC (all 0.93). In the model using all data categories, of  
the top 10 variables of greatest importance (as ranked by mean decrease in accuracy), 9 were gene expression 
probe sets (NRXN1, SSX2IP, STRN3, RNF43, SUZ12P, RAB7A, PROC, GATSL3 and PTGDS) and 1 was a SNP 
(rs2715553). The functions of the encoded proteins were diverse but included several that were clearly linked to 
growth: STRN3 is a WD40 domain containing protein that enhances cancer cell survival and activating AKT 
(16), RAB7A is an oncogene involved in the RAS pathway, RNF43 is a tumor suppressor involved in ubiq-
uitination, and SSX2IP is known to bind to a synovial sarcoma-associated protein that promotes growth (17). 
Other genes and their encoded proteins did not have a clear role in GH secretion or growth — PROC is a coag-
ulation factor, SUZ12P is a pseudogene, GATSL3 is associated with rheumatoid arthritis (18) but has no known 
function, NRXN1 is a neuroligin synapse receptor (19), and PTGDS is involved in prostaglandin production.

Discussion
This exploratory study aimed to identify whether gene expression profiling could aid with the diagnosis of  
GHD or in our classification and understanding of  the factors influencing the severity of  GHD. Despite the 
use of  GH as a therapeutic agent since 1958 (20) and the ability to measure serum GH levels since 1963 
(21), the diagnosis of  GHD remains challenging; there is no “gold standard” test for diagnosis. In this study, 
we examined whether gene expression profiling could distinguish children from the PREDICT study with 
GHD from healthy controls. The development of  a test based on gene expression would be a significant 

Table 2. Baseline auxological and biochemical parameters in groups of GHD children identified by supervised principal component 
analysis

Group 1 
n = 12

Group 2 
n = 37

Group 3 
n = 49

P value

Age, yr 9.7 (6.3 to 13.3) 9.2 (2.5 to 13.4) 8.5 (2.3 to 15.6) NS
Male, n (%) 8 (66) 25 (67) 31 (63) NS
Birth weight SDS 0.6 (–1.2 to 1.0) –0.6 (–3.0 to 0.9) –0.1 (–2.7 to 4.6) NS
Birth length SDS –0.1 (–0.9 to 1.1) –0.6 (–7.0 to 0.9) –0.4 (–5.1 to 1.8) NS
Height SDS –1.9(–2.9 to –0.2) –2.0(–6.5 to -1) –2.2 (–3.4 to –0.3) NS
Weight SDS –1.0 (–2.0 to 0.5) –1.5 (–4.2 to 3.9) –1.4 (–3.2 to 2.3) NS
Distance to target height SDS –0.73 (–3.2 to 2.0) –1.4 (–5.6 to 0.9) –1.4 (–4.3 to 3.3) 0.037
Peak GH, μg/l 6.5 (4.9 to 9.3) 3.9 (0.12 to 7.1) 3.3 (0.1 to 7.7) 0.001
Pretreatment IGF1 SDS –0.8(–3.3 to –0.4) –1.3 (–5.2 to +0.3) –2.1 (–7.8 to 0) 0.031
Pretreatment IGFBP-3 SDS 0.4 (–1.5 to 0.9) 0.1 (–4.1 to 1.5) –0.4 (–6.5 to 1.9) NS

There is evidence of increasing GH severity between the groups, with peak GH and pretreatment IGF1 SDS decreasing across groups 1–3, as defined by 
supervised PCA. Data are presented as median (range), with differences between groups assessed using a Kruskal-Wallis test.
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advance for patients, potentially avoiding the need for hospital admission and the use of  pharmacological 
stimulation tests. The AUC-ROC of  the random forest–based algorithm from our gene expression data was 
excellent at 0.98 and, with a specificity of  100% and a sensitivity of  96%, clearly distinguished GHD subjects 
from controls, thus suggesting that this could be developed into a useful test for diagnosing of  GHD.

In addition to assessing the predictive ability of  random forest analysis, we also assessed whether net-
work prioritization of  input genes improved prediction. Limiting a prediction algorithm to a small number 
of  parameters may be helpful in developing a cost-effective test that can easily be applied to large numbers of  
patients. The predictive ability of  10 probe sets was increased by selecting them based on their network cen-
trality. This combination of  network analysis with a machine learning approach (in this case random forest 
analysis) may be particularly effective in developing “omic-based” approaches to diagnosis. Selecting probe 
sets based on the Boruta algorithm, which is designed to identify the probe sets most likely to contain true 
predictive capacity, resulted in an enrichment of  selected probe sets for those expressed in the growth plate.

These data support the use potential use of  a gene expression–based test, but there are significant 
limitations to our study. First, the patients and control children were assembled from different studies, 
although extensive work was undertaken to normalize both between and within batches of  arrays. Sec-
ond, rather than comparing children with GHD to normal healthy children, it would be better to compare 

Figure 2. Identification of clusters of variation of gene expression 
related to GHD severity. (A) Heatmap for the probe sets identified by 
correlation with peak GH (347 probe sets, 271 unique genes). Five dis-
tinct clusters of gene expression are identified via the dendrogram — 
two positively correlated (red) with peak GH and three negatively cor-
related (green). Pink, yellow, and blue squares indicate the principal 
component analysis group for each patient (see Figure 1B). (B) Isomap 
supervised principal component analysis using only those probe sets 
whose expression correlated to peak GH identified 3 distinct groups 
of GHD subjects (n = 98; pink n = 49, yellow n = 37, and blue n = 12).
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GHD children to short children without GHD, as this is the distinction that is required of  a clinical test. 
In addition, as a multicenter international study with the GHD diagnosis made at each study center, GH 
stimulation tests and assays were not standardized in the PREDICT study. PREDICT aimed to recruit 
a cohort of  children with GHD diagnosed according to international practice, encompassing the varia-
tions in diagnostic criteria between centers and countries. In general, there will be reasonable correlations 
between peak GH levels after different stimuli, such that a low peak GH after arginine will also be low 
after an insulin tolerance test or a glucagon test and higher levels in a test will be mirrored in a second test. 
Within KIGS, which collected “real world” data on GHD patients, the correlation between the first and 
second GH stimulation tests in >3,000 patients was reasonable at r = +0.515 (22). A third limitation is that 

Figure 3. Network modeling of the overlap of gene expression between clinical markers. (A) Network models generated using BioGRID (version 3.2.117) 
were analyzed to define modules of functionally related genes. The “community structure” of these modules was assessed and ranked by their “central-
ity” score to form a hierarchy related to the biological action of the network. (B) Community structure of modules within the network was assessed using 
the ModuLand algorithm in Cytoscape 2.8.3. Hierarchy of the first 15 network modules in each of the network models of gene expression overlap between 
clinical markers. Modules are shown as octagons labeled with the most central gene in the cluster and ranked by network centrality (1st through 15th).
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we did not have a peak GH level for the control subjects; due to the inaccuracy of  GH stimulation tests, we 
cannot be sure if  they had been tested that they would indeed have had a peak GH level >10 μg/, although 
as healthy controls it is highly unlikely that any of  them had GHD. Future studies should concentrate on 
prospective recruitment of  children undergoing GH stimulation testing using standardized stimulation tests 
and GH assays to determine in that cohort whether there is any evidence of  a change in pattern of  gene 
expression at any particular cutoff  level for peak GH. A small number of  subjects in this study received 
additional hormone supplementation with hydrocortisone or thyroxine; given that this was physiological 
replacement, we do not expect this to have significantly affected gene expression.

In addition, this study has demonstrated the utility of  gene expression profiling and SNP genotyping 
in identifying a cohort of  children with more severe GHD. A cutoff  of  4 μg/l was selected, as this allowed 
us to create two groups (one with more severe GHD) with sufficient numbers for prediction. The most 
accurate tool for identifying GH severity status was the transcriptomic data, which performed better than 
the genomic data, clinical data, or genomic and clinical data combined. This is highly suggestive of  the 
possibility of  accurately identifying, on the basis of  a basal gene expression, a child with severe GHD from 
among a cohort of  subjects with short stature and a range of  peak GH concentrations classified as GHD.

Unsupervised PCA did not identify clinically distinct groups of  GHD patients, and we therefore under-
took a supervised PCA using those genes where expression correlated with severity of  GHD, as defined 
by peak GH concentration to stimulation testing. This supervised analysis identified 3 groups of  GHD 
patients. There was a clear clinical separation between group 1 and groups 2 and 3, with group 1 represent-
ing a less severe cohort of  patients with a higher peak GH level, higher IGF1 SDS, and lower distance to 
target height SDS (Table 2). There was clear separation of  groups 2 and 3 in the PCA, but no clear auxo-
logical/biochemical differences between these groups.

In addition to identifying a gene expression profile associated with peak GH concentrations, we also 
identified 18 SNPs from 12 different genes where genotype was associated with peak GH concentrations. 
Five of  these twelve genes (SHC1, CCND3, BCL2, CDK2, and RARA) were also present in the network. Of  
those five genes, two each are involved with apoptosis and cell cycle. For many patients with GH deficiency, 
anterior pituitary hypoplasia is also present, and these SNPs may mediate their effects by affecting somato-
trope differentiation and survival. One of  the SNPs was within POU1F1, a pituitary transcription factor 
essential for differentiation of  somatotropes, lactotropes, and thyrotropes (23). Five SNPs were identified 

Figure 4. Summary of predicted activity and regulators derived via causal network analysis for the network modules. The hierarchy of clusters of 
gene expression shown in Figure 2 were mapped onto identified causal networks. Activity of pathways and master regulators (colored red) show a 
positive correlation with the GHD severity or (colored green) show negatively correlated activity. Pathway ontology of all modules in the hierarchy is 
shown in Supplemental Figure 2.
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within CYP19A1, the gene that encodes the enzyme aromatase, which is responsible for the generation of  
oestrogen. Sex steroids augment GH peak concentrations during stimulation tests and mediate pituitary 
growth during puberty, and oestrogen inhibits GH signal transduction by stimulating expression of  SOCS-2 
(24). Although all children enrolled in PREDICT were prepubertal, it is possible that very low prepubertal 
oestrogen concentrations can be influenced by these SNPs and hence effect GH levels.

To explore the function of  the genes with expression linked to peak GH levels, we generated a network 
model and ranked functional modules of  genes according to the network centrality. Gene clusters 2, 3, 
and 4 all mapped to network modules involved in growth factor signaling, including WNT and hedgehog 
signaling, while gene cluster 5 mapped to a module involved in apoptosis. It is perhaps not surprising that a 
strong signature for growth factor signaling and apoptosis would be identified in the genes related to sever-
ity of  GHD. Both GH and its downstream effector hormone IGF1 are known inhibitors of  apoptosis (25). 
Clearly, with increasing severity of  GHD, we would expect reduced growth factor signaling and increased 
apoptosis. This study, however, defines the distinct gene expression clusters that differentially link to growth 
factor signaling and apoptosis. It was interesting to find a strong signature for the circadian clock. GH is 
secreted in pulses mainly overnight (26), and this finding may reflect either disturbances of  the circadian 
clock, leading to reduced secretion of  GH, or perhaps an acceleration of  the circadian clock rhythm in an 
attempt to maximize GH pulse frequency where pulse amplitude has been limited by somatotroph hypo-
plasia. GH secretion has not only circadian but also ultradian rhythms (27), and disturbance of  these can 
lead to a form of  GHD termed neurosecretory dysfunction. This is a disorder in which the child presents 
with GH deficiency with a normal pharmacological GH stimulation test but abnormal spontaneous GH 
secretion, with reduced frequency and amplitude of  GH pulses (28).

CNA allowed us to identify 4 master regulators — APC2, SOX2, PIK3R3, and SIRT2. Loss-of-function 
mutations in anaphase-promoting complex 2 (APC2) have been associated with a Sotos syndrome–like pheno-
type of overgrowth and neurodevelopmental delay (29), and it is a negative regulator of WNT signaling through 
its targeting of β-catenin for ubiquitin-mediated proteolysis (30). WNT signaling is known to be involved in 
pituitary development, promoting the expression of PITX2 and proliferation of pituitary precursors (31). Sex 
determining region Y box 2 (SOX2) is a member of the SRY-related HMG box B1 (SOXB1) subfamily of tran-
scription factors and is expressed in the developing brain and posterior neural tube, including Rathke’s pouch 
and hypothalamus (32). In humans, heterozygous loss-of-function mutations in SOX2 lead to eye abnormali-
ties (microphthalmia and anophthalmia) and hypopituitarism (hypogonadotropic hypogonadism and variable 
GHD). SOX2 expression in the postnatal and adult pituitary marks a subpopulation of hormone-negative cells, 
which are pituitary progenitor stem cells capable of differentiating into endocrine-producing cells (31). SOX2 
may therefore be regulating developmental processes, such as pituitary stem cell proliferation, in addition to 
myogenesis. PIK3R3 encodes a regulatory subunit of phosphoinositide-3-kinase, a component of both the GH 
and IGF1 signal transduction systems, as well as many other cell signal transduction cascades. PI3K is involved 
in a diverse range of functions, including proliferation, cell survival, degranulation, vesicular trafficking, and cell 

Table 3. Prediction of GH severity (peak GH ≤4 μg/l or >4 μg/l) via random forest model

Data used in the prediction model Predictive capacity
Biochemical and 

demographic data
Genotype data Transcriptomic data AUC 95%CI AUC

Yes No No 0.88 0.81–0.94
No Yes No 0.85 0.78–0.91
No No Yes 0.93 0.88–0.98
Yes Yes No 0.83 0.76–0.90
Yes No Yes 0.93 0.88–0.98
No Yes Yes 0.93 0.88–0.98
Yes Yes Yes 0.93 0.88–0.97

Data used in the model were classified into biochemical and demographic data (baseline IGF1, IGFBP-3, age), genotype data (SNPs identified as being 
associated with peak GH, see Table 1), and transcriptomic data (top 50 probe sets identified via rank regression model ranked by network centrality). 
The predictive capacity of each of the 3 classes of data were assessed independently and then in combination. AUC, area under the receiver operator 
characteristic curve. 
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migration. SIRT2 is one of a class of NAD(+)-dependent deacetylases with antiaging activity in model organ-
isms, an effect increased by caloric restriction (33). The sirtuins induce mitochondrial biogenesis (the generation 
of new mitochondria) to reduce the accumulation of toxic reactive oxygen species seen in caloric restriction (33). 
In addition, SIRT2-regulated adipocyte differentiation inhibits p53 accumulation and is regulated by Src tyrosine 
kinase (a component of the GH signal transduction system) (34).

This study has demonstrated the potential for gene expression profiling to aid in both the diagnosis and 
classification of  GHD and, in addition, has identified the functions of  the networks of  genes related to peak 
GH concentrations along with their master regulators. Moving from a diagnosis requiring the use of  phar-
macological stimulation tests to a single blood sample would be a major advance, particularly for pediatric 
patients. This work could potentially be extended from GHD to other hormone deficiencies, allowing the 
full assessment of  pituitary function with a single blood test.

Methods
Patients. The PREDICT study was a phase IV, open-label, prospective pharmacogenomic study examining 
response to GH therapy; it enrolled 125 prepubertal children (78 male, 47 female), aged 2–15 years, with a 
diagnosis of  GH deficiency, reached after two pharmacological stimulation tests according to local proto-
cols, with a peak GH concentration of  <10 μg/l. Details of  the inclusion and exclusion criteria have pre-
viously been reported (14, 35). In brief, prior to enrollment in the study, none of  the children had received 
GH therapy; children with GHD due to central nervous system tumors or radiotherapy were excluded, but 
children born small for gestational age were not. Of  the 125 children in the PREDICT study, baseline gene 
expression data were available on 98 subjects aged 2–15 years (34 female, 64 male). Bone age was available 
for 92 patients. Mean bone age delay was 2.2 ± 1.5 years. A delay in bone age of  ≥1 year was present in 72 
patients. Birth weight was available for 82 patients, of  whom 12 (15%) were born small for gestational age. 
In addition to GH therapy, 5 patients received both thyroxine and hydrocortisone replacement, 3 patients 
thyroxine alone, and 1 patient hydrocortisone alone.

The PREDICT study was conducted in compliance with ethical principles based on the Declaration of  
Helsinki, the International Conference on Harmonization Tripartite Guideline for Good Clinical Practice, 
and all applicable regulatory requirements.

Serum samples and assays. Blood samples were drawn in the morning, after an overnight fast, and prior to 
and 1 month after start of treatment with recombinant human GH. Samples were centrally assayed at qLAB. 
Serum IGF1 and IGFBP-3 were measured using DPC chemiluminescent immunoassays (Immunolite 2000, 
Siemens Healthcare Diagnostics Inc.). Plasma insulin was measured with a 2-site immunoenzymometric assay 
(AIA-PACK IRI, Tosoh). Plasma glucose was determined by using the glucose oxidase method, and HDL 
cholesterol was measured with an enzymatic-calorimetric test.

Genotyping. Genotyping of  1,536 SNPs, located on 103 candidate genes (related to the GH-IGF1 axis, 
bone and cell growth, and glucose and lipid metabolism), was performed as previously described (14) using 
the Illumina GoldenGate assays (Illumina). Before analysis, genotyping data were filtered to remove SNPs 
with a call rate <95% and those showing significant deviation from the Hardy-Weinberg equilibrium using 
a Bonferroni correction. After data cleaning, 1,171 SNPs in 97 genes remained for analysis.

Continuous analysis. SNPs associated with peak GH were identified using the Kruskal-Wallis rank-sum 
test on the following models: genotype, presence of  the major allele (dominant model), and presence of  the 
minor allele (recessive model). For nonpseudoautosomal X-linked markers, boys were analyzed separately 
from girls. As a candidate gene rather than a whole-genome approach was being used, P values were adjusted 
for multiple testing using a Bonferroni correction, taking into account the number of  linkage disequilibrium 
blocks present in the gene containing the SNP of interest and considered significant where adjusted P < 0.05.

Categorical analysis. Markers were also tested in a categorical analysis, with patients classified by quar-
tiles of  peak GH; comparisons were made between those with low peak GH concentration versus those 
with intermediate and high peak GH and those with high peak GH concentration versus those with inter-
mediate and low peak GH concentrations. All P values were calculated using Fisher’s exact test and adjust-
ed for multiple testing using a Bonferroni correction, taking into account the number of  linkage disequilib-
rium blocks within each candidate gene.

Transcriptome analysis for subjects in PREDICT study and gene expression data sets from normal childhood con-
trol subjects. To assess transcriptomic relationships, gene expression profiling was carried out on whole blood 
RNA as previously described (14) and hybridized to Affymetrix GeneChip Human Genome U133 Plus 2.0 
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Arrays. These gene expression data have previously been uploaded to the NCBI Gene Expression Omni-
bus (GEO) database (GSE72439) (36). For control subjects, gene expression analysis was conducted on a 
library of  gene expression data sets from normal children with age annotation collated from the publically 
available NCBI GEO and EBI ArrayExpress databases. The original Affymetrix CEL files from GSE9006 
(37), GSE26440 (38), and TABM666 (39) were downloaded and combined into one group to form a main 
analysis data set following published guidelines (40). Details of  the generation of  this combined normative 
data set have previously been published (41). As the children in PREDICT were all above the age of  2 years, 
gene expression profiles from normal children were removed if  they were aged <2 years old, which left 26 
subjects (14 male, 12 female) aged 2–11 years. Mean age was significantly lower for control patients at 5.8 ± 
2.7 years compared with PREDICT subjects at 8.8 ± 2.9 years (P < 0.01), but there was no significant dif-
ference in male sex (14 of  26, 54% in control subjects, and 61 of  98, 62% of  PREDICT subjects, P = 0.58).

Normalization and quality control of  gene expression data. For background correction, the Robust Multichip 
Average (42) was applied to the combined CEL files (derived from GEO or PREDICT, see accession num-
bers above). The data set generated was subject to quality control to investigate the presence of  outliers and 
further confounding effects. Dimensional scaling using PCA and isomap multidimensional scaling (MDS) 
(43, 44) was used to demonstrate data homogeneity (Qlucore Omics Explorer 2.2) and identify outliers 
using cross validation. Gene expression data were normalized for batch, age and sex.

Unsupervised and supervised PCA. Unsupervised PCA was performed on the gene expression profiles to 
identify whether the variance in the data sets (GHD and controls) was consistent, a requirement for further 
statistical analysis between these groups. Supervised PCA was performed after initial statistical evaluation 
(rank regression, see below) to determine the presence of  patient subgroups. All PCA was performed using 
Qlucore Omics Explorer (Qlucore). Quality control of  all PCA was undertaken using cross-validation 
(sequential removal of  all samples) to determine group stability. Unsupervised PCA was refined using vari-
ance filtering and a projection score (45). PCA was also confirmed using isomap multidimensional scaling.

Analysis of  network models. Network analysis allows the identification and prioritization of  key func-
tional elements within interactome models, which this study has used to prioritize genes for prediction 
and also to gain insights into biological function. To derive an interactome model, genes whose expression 
correlated with peak GH concentrations were used as “seeds,” and all known protein/protein interactions 
between the seeds and their inferred immediate neighbors were identified to generate a biological network 
using the output of  the BioGRID model of  the human interactome (3.3.122) (46). Network generation and 
processing was performed using Cytoscape 2.8.3 (47).

Clustering and “community structure” of  modules within biological networks arise from variation in 
connectivity within the network and are known to be associated with function (48–50). To prioritize these 
functional components within interactome models, we used the ModuLand plug-in for Cytoscape 2.8.3 to 
determine overlapping modules and to identify hierarchical structure within the model, thus enabling the 
identification of  key network elements (52). Network modules were prioritized for further investigation by 
their centrality property, and the most central set of  10 genes within each module was used to assess asso-
ciated biological pathways using the Reactome database (52). The network structure observed with com-
munity modeling in ModuLand was confirmed by cluster analysis using the ClusterOne algorithm (53).

CNA. CNA allows the identification and prioritization of  regulatory system elements within transcrip-
tomic models. CNA was performed within Ingenuity Pathways Analysis using the genes whose expression 
was correlated with peak GH concentrations.

CNA identifies upstream molecules, up to three steps distant, that control the expression of  the genes 
in the data set (15). A prediction of  the activation state for each regulatory factor (master regulator), 
based on the direction of  change, was calculated (Z-score) using the gene expression patterns of  the 
transcription factor and its downstream genes. An absolute Z-score of  ≥|1.4| and a corrected P < 0.05 
(Fisher’s exact test) was used to compare the regulators identified in each of  the comparisons made using 
hierarchical clustering (Euclidean metric).

Regression and random forest analysis. Rank regression of  probe sets for association with peak GH lev-
els was performed in Qlucore Omics Explorer (Qlucore). Differences in demographic characteristics were 
assessed using SPSS version 20 (IBM) via a Kruskal-Wallis test.

A random forest algorithm (54) was used to predict severity of  GHD (<4 μg/l) based on demograph-
ic, biochemical, genomic, and transcriptomic data. A cutoff  of  4 μg/l was chosen, as this divided the 
subjects into two groups of  approximately equal size, maximizing accuracy of  the random forest classifi-
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cation. Biochemical and demographic data included age, sex, and IGF1/BP3 before start of  GH therapy. 
Genomic data comprised the SNPs identified as being associated with peak GH. For prediction of  GHD 
versus control, the data were unbalanced (98 GHD subjects and 26 controls), and, with an unbalanced 
data set, random forest poorly predicts the minority class (in this case control subjects). To overcome this 
problem, a synthetic minority oversampling technique (55) was used to rebalance the data set prior to 
random forest prediction using age, sex, and transcriptomic data (final data used 114 subjects, 57 controls, 
and 57 patients). The predictions were assessed based on AUC-ROC and OOB-AUC as a validation set. 
Identifying those probe sets most likely to contain predictive capacity was achieved with the use of  Boruta 
(56). The Boruta algorithm uses a 100-fold permutation to define the noise present in the data, the noise 
is modeled as shadow variables and used as a basis to assess confidence in the data. All statistical analyses 
were performed using R 2.15.3. Random forest analysis requires no explicit test and validation set, as the 
OOB-AUC functions as a validation data set. In developing the random forest algorithm, hundreds or 
thousands of  decision trees (in our case 1,000 trees) were created. Each tree was generated using a random 
selection of  input variables and randomly selected two-thirds of  the subjects. Each tree produced a classi-
fication vote, and the majority vote across all trees determines final classification. For each tree, there is a 
random one-third of  subjects whose data were not used in generating that tree — these data are then used 
to generate the OOB-AUC, which essentially functions as a validation data set.

Human growth plate gene expression and overlap with probe sets identified via random forest analysis. Human 
gene expression data from growth plate–derived RNA was available for two subjects (1 male, 1 female) 
from the NCBI GEO database (GSE9160). For each subject, a sample of  the distal femoral growth plate 
had been obtained, and populations of  cells from reserve, proliferative, prehypertrophic, and hypertro-
phic zones were obtained by laser microdissection. RNA from each population of  cells, corresponding 
to each zone of  the growth plate, was amplified and hybridized to Affymetrix HU-133 2.0 arrays. Frozen 
robust multiarray analysis (57) was used to define absolute expression by comparison to publically available 
microarray data sets within R, and an expression barcode (58) was defined for each growth plate zone for 
each patient. Expression within the growth plate was defined by a gene expression barcode value of  1 in 
any zone of  the growth plate in either patient.

Statistics. The Kruskal-Wallis rank-sum test and Fisher’s exact test, both with Bonferroni corrections 
for multiple testing, were used to determine genetic associations with peak GH. The Kruskal-Wallis rank-
sum test was also used to assess differences in clinical parameters between patient groups determined by 
multidimensional scaling. The significance of  gene set overlaps was determined using the hypergeometric 
test. Analysis was performed in R or SPSS using a threshold of  P < 0.05.

Gene expression was associated with peak GH levels using rank regression and a threshold of  P < 0.01 
in Qlucore Omics Explorer 2.2.

Study approval. The PREDICT (NCT00256126) and PREDICT long-term follow-up (NCT00699855) 
studies were approved by the Scotland Medical Research and Ethics Committee (reference 05/MRE10/61) 
and the North West Research Ethics Committee (reference 08/H1010/77), respectively. Informed consent 
was obtained from parents for all study participants.
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