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Abstract

Hematopoietic stem cells (HSCs) preferentially use glycolysis rather than mitochondrial oxidative 

phosphorylation for energy production. While glycolysis in HSC is typically viewed as response to 

a hypoxic bone marrow environment that protects HSC from damaging reactive oxygen species, 

other interpretations are possible. Furthermore, recent evidence directly supports a critical role for 

mitochondria in the maintenance and function of HSCs that goes beyond ATP production. Here, 

we review recent advances in our understanding of metabolism and the role of mitochondria in the 

biology of HSCs.

Introduction

Hematopoietic stem cells (HSCs) reside in the bone marrow (BM), are quiescent, can self 

renew, and generate all lineages of the hematopoietic system. Despite the identification of 

multiple cytokines and of more than 200 genes that affect HSC function in knockout 

studies[1], a coherent understanding of steady-state function and homeostatic responses of 

HSCs has not emerged yet, while reliable maintenance of HSCs in vitro has not been 

achieved. The metabolism of HSCs has therefore garnered increasing interest. Mitochondria 

produce ATP from fatty acid, glutamine and glucose oxidation. However, they are also 

involved in calcium homeostasis[2], cell death[3], innate immunity[4], the generation of 

reactive oxygen species (ROS)[5], and the synthesis of biosynthetic intermediates and 

substrates for epigenetic modifications[6]. Mitochondria may therefore play a role in 

incompletely understood functional attributes of HSCs, such as reduced susceptibility to 

stress compared to progenitor cells[7,8], and the capacity to make multiple cell fate 

decisions.
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HSC metabolism

To produce ATP HSCs preferentially use the less efficient process of glycolysis, while 

mitochondrial oxidative phosphorylation (OxPhos) is more active in progenitors (Fig. 1)[9–

11]. Glycolytic ATP production in stem cells is not a general rule, however, as muscle 

satellite cells are oxidative and transit to glycolytic metabolism upon differentiation[12]. 

Furthermore, fetal liver HSCs may be more oxidative than their adult counterparts[13]. 

While in cancer cells aerobic glycolysis allows rapidly proliferating cells to build 

biomass[14], glycolysis in quiescent HSCs is typically viewed as a response to a hypoxic 

BM environment, seen to benefit HSC maintenance by limiting the production of 

mitochondrial (m) ROS, the levels of which are low in HSCs and to which HSCs are 

exquisitely sensitive[15]. This concept deserves more refined analysis however.

The hypoxic bone marrow niche

Several lines of evidence suggest that a hypoxic environment is important for HSC 

maintenance. Progenitor and stem cells are better maintained in hypoxic than in normoxic 

conditions in vitro [16,17]. Furthermore, HSCs show enhanced staining in situ and after 

isolation for the hypoxia marker, pimonidazole[18–22], suggesting residence in a hypoxic 

niche. Using oxygen-sensitive probes and two-photon live imaging, it was shown that BM is 

indeed hypoxic particularly near vascular niches, where most HSCs reside[23], but that 

hypoxia correlated with cellularity and therefore possibly with oxygen consumption[24]. 

Nombela-Arrieta et al. found that irrespective of their location, the HSCs stained more 

intensely for pimonidazole[25]. As these authors[25] and others[21] point out however, 

pimonidazole forms adducts with cellular constituents after reacting with electrons 

emanating from the respiratory chain that do not find an oxygen acceptor. Pimonidazole 

staining therefore detects low OxPhos, and not necessarily hypoxic cells.

Glycolysis in HSCs

Anaerobic glycolysis is driven by dimers of hypoxia-induced factor (HIF)1α or HIF2α and 

HIF1β that are destabilized by prolyl hydroxylation of HIF1α or HIF2α by oxygen-sensitive 

dioxygenases (PHD enzymes), which targets those for degradation[26]. HSCs in mice with 

inducible deletion of HIF1α or with deletion of Pdk2 and Pdk4, which inhibit entry of 

pyruvate into the TCA thus enhancing glycolysis at the expense of respiration, were reported 

to lose quiescence and display defects after transplantation[11,19]. Despite these findings, 

the role of HIF in HSCs is controversial, as it was subsequently reported that HIF1α and 

HIF2α individually are dispensable for HSC function[27,28], while deletion of HIF1β or of 

both HIF1α and HIF2α only resulted in a subtle loss of HSC function and minimal changes 

in the expression of glycolytic enzymes[29]. Furthermore, although, similar to 

Pdk2−/−Pdk4−/− mice, HSC function is impaired in Pdk1−/− mice, these authors observed 

that conditional deletion of HIF1α had no effect on the expression any Pdk isoforms in vivo 
[30]. Mice mutant for either of two genes involved in enhanced glycolysis in tumor cells, 

Pkm2 and Ldha, also displayed predominantly reduced progenitor proliferation, while a 

HSC defect could be only elicited after serial transplantation of Ldha−/− HSCs[21]. Finally, 

HIF1α may not only be directly stabilized by hypoxia (except in very severe hypoxia), but 
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also, and perhaps primarily, by mROS arising through as yet unclear mechanisms during 

hypoxia[5,31–33]. This conflicts with the notion that mROS, which are detrimental to HSC 

maintenance, are low in HSCs[34] (Fig. 2). Taken together, it is possible that glycolysis, 

while important for HSC maintenance, is not primarily driven by a HIF-mediated response 

to hypoxia. Instead, enhanced glycolysis may be hardwired, or be a compensatory response 

to hardwired attenuation of mitochondrial respiration (Fig. 1).

Mitochondria mass and turnover in HSCs

In keeping with their glycolytic nature, HSCs have been reported to possess low 

mitochondrial mass[9,11,35–38] sustained by active elimination through mitophagy, which 

has been suggested to be critical for HSC maintenance[36,39,40•]. However, elevated 

mitophagy should be balanced by mitochondrial biogenesis to avoid depletion, a condition 

only known to occur in erythroid precursors[41]. Recent evidence shows that mitochondrial 

mass in HSCs is stable throughout life span, however, while mitochondrial turnover capacity 

is in fact lower in HSCs than in progenitors[42•]. The role of mitophagy therefore remains a 

matter of debate. The same is true for mitochondrial mass, which is typically measured by 

staining with fluorescent mitochondrial dyes[9,11,35–38,43]. However, HSCs are endowed 

with xenobiotic efflux pumps[44,45]. Mitotracker green, a commonly used fluorescent dye 

to measure mitochondrial content, undergoes efflux from HSCs, leading to artifactually low 

fluorescence. mtDNA quantification, enumeration of mitochondrial nucleoids and 

fluorescence intensity of a genetically encoded mitochondrial reporter indicated that HSCs 

have higher mitochondrial mass than lineage-committed progenitors and mature cells[42•]. 

HSCs may therefore have a high set-point for mitochondrial mass and low mitochondrial 

turnover.

Enhanced respiration is detrimental for HSC maintenance and function

Despite their high mitochondrial mass, baseline respiration and maximal respiration in 

purified HSCs was much lower than in progenitors, even in normoxic conditions[11,40•,

42•]. Evidence indicates that low respiration is required for HSC maintenance (Fig. 3). For 

example, deletion of the negative regulator of mTOR, TSC1, compromised HSC function 

associated with enhanced mitochondrial biogenesis and ROS production[46]. Knockout of 

Sirt7, which increases mitochondrial unfolded protein stress, mitochondrial biogenesis and 

respiration in cell lines, impaired HSC function with loss of quiescence[37••]. Mice 

conditionally deleted for mitochondrial carrier homologue 2 (Mcth2) show compromised 

HSC function with enhanced cycling and increased respiration[47]. The detrimental effects 

on HSC function of Pdk deletion[11,30] may also be explained by enhanced TCA flux rather 

than by reduced glycolysis. Finally, HSC with defective autophagy show enhanced oxidative 

metabolism[40•]. Consistent with these findings, HSCs may be less susceptible to reduced 

mitochondrial function than progenitors. PolgAmut mice, which accumulate mtDNA 

mutations, showed impaired lymphoid and erythroid differentiation, but did not have HSC 

defects[48]. Furthermore, Ptpmt1, a mitochondrial phosphatase targeting 

phosphatidylinositol phosphates that increase respiration, is required for early HSC 

differentiation, but inhibits HSC expansion in vivo [49]. Together, these findings may be 

consistent with reduced OxPhos detected by pimonidazole staining[16,18,22,24] and with 
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the remarkably low ATP levels in HSCs[9,50]. While it is possible that reduced respiration 

may be required to limit mROS production, whether, and if so, why low OxPhos is directly 

required for HSC maintenance is not known, but is worthy of more incisive investigation.

Requirement for intact mitochondrial function in HSCs: role in epigenetics?

Although enhanced respiration compromises HSC function, several knockout mouse models 

with impaired HSC function also showed mitochondrial dysfunction, although to what 

extent this explained the observed HSC defects is unclear[51–55]. Recent reports however 

directly linked mitochondrial dysfunction to HSC impairment (Fig. 3). The underlying 

mechanism may be epigenetic, as mitochondria are involved in the synthesis of epigenetic 

marks and of inhibitors of epigenetic modifications (Fig. 4)[6]. One-carbon metabolism, 

which provides methyl groups for DNA and histone methylation, takes place in part in 

mitochondria[56]. Demethylases, including the JmjC-containing histone lysine demethylases 

(KDMs) and TETs, which promote DNA demethylation, are dioxygenases that convert 

oxygen and 2-oxoglutarate (2OG) into succinate and CO2 during hydroxylation of their 

respective substrates. This reaction is inhibited by succinate and fumarate, and by a by-

product of 2OG metabolism, L(S)-2-hydroxyglurate (L(S)2HG)[6]. Acetyl-CoA generated 

in mitochondria can be recycled via citrate to the nucleus for acetylation of histones and 

other proteins[57]. Mitochondrial function also determines the NAD+/NADH ratio, which is 

sensed by a class of NAD-dependent deacetylases, the sirtuins. A direct role for 

mitochondria in epigenetic regulation was suggested in cell lines where an intact TCA, even 

with a deficient respiratory chain, is sufficient to maintain histone H3 acetylation[58•]. In 

autophagy-deficient HSCs, increased respiration was associated with changes in methylation 

status at select loci[40•], although this study did not prove a causal link between 

mitochondrial function and differentially methylated regions. Several other studies provided 

evidence for a link between reduced mitochondrial function and epigenetic changes. 

Conditional deletion of Riske iron-sulphur protein (Risp), a component of complex III of the 

electron transport chain, in the hematopoietic system was embryonic lethal and associated 

with impaired erythroid maturation, enhanced HSC cycling and a profound repopulation 

defect. Inducible deletion in adults also resulted in severe HSC defects[59••]. Histone 

hypermethylation and hypoacetylation as well as DNA hypermethylation were observed in 

enriched stem and progenitor cells. These changes were associated with reduced NAD/

NADH ratio, and increased 2-OG, fumarate, succinate and L(S)-2HG levels, all of which are 

theoretically conducive to genome-wide epigenetic changes[59••] (Fig. 3,4). Deletion of the 

mitochondrial DNA replication and transcription factor, Tfam, on the other hand, caused 

profound defects in erythroid development associated with histone hyperacetylation, 

possibly due to accumulation of the HDAC inhibitor, β-hydroxybutyrate[60•]. Fumarate 

hydratase (FH) is a tumor suppressor enzyme of the TCA that is also present in the 

cytoplasm where it participates in arginine and purine synthesis. Conditional deletion in the 

hematopoietic system was embryonic lethal and profoundly impaired fetal erythropoiesis 

and HSC function[61••]. In contrast to Vav-iCre.Rispfl/fl mice, however, Vav-iCre.Fhfl/fl 

mice displayed increased HSC numbers in the fetal liver. Restoration of cytoplasmic FH 

rescued lethality, while HSCs showed a defect in the lymphoid lineage after primary 

transplantation and in all lineages after secondary transplantation. It is possible that deletion 
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of cytoplasmic FH caused excessive protein succination and generalized cellular 

dysfunction. Isolated defect in mitochondrial FH however increased histone H3 methylation, 

possibly through inhibition of KDMs by fumarate[61••]. Finally, deletion of the complex II 

component, SdhD, also caused hematopoietic failure, although the cellular mechanism and 

precise effect on long-term HSCs were not determined[62].

The role of mitochondrial dynamics

Mitochondria form a network that undergoes continuous fusion and fission, a process called 

‘mitochondrial dynamics’ and involved in regulation of apoptosis, metabolism and mtDNA 

maintenance[63••]. HSC have longer mitochondria than progenitors, a property conveyed by 

selective expression of the mitochondrial outer membrane fusion protein, Mfn2. Mfn2 is 

required for the maintenance of HSCs with extensive lymphoid potential. Mfn2 increased 

buffering of intracellular Ca2+, an effect mediated through its ER-mitochondria tethering 

activity[2,64], thereby negatively regulating nuclear translocation and transcriptional activity 

of Nuclear Factor of Activated T cells[65]. In addition to providing a mechanism underlying 

clonal heterogeneity among HSCs[66], this study formally identified a HSC maintenance 

mechanism mediated by mitochondria that does not directly depend on ATP production. 

Embryonic neural stem cells also possess elongated mitochondria. Here, inhibition of 

mitochondrial fusion inhibited self renewal and induced differentiation through enhanced 

ROS production and induction of a NFR2 transcriptional program[67••]. Mitochondrial 

dynamics can therefore likely affect cell fate choices through multiple mechanisms.

Conclusions and perspectives

The metabolic wiring of HSCs is insufficiently explained by residence in a hypoxic 

environment. There is room to consider the possibility that glycolysis serves a specific 

purpose critical for HSC maintenance, or that the apparent requirement for glycolytic ATP 

production is a compensation for hardwired low OxPhos in HSCs (Fig. 1). Intact 

mitochondrial function is nevertheless critical for HSC maintenance and the underlying 

mechanisms may include epigenetic changes. Because of the multiple roles of mitochondria 

and the distinct of effects of various mutations, it is difficult to determine the critical 

underlying mechanisms however. It is not known, for example, to what extent epigenetic 

changes cause the observed HSC defects. It is also interesting to note that HSCs are more 

resistant to starvation and radiation-induced apoptosis and show increased capacity of 

autophagy compared to progenitors[7,8]. As mitochondria play a critical role in cell death 

processes including apoptosis, necrosis and pyroptosis[3], as well as in the initiation of 

autophagy[68,69], it is possible that the wiring of HSC mitochondria may contribute to the 

relative resistance of HSCs to demise in response to noxious stimuli.

Further insights into the specific roles of mitochondria in HSCs gained from more refined 

investigations may lead to strategies to achieve the still elusive, but clinically extremely 

important goal of maintaining functional HSCs in vitro. The rarity of HSCs is a major hurdle 

in this field, however. Hence, with the exception of a few studies[11,40•,42•], metabolic or 

epigenetic studies were performed on enriched progenitors, and not on purified HSCs. 

Application of novel metabolomics approaches adapted to small numbers of cells, while 
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compromising on the breadth of metabolites detected and likely selecting for more abundant 

compounds, may offer an avenue forward[70••].
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Figure 1. HSC metabolism
Schematic representation of HSC metabolism. Three hypotheses to explain the 

preponderance of glycolytic ATP production are depicted: a HIF-mediated response to 

hypoxia, transcriptionally hardwired glycolysis, or a compensatory response to a hardwired 

attenuation of mitochondrial respiration.
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Figure 2. The mROS conundrum
Schematic representation of the presumed roles of mROS in HSC function and in hypoxia 

signaling. mROS directly negatively affect HSC function, but may on the other hand 

stabilize HIF and activate glycolysis, which is required for maintaining HSC function.
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Figure 3. Mitochondrial metabolism and epigenetics
Schematic representation of mitochondrial metabolites that are used as epigenetic marks or 

inhibit epigenetic modifications.
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Figure 4. Mitochondrial function and HSC maintenance
Schematic representation of recently described mutants where impaired or enhanced 

mitochondrial function is detrimental to HSC maintenance. Green arrows represent mutants 

with enhanced mitochondrial function, red arrows represent mutants with impaired 

mitochondrial function.
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