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Abstract

In this chapter, we present updated features to a model developed by Dana-Farber investigators 

within the Cancer Intervention and Surveillance Modeling Network (CISNET). The initial model 

was developed to evaluate the impact of mammography screening strategies. This major update 

includes incorporation of ductal carcinoma in situ (DCIS) as part of the natural history of breast 

cancer. The updated model allows DCIS in the pre-clinical state to regress to undetectable early 

stage DCIS, or to transition to invasive breast cancer, or to clinical DCIS. We summarize model 

assumptions for DCIS natural history and model parameters. Another new development is the 

derivation of analytical expressions for overdiagnosis. Overdiagnosis refers to mammographic 

identification of breast cancer that would never have resulted in disease symptoms in the patient’s 

remaining lifetime (i.e., lead time longer than residual survival time). This is an inevitable 

consequence of early detection. Our model uniquely assesses overdiagnosis using an analytical 

formulation. We derive the lead time distribution resulting from early detection of invasive breast 

cancer and DCIS and formulate the analytical expression for overdiagnosis. This formulation was 

applied to assess overdiagnosis from mammography screening. Other model updates involve 

implementing common model input parameters with updated treatment dissemination and 

effectiveness, and improved mammography performance. Lastly, the model was expanded to 

incorporate subgroups by breast density and molecular subtypes. The incorporation of DCIS and 
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subgroups and the derivation of an overdiagnosis estimation procedure improve the model for 

evaluating mammography screening programs.
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INTRODUCTION

The clinical motivation for screening asymptomatic individuals for cancer is to diagnose the 

disease early, before it progresses to advanced stages. Modeling approaches provide insights 

into the expected effectiveness of screening strategies. We developed a model to characterize 

breast cancer disease progression and depict the early detection process of mammography 

screening [1–3]. In collaboration with the Cancer Intervention and Surveillance Modeling 

Network (CISNET) Breast Working Group, our model has been extensively applied to 

comparative effectiveness research on mammography screening [4–7].

The model developed by Dana-Farber investigators within the CISNET (referred to as 

Model D) takes an analytical approach to predict breast cancer incidence and mortality as a 

function of the disease natural history, detection process, and treatment. Model D evaluates 

the impact of mammography screening and treatment on incidence and mortality of breast 

cancer. The factors that influence mortality in Model D include performance characteristics 

of screening tests, screening schedule, natural history parameters (distribution of sojourn 

time in health states, transition rates between health states), incidence of disease by age, and 

treatment effectiveness.

This chapter describes a major and a minor update and a new development to Model D since 

its initial publication in 2006. The major update is the expansion of the natural history model 

to include ductal carcinoma in situ (DCIS). Therefore, the updated model addresses the 

natural history of invasive breast cancer as well as DCIS. DCIS represents a spectrum of 

abnormal cells confined to the breast duct. Despite the possible indolent nature of DCIS, it 

can potentially progress to invasive breast cancer. The natural history of DCIS—how it 

develops and if and when it progresses to invasive cancer or regresses to normal tissue—

cannot be directly observed and hence is not well understood [8]. With the widespread use 

of mammography screening, the incidence of DCIS has increased dramatically in the past 

couple of decades. American Cancer Society estimates for 2015 were approximately 50,000 

new diagnoses of female DCIS [9]. These cases would account for 20–25% of screen-

detected breast cancers [10]. Inclusion of DCIS in Model D allows for full evaluation of the 

impact of mammography screening on breast cancer incidence and mortality.

The new development involves the derivation of analytical expressions for quantifying 

overdiagnosis. For mammography screening, diagnosing patients with breast cancer for 

abnormalities that would not be detected in their lifetime in the absence of screening is 

overdiagnosis. Hence, by definition, overdiagnosis can potentially occur only for individuals 

diagnosed from a screening exam. In the updated version of Model D, diagnosis includes 

both screen-detected invasive breast cancer and DCIS. Model D now uniquely quantifies the 
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degree of overdiagnosis by formulating the probability of the lead time being longer than the 

patient’s remaining survival time. In Model D, lead time begins with the event of early 

detection and extends to when the disease would have been diagnosed from clinical 

symptoms. A challenge is that lead time is not directly observable as early diagnosis 

interrupts natural disease progression. However, the lead time can be analytically quantified. 

We derived the lead time distribution for screen-detected invasive breast cancer and DCIS 

and applied it to quantify overdiagnosis.

The CISNET Breast Working Group models share the common model input parameters 

described in the common model input chapter of this monograph [11]. Parameters used in 

Model D are the US population lifetable, incidence of breast cancer in the absence of 

screening and treatment, screening test performance, screening dissemination, stage 

distributions of cases by mode of detection, treatment dissemination, and effectiveness. 

Since Model D does not require calibration to fit the incidence or mortality data, these input 

parameters are directly incorporated into the model. As more detailed and refined common 

input data become available, they are implemented to Model D.

Our main aim in this chapter is to present our updated model of breast cancer progression 

that includes DCIS. We present the DCIS natural history model specifications and 

assumptions. We also present our analytical approaches for estimating overdiagnosis from 

mammography screening for invasive breast cancer and DCIS. This formulation was derived 

using the relationship between lead time and residual survival function. We also outline our 

general approaches for a minor update, developing subgroup models such as incorporation 

of breast density and molecular subtypes of estrogen receptor (ER) and human epidermal 

growth factor-2 receptor (HER2) status. Lastly, we describe other updated features reflecting 

better screening performances and complex treatment dissemination and effectiveness.

MODEL OVERVIEW

This section introduces general features of the initial model [2], presents major and minor 

updates, and outlines a new development.

Basic Model: Natural History of Invasive Breast Cancer

The Dana-Farber CISNET Model D is unique among CISNET breast cancer models because 

it is an analytical model, where as other CISNET models are simulation-based [7]. Model D 

depicts the early detection process of screening and predicts breast cancer incidence and 

mortality as a function of the disease natural history, detection process, and treatment [2,3]. 

Analytical formulations were derived and implemented in Model D to estimate the impact of 

mammography screening and treatment on incidence and mortality of breast cancer.

Initially, Model D characterized the natural history of breast cancer by health states 

involving invasive breast cancer. Two main model assumptions are: 1) invasive breast cancer 

is progressive and advances to worse states, and 2) the mortality benefit from screening is 

from a “stage shift” in diagnosis. That is, screening that finds cancer at an earlier disease 

stage leads to the mortality benefit. The model directly uses observed stage distributions by 

mode of detection (screen, interval and clinical mode of detection as defined in the common 

Lee et al. Page 3

Med Decis Making. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



input chapter [11]). For example, for screen-detected cases, breast cancer-specific survival is 

generated by combining stage-specific baseline survival data (in the absence of screening 

and treatment) using the observed stage distributions of screen-detected cases. A similar 

calculation is carried out for the survival of interval and clinical cases. Full details of this 

procedure were elaborated previously [2]. Other factors such as performance characteristics 

of screening tests, natural history parameters (sojourn time in health states, transition rates 

between health states) and treatment effectiveness also influence mortality in Model D.

Any specific screening patterns or combination of screening patterns used in the US 

population are applied by birth cohort. The mortality benefit of mammography screening is 

obtained through a stage shift as described above. Treatment effectiveness captured as 

hazard reductions are applied to the baseline (in the absence of screening and treatment) 

underlying breast cancer survival data. Since Model D does not require calibration, no extra 

parameters need to be estimated to fit the observed incidence or mortality data. Therefore, 

incorporation of common input data is straightforward. In modeling breast cancer incidence 

and mortality trends in the US female population, dissemination of treatment and screening 

provided as common input data are directly implemented by birth cohort [11].

Analytical formulations of Model D are implemented using the software Mathcad (version: 

14) from Parametric Technology Corporation (PTC) and Mathlab (version: 2014) from 

Mathworks to generate incidence and mortality-related outcomes.

Updated Model: Natural History of Breast Cancer with Invasive Breast Cancer and DCIS

The major update to our model was adding an in situ breast cancer component to the existing 

invasive breast cancer natural history model [2]. We used DCIS to represent in situ breast 

cancer in general. This generalization was felt to be justified as DCIS accounts for the 

majority of in situ breast cancers, especially those detected by mammography [12–15].

The updated model characterizes the natural history of breast cancer using health states. As 

described in Figure 1, a normal tissue first transits into a pre-clinical, undetectable in situ 

state and further progresses to either a pre-clinical, screen-detectable in situ state or a pre-

clinical screen-detectable invasive breast cancer state. Specifically, an individual’s health 

states may be: (1) disease-free (S0), (2) early stage DCIS not detectable by any screening 

modality (Sdu), (3) early stage DCIS detectable by screening (Sdp), (4) clinical DCIS with 

symptoms (Sdc), (5) early stage screen-detectable invasive breast cancer (Sp), (6) clinical 

invasive breast cancer with symptoms (Sc), or (7) breast cancer death (Sd).

The invasive breast cancer component of the natural history (Figure 1) was previously 

developed and validated [1–3, 16]. Briefly, the model assumes that disease progresses to 

worse states, Sdu → Sp → Sc. Sojourn time in Sp follows an exponential distribution (Zelen 

1969) with an age-dependent mean sojourn time of 2–4 years [18]. For early stage DCIS in 

the preclinical, screen-detectable state: (1) some cases will stay in the early stage and 

eventually regress to the preclinical, undetectable DCIS state, (2) some will progress to 

invasive breast cancer, and (3) some will progress to the clinical DCIS state when symptoms 

appear. We assumed that all three types could be detected by mammography screening. 

Furthermore, we assumed that DCIS without progression would not result in death.
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Transition probabilities between health states are defined as in Figure 1. Overall the 

proposed DCIS model captures the main DCIS health states and transitions among these 

health states. We defined W0(t) ∆t as the transition probability of S0 → Sdu during an age 

interval (t, t + ∆t). Similarly, other transition probabilities are denoted by Wd (t) for Sdu → 
Sdp, We(t) for Sdp → Sdu, Wp(t) for Sdp → Sp, Wi(t) for Sdu → Sp, Id(t) for Sdp → Sdc, I(t) 
for Sp → Sc, and D(t) for Sc → Sd. Except for Id(t) and I(t), these transition probabilities 

are unobservable and cannot be directly estimated. For simplification, the updated DCIS 

model combines three unobservable transition probabilities to and from the pre-clinical, 

screen-detectable DCIS state (Sdp) as a net transition probability of Ws(t) = Wd(t) − We(t) − 

Wp(t). This parameterization simplifies a net of Ws(t) probability to enter Sdp and Id(t) to 

exit Sdp.

Sojourn time in Sdp is critical for the model because it is the point when screening, but not 

symptoms, can reveal DCIS. The probability density function of the sojourn time in Sdp is 

defined as q(t) = (1 − c)λe−λt where λ can be a function of age and c is the fraction of pre-

clinical detectable DCIS that does not become clinically detectable. Since we used the net 

transition probability Ws(t) rather than specifying Wd(t), We(t) and Wp(t) individually, and 

the exit rate from screen-detectable pre-clinical DCIS was guided by Id(t), we adopted the 

cure rate model from traditional survival analysis [19]. Thus, sojourn time in Sdp is 

described by two parts: one part exiting with Id(t) as an exponential rate and the rest 

described by fraction c. Correspondingly, Q(t) = ∫
t

∞
q(x)dx = c + (1 − c)e−λt. This is a slight 

variation from a commonly adopted form of exponential distribution for Sdp.

Estimation of DCIS Model Parameters

The transition probability of Id(t) can be estimated from observed age-specific DCIS 

incidence data in the absence of screening. The remaining transition probability, simplified 

to Ws(t), is calculated recursively using the method described in Lee and Zelen [1]. For this 

purpose, we used several data sources including US Surveillance, Epidemiology and End 

Results (SEER) data on DCIS incidence before 1980, when mammography screening began 

being disseminated in the United States, and Norwegian DCIS incidence data before a 

national screening program was instituted in 1996. We also used the US DCIS incidence 

data generated from the age-period-cohort (APC) approach in the absence of screening as 

described in the common model input chapter [11,20,21].

In addition, we used data from the Norwegian Breast Cancer Screening Program (NBCSP) 

[22] and Norwegian age-specific DCIS incidence data from 1993–1995 (pre-screening era). 

The NBCSP started in 1995–1996 as an evaluation program and mammography screening 

disseminated gradually to the Norwegian female population. By 2006, the entire Norwegian 

female population aged 50–69 years was invited to participate in the biennial mammography 

screening program. NBCSP data were summarized by screening rounds to indicate screen-

detected DCIS as well DCIS cases diagnosed in the interval between two screening 

examinations. By modeling the case-finding processes in mammography screening, we 

estimated the DCIS natural history parameters of λ, c for q(t) and transition probabilities of 

We(t) and Id(t). Ws(t) and Id(t) were also evaluated using US SEER data (before 1980) and 
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APC-baseline data for various US birth cohorts. Overall, the mean sojourn time in Sdp for 

the exponential component (1/λ) was 1.5–3 years and the fraction of pre-clinical detectable 

DCIS (c) that did not transit to clinical DCIS was 0.45–0.55. As demonstrated by Shen and 

Zelen [18], the estimated sojourn time distribution in Sp for invasive breast cancer does not 

vary across US, Canadian and European populations. This finding supports our adoption of 

NBCSP data for the sojourn time distribution data in Sdp. DCIS APC incidence data for the 

US population was adopted to estimate transition probabilities.

Estimation of Overdiagnosis

The main intent of this section is to present the concept of overdiagnosis and outline Model 

D’s approach of quantifying overdiagnosis. We formulated a probability of overdiagnosis 

conditional on time of screen detection. We mainly used this formulation to evaluate the 

level of overdiagnosis. To demonstrate our analytical formulation of the lead time and 

overdiagnosis, we adopted the following notations. Consider a mammogram screening 

program in which screening mammography is repeated at times t0< t1 < t2 < … < tn−1. Let 

the age at mammography screening examination be denoted by z + tr for the rth examination. 

Define S as a random variable denoting survival with survival probability P(S > s) = G(s), 

and T as the lead time conditional on screen detection at tr. Overdiagnosis is defined by an 

event that occurs when lead time is greater than remaining survival time, i.e., {OD = T > S}. 

Figure 2 displays the lead time in a case-finding process with repeated screening 

examinations for invasive breast cancer.

The probability of overdiagnosis conditional on screen detection at the rth exam and age z 
+tr is expressed as (1):

P{T > S |S > z + tr, X(tr) = 1} = 1 − P{S > T |S > z + tr, X(tr) = 1} = 1

− {∫
0

∞
P{S > t |T = t, S > z + tr, X(tr) = 1} × f (t | tr, X(tr) = 1)dt} = 1

− ∫
0

∞ G(t + z + tr)
G(z + tr)

× f (t | tr, X(tr) = 1)dt

(1)

where

X(tr) = ∑
j = 0

r
X j(tr) = {

1 i f a case is dignosed at the exam given at tr
0 otherwise

and f(t|tr, X(tr) = 1) denotes the probability density function for the lead time conditional on 

screen detection at tr.

Specifically, the probability density function is expressed as:
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f (t | tr, X(tr) = 1) =
f (t, tr, X(tr) = 1)
P(tr, X(tr) = 1)

=

W0∫0
z
w(z − x)q(t + tr + x)dx + ∑ j = 1

r W j∫t j − 1

t j
w(z + x)q(t + tr − x)dx

W0∫0
z
w(z − x)Q(tr + x)dx + ∑ j = 1

r W j∫t j − 1

t j
w(z + x)Q(tr − x)dx

where W j = ∏i = j
r − 1{1 − β(z + ti)} for j < r, Wr = 1, β(z + ti) is age-specific sensitivity of 

mammography, w(x) is transition probability to the pre-clinical sojourn time, q(x) is the 

probability density function of the pre-clinical state and Q(t) = ∫
t

∞
q(x)dx.

For invasive breast cancer, w(t) = Wi(t) + Wp(t) and q(t) follows an exponential distribution. 

Using the exponential properties, the following rearrangements can be made:

q(t + tr + x) = λe−λtQ(tr + x), and q(t + tr − x) = λe−λtQ(tr − x) .

This leads to an enormous simplification of the P{T > S|S} formulation in (1) to:

P{T > S |S > z + t∗, X(t∗) = 1} = 1 − ∫
0

∞ G(t + z + t∗)
G(z + t∗)

× λe−λtdt (2)

The mathematical simplification in (2) does not apply to DCIS, as the current DCIS model 

does not assume exponential sojourn times but instead assumes more complicated 

expression of w(t) = Ws(t) and. q(t) = (1 − c)λe−λt and Q(t) = ∫
t

∞
q(x)dx = c + (1 − c)e−λt. 

To quantify overdiagnosis level, P{T > S|S} was estimated for invasive breast cancer based 

on equation (2) and for DCIS based on equation (1). For the current DCIS model, transition 

probability Ws(t) combines Wd(t), We(t) and Wp(t). This simplifies the lead time estimation 

as in invasive breast cancer. The same concept applies in Figure 2 with Sp replaced by Sdp 

and Sc replaced by Sdc. These probabilities were applied to the total number of screen-

detected cases of invasive breast cancer or DCIS for the actual number of overdiagnosed 

cases. This process is repeated for different screening scenarios.

Subgroup Models and Other Updates

The original model represents an average population across all subgroups. The current 

model was expanded to incorporate subgroups, specifically molecular subtypes of ER and 

HER2 [5] and breast density [6]. In general, the same model-building principles and 

assumptions were applied to all subgroup models. As described in the model overview, basic 
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model section, our model assumes that stage shifts, meaning diagnosis of disease at an 

earlier state by mammography, play a key role in the mortality benefits of mammography 

screening. If screening does not result in a stage shift, we would expect no benefit. Thus, 

disease stage essentially serves as a surrogate variable for determining screening 

effectiveness. For each subgroup, we used stage distributions for cases that were screen 

detected, interval detected (diagnosed between two screening examinations), and clinically 

diagnosed based on symptoms rather than screening. These distributions were applied to 

subgroup-specific baseline survival data (in the absence of screening and treatment), as 

described in Lee and Zelen [2], to evaluate the mortality reduction associated with screening 

in each subgroup.

For example, breast density subgroups were modeled as entirely fatty, scattered density, 

heterogeneously dense, and extremely dense [11]. For each breast density group, the stage 

distribution by detection mode was estimated using data collected by the Breast Cancer 

Surveillance Consortium (BCSC). Table 1 displays exemplar American Joint Committee on 

Cancer stage distributions by mode of detection for 50- to 64-year-old women undergoing 

annual mammography screening using digital mammography. Overall, stages shifted to an 

earlier state for screen-detected cases compared to clinically diagnosed cases. This stage 

shift was larger in the entirely fatty density group (shift of 22% to 63.5% in stage I, 

difference of 42%), compared to the heterogeneously dense group (shift of 19.8% to 60% in 

stage I, difference of 40%). This type of stage distribution data was prepared by age groups 

and screening intervals for each subgroup. The stage distribution data are an important input 

parameter for our model for evaluating the impact of screening.

As more refined subgroup model input parameters became available, we incorporated more 

detailed subtype-specific natural history parameters. For example, ER and HER2 status were 

defined as positive or negative. To reflect the more aggressive nature of ER-tumors, these 

tumors were given a shorter sojourn time in the invasive breast cancer pre-clinical state 

(mean of 1.6–3.3 years) compared to ER+ tumors (mean of 2.0–4.3 years) [6]. Subtype-

specific transition rates between health states (Figure 1) were also incorporated. For 

example, the transition rate from pre-clinical to clinical state was 4.35-times faster for 

extremely dense breasts compared to entirely fatty breasts, reflecting the relative risk by 

breast density [23].

Treatment benefits were captured as hazard reductions applied to the baseline breast cancer 

survival data by ER/HER2 (in the absence of screening and treatment). Treatment types, 

corresponding efficacies, and dissemination patterns were updated as input data became 

available based on common CISNET input parameters [11].

MODEL-PROJECTED RESULTS

DCIS Incidence in SEER 1975–2010

Since Model D does not have parameters that are estimated to fit observed incidence, a 

comparison of model-projected DCIS incidence and observed DCIS incidence from SEER 

provides some validation of the DCIS model component.
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We used the updated Model D with the DCIS natural history component to project US DCIS 

incidence rates between 1975 and 2010. Baseline DCIS incidence data in the absence of 

screening was modeled using the APC approach [11,21]. Mammography patterns 

disseminated in the United States by birth cohort [11,24] were applied to the baseline APC 

US DCIS incidence data in the absence of screening. Screen-detected, interval-diagnosed 

and clinically diagnosed DCIS cases were determined using our natural history model. 

Figure 3 displays observed and projected DCIS incidence between 1975 and 2010. Model-

projected DCIS incidence data were very close to actual observed SEER data. In particular, 

the model-predicted incidence rate was most accurate for the age group 40–79 years (Figure 

3b–e). Therefore, the newly adopted DCIS natural history model and model parameters 

appear to be a sensible choice. The results validate the updates to Model D for accurately 

estimating the impact of breast cancer screening on DCIS incidence.

Overdiagnosis

For overdiagnosis, when lead time is greater than residual survival, we formulated the 

probability of overdiagnosis conditional on age at detection. We used the lifetable of the 

1970 birth cohort for residual survival [7]. For invasive cancer, we used the age-dependent 

mean sojourn time in the preclinical state of 2–4 years (shorter mean sojourn time for 

women of younger age). The probability of overdiagnosis for invasive breast cancer 

conditional on age at screen detection clearly increased with age at diagnosis (Figure 4). 

However, the probability of overdiagnosis for invasive breast cancer was relatively small 

until older age. For example, probability was below 0.2 until age 83.

Using the new DCIS natural history components of the model, lead time was evaluated for 

DCIS and applied to estimate the probability of overdiagnosis for screen-detected DCIS. 

This was a complex evaluation because the calculation depended on screening schedule, 

natural history of DCIS, mammography sensitivity, and other model parameters. 

Nonetheless, the results showed that the overall level of overdiagnosis had less age 

dependency than overdiagnosis estimates for invasive breast cancer. In addition, we 

estimated that, across all age groups, 30–50% of cases of screen-detected DCIS represented 

overdiagnosis. This estimate did not vary much by screening scenarios [8].

SUMMARY

In this chapter, we presented an updated Model D for early detection of breast cancer. The 

main update to the model was the addition of DCIS. As described in the DCIS overview 

chapter [8], the natural history of DCIS is complex and identifying a uniquely correct DCIS 

natural history model is difficult. Contributing factors to the challenge are uncertainty about 

the natural history of DCIS, wide variation in data used for model specifications and 

assumptions, and variation in model parameters. Exploring plausible models and model 

parameters is critical for developing accurate detection estimates for DCIS. Our model with 

combined transition probabilities presented here led to a good match to observed SEER data. 

We will continue to improve our model by refining model parameters for each specified path 

in Figure 1. We also plan to explore other plausible DCIS natural history models. One 

potential improvement is including transitions from Sdc to Sp or Sc, and/or to Sd. In 
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particular, the addition of transitions from Sdc to Sd allows relaxing the model assumption of 

no breast cancer deaths for individuals in Sdc.

We used our updated model to estimate overdiagnosis, which for invasive breast cancer we 

defined as a lead time longer than the person’s remaining lifetime, given the age of 

diagnosis. This formulation directly addressed the most relevant issue in overdiagnosis of 

invasive breast cancer: dying of a cause other than breast cancer. For DCIS, lead time 

definition is complicated because DCIS can progress to clinical DCIS or invasive cancer, or 

regress. Therefore, overdiagnosis of DCIS is likely to occur when a person dies from a cause 

other than breast cancer or the DCIS regresses. Despite uncertainty in the DCIS natural 

history model, which makes quantifying overdiagnosis from DCIS challenging, our results 

suggested that a large proportion (30–50%) of screen-detected cases of DCIS may represent 

overdiagnosis.

Updates to include DCIS, breast density, and ER and HER2 status have made Model D, our 

stochastic analytical model of early breast cancer detection, more versatile. We used the 

model to quantify overdiagnosis of invasive breast cancer and DCIS. We demonstrated that 

our model is flexible and adaptable for analysis of specific breast cancer subgroups. As 

Model D is uniquely analytical, it allows straightforward derivations of analytical 

expressions for screening-related measures such as overdiagnosis to fully evaluate the 

impact of mammography screening.
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Figure 1. 
Natural history of breast cancer: Invasive breast cancer and ductal carcinoma in situ. Black-

dashed box invasive breast cancer component. S0, disease free state; Sdu, early stage DCIS 

not detectable by any screening modality; Sdp, early stage DCIS detectable by screening; 

Sdc, clinical DCIS with symptoms; Sp, early stage screen detectable invasive breast cancer; 

Sc, clinical invasive breast cancer; Sd, breast cancer death. Cases in Sdc are likely to be 

treated and cured after diagnosis and not affect the model. Therefore, transitions out of Sdc 

are not included. Transition probabilities: W0(t) S0 → Sdu during an age interval (t, t+ ∆t); 

Wd(t) Sdu → Sdp; We(t) Sdp → Sdu; Wp(t) Sdp → Sp; Wi(t) Sdu → Sp; Id(t) Sdp → 
Sdc; I(t) Sp → Sc; D(t) Sc → Sd. Net transition probability Ws(t)= Wd(t) − We(t) − Wp(t). 

DCIS, ductal carcinoma in situ.

Lee et al. Page 12

Med Decis Making. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Case-finding process
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Figure 3. 
Comparison of model-projected and SEER-observed DCIS incidence. (a) age-adjusted (25–

99 years) using the 2000 US standard population; (b)–(e) age-specific rates. Model-projected 

DCIS incidence data, solid line; SEER data, dotted line; APC-baseline data, dashed line. 

SEER, Surveillance, Epidemiology and End Results; DCIS, ductal carcinoma in situ; APC, 

age-period-cohort.
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Figure 4. 
Percentage of invasive breast cancer cases that are overdiagnosed by age at screen detection.
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