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Abstract

Type IVa pili are filamentous cell surface structures observed in many bacteria. They pull cells 

forward by extending, adhering to surfaces, and then retracting. We used cryo–electron 

tomography of intact Myxococcus xanthus cells to visualize type IVa pili and the protein machine 

that assembles and retracts them (the type IVa pilus machine, or T4PM) in situ, in both the piliated 

and nonpiliated states, at a resolution of 3 to 4 nanometers. We found that T4PM comprises an 

outer membrane pore, four interconnected ring structures in the periplasm and cytoplasm, a 

cytoplasmic disc and dome, and a periplasmic stem. By systematically imaging mutants lacking 

defined T4PM proteins or with individual proteins fused to tags, we mapped the locations of all 10 

T4PM core components and the minor pilins, thereby providing insights into pilus assembly, 

structure, and function.
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Bacterial type IVa pilus machine (T4PM). Two T4PMs are depicted on the left, spanning the 

envelope of a Gram-negative bacterial cell. T4PMs extend and retract pili to pull cells forward. 

The structural data presented here support the hypothesis that ATP hydrolysis in the cytoplasm 

causes an adapter protein in the inner membrane to rotate, facilitating the transfer of pilin subunits 

from the inner membrane onto the growing pilus. The process is reversed during retraction.

Type IVa pilus machines (T4PMs) are part of a superfamily of bacterial and archaeal 

multiprotein assemblies that also include type IVb pilus machines, type II secretion systems 

(T2SS), DNA uptake systems, and archaeal flagella (1, 2). T4PMs are involved in cell 

motility (3), host adhesion (4), predation (5), DNA uptake (6), biofilm formation (7, 8), and 

protein secretion (9). T4PMs consist of an extracellular pilus fiber (T4P) and a cell 

envelope–spanning complex that we refer to here as the basal body. A key feature of T4Ps is 

their ability to undergo cycles of extension and retraction (10, 11). Powered by a T4P-

assembly adenosine triphosphatase (ATPase), the basal body extracts pilin monomers from 

the inner membrane (IM) and appends them onto the base of the helical pilus fiber, pushing 

the fiber outward. The fiber has a diameter of ~6 nm, can extend up to several micrometers 

in length, and can adhere to specific surfaces (12). Subsequently, the basal body, powered by 

a T4P-disassembly ATPase, extracts monomers from the pilus base back into the membrane 

(13). T4PMs retract at rates up to 1 µm/s and generate forces as high as 150 pN to pull the 

cell forward (14, 15), making T4PMs the strongest molecular motors known. T4Ps have 

been identified as important virulence factors in several human pathogens, including 

Neisseria gonorrhoeae, N. meningitidis, andPseudomonas aeruginosa (16).

T4PMs exhibit a multilayered structure spanning the cell envelope of M. 

xanthus

To determine the structure of the T4PM in vivo, we used cryo–electron tomography (also 

known as electron cryotomography) to image the cell poles of Myxococcus xanthus, a 

ubiquitous rod-shaped soil-residing predatory bacterium (Fig. 1A). (Examples of a tilt series 
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and a cryotomogram are shown in movies S1 and S2, respectively). T4Ps with diameters of 

~6 nm were easily recognized on the cell surface with their basal bodies spanning the cell 

envelope (Fig. 1B, white arrows). Basal bodies exhibited three layers of densities in the 

periplasm and a fourth in the cytoplasm (Fig. 1C). In the vicinity of piliated T4PMs, we also 

observed “empty” nonpiliated basal bodies with similar structures but without long fibers 

attached (Fig. 1B, black arrow, and Fig. 1D).

To reveal details, we generated subtomogram averages of the piliated T4PM and nonpiliated 

basal bodies with local resolution between ~2.5 nm and 4.5 nm (Fig. 1F and fig. S1, A and 

B). We later determined that a ΔpilB mutant (which lacks the PilB T4P-assembly ATPase 

and cannot assemble T4P) produced better-quality images of the empty basal body (likely 

due to the basal bodies being stalled in a “pilus preassembly” state and therefore more 

structurally homogeneous than in the wild type; see below), so we used the average from 

this strain for subsequent structural interpretation (Fig. 1G).

We found that the structure of the piliated T4PM basal body comprises an outer membrane 

(OM)–spanning pore including a ring immediately below the OM, two distinct rings in the 

periplasm, another ring in the cytoplasm surrounding a disc-like structure, and a long stem 

originating at the IM and passing through the periplasmic rings and OM pore (Fig. 1F). The 

structure of the empty basal body shows several similar structural features, including an OM 

pore with a ring immediately below the OM, two periplasmic rings, and a cytoplasmic ring, 

as well as a gate density in the OM pore, connections between the OM pore and the mid-

periplasmic ring, connections between the lower periplasmic ring and the IM, a much 

shorter stem, and no cytoplasmic disc (Fig. 1G). In the absence of the cytoplasmic disc, a 

cytoplasmic dome is also apparent. Aligning the averages of piliated and empty basal bodies 

with the IM reveals clear conformational changes upon piliation (movie S3). Going from the 

nonpiliated to the piliated state, the OM pore is ~2 nm farther away from the mid-

periplasmic ring (13.9 to 15.7 nm). Also, the diameter of the cytoplasmic ring in the piliated 

state is greater by ~4 nm (18.4 versus 14.4 nm), possibly because of its association with the 

cytoplasmic disc (Fig. 1, E and H).

Mapping components in the molecular envelope by imaging T4PM mutants

Ten highly conserved proteins are known to constitute the T4PM (16, 17). PilA, the major 

pilin protein, contains an N-terminal hydrophobic α helix and alternates between being 

anchored individually in the IM or bundled with other PilA N-terminal α helices to form the 

central pilus core (18). The remaining nine proteins are divided into three subgroups 

according to their location and function: the OM pore complex (PilQ and TsaP); the 

alignment complex (PilM, PilN, PilO, and PilP); and the motor complex (PilB, PilT, and 

PilC) (19). To systematically localize each component within the basal body, we imaged a 

series of M. xanthus mutants with individual T4PM proteins either missing or fused to a 

superfolder green fluorescent protein (sfGFP) (20) tag. Difference maps between the 

resulting subtomogram averages of the T4PM mutants and the wild-type structures were 

then calculated (Fig. 2). Combined with information already available about the 

accumulation, subcellular localization, and incorporation of individual T4PM proteins into 

the T4PM basal bodies of these mutants (fig. S2) and their connectivities and structures (fig. 
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S3) (17, 18, 21–40), these maps allowed us to pinpoint each component within the T4PM 

(Figs. 2 and 3A).

PilQ

A previous study showed that knocking out pilP accelerates degradation of PilM, PilN, and 

PilO and causes mislocalization of PilC, whereas PilQ and TsaP remain stable and at the cell 

pole, forming a rudimentary T4PM basal body consisting only of PilQ and TsaP (fig. S2) 

(21). This suggests that PilP is crucial for stabilizing and linking other components to the 

OM pore complex. We therefore first imaged the ΔpilP mutant to obtain the structure of the 

OM pore complex (PilQ and TsaP) alone (Fig. 2, B1). The average showed a cylindrical 

channel in the OM with a clear gate and a large periplasmic vestibule. The overall structure 

is reminiscent of single-particle reconstructions of secretin channel complexes in T4PM, 

T2SS, and type III secretion systems (T3SS) (41–44) (fig. S4). Superposing the highly 

conserved gate and periplasmic vestibule regions, our in vivo structure was seen to be 

markedly longer in the transmembrane region than the structures generated from single-

particle analyses, probably because the detergent solubilization used in the single-particle 

reconstructions fails to support this structure. By comparing the ΔpilP mutant structure to 

that of the wild-type empty basal body (Fig. 2, B2), and noting that the single-particle 

reconstructions contained no TsaP, we infer that PilQ forms the OM channel as well as part 

of the mid-periplasmic ring (Fig. 2, B3).

PilP

Because PilP is known to interact directly with PilQ (21, 26) and the ΔpilP structure shows a 

decrease in density of the mid-periplasmic ring (Fig. 2, B2), we hypothesized that PilP is 

part of the mid-periplasmic ring. To confirm this, we imaged a mutant in which PilP is fused 

to sfGFP, giving rise to an active fusion protein (fig. S2). Consistently, in this strain, 

additional densities appeared at the periphery of the mid-periplasmic ring (Fig. 2, C1 to C5).

TsaP

Single-particle EM reconstructions have shown that TsaP forms a ring-like structure 

surrounding the PilQ channel, but only top views were obtained (17). To localize TsaP in the 

OM pore complex in three dimensions, we imaged a ΔtsaP mutant (Fig. 2, D1 and D3). In 

the ΔtsaP mutant, all other T4PM proteins accumulate and are incorporated into the T4PM 

basal body as in the wild type (fig. S2) (17). Difference maps pinpointed TsaP’s location to 

the upper periplasmic region of the OM pore complex just beneath the OM in both the 

piliated and empty basal bodies [Fig. 2, D2 (white arrow), D4 (white arrow), and D5]. Lack 

of TsaP caused disengagement of the OM channel from the mid-periplasmic ring in the 

empty basal body (Fig. 2, D3, black arrow; note that the extensive systematic differences in 

Fig. 2, D4, reveal a global shift of the periplasmic rings and IM), making the overall length 

of the complex similar to that of the piliated basal body. In a previous study, lack of TsaP 

resulted in accumulation of pilus fibers in the periplasm in N. gonorrhoeae and formation of 

fewer pili in M. xanthus, suggesting a role for TsaP in correct PilQ channel function (17). 
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Consistently, during our imaging, we observed that in the ΔtsaP mutant, about one-tenth as 

many pili were found on cell poles relative to wild-type cells (table S1).

PilO and PilN

Because knocking out pilO disrupts the entire alignment complex and causes mislocalization 

of PilC, leaving only PilQ and TsaP in the basal body (fig. S2) (21), we imaged a mutant 

with an active PilO-sfGFP fusion protein to map the location of PilO (fig. S2). In the piliated 

structure, we observed additional density in the lower periplasmic ring (Fig. 2, E1 and E2), 

but in the empty basal body structure, we observed decreased density in this ring (Fig. 2, E3 

and E4). Both results suggest that PilO localizes to the lower periplasmic ring (Fig. 2, E5), 

because the sfGFP tag likely added density to the ring in the piliated form but perturbed the 

ring in the empty basal body. As with pilO, a ΔpilN mutant also disrupts the entire alignment 

complex and also causes mislocalization of PilC, leaving only PilQ and TsaP in the basal 

body (fig. S2) (21). So far, we have been unable to generate a functional PilN protein fused 

to a tag. Therefore, the same method could not be used to localize PilN in the T4PM basal 

body. Nonetheless, the two structural homologs PilO and PilN interact directly (21, 30), 

likely forming heterodimers (30). Therefore, we assume that PilN is also located in the lower 

periplasmic ring.

PilA and minor pilins

In the wild-type piliated basal body structure, we observed a rod-like stem structure that 

passes up from the IM through the lower periplasmic ring, mid-periplasmic ring, and OM 

pore. This stem has the same diameter as the PilA helical polymer (18) (~6 nm) and is 

directly connected to the pilus outside of the cell. Also, this long stem is missing in the 

empty basal body structure. These observations suggest that the stem is the part of the pilus 

fiber located in the periplasm and is associated with the basal body. In the empty basal body, 

a short stem is also present between the lower periplasmic ring and the IM. To investigate 

whether this remaining short stem is formed by PilA or by other T4PM components, we first 

imaged a ΔpilA mutant that lacks the major pilin PilA. As expected (45), no T4P formed in 

this mutant.

In agreement with the observation that the T4PM assembles in a ΔpilA mutant (fig. S2) (21), 

we were able to identify empty basal body structures in the cells and generate an average of 

the ΔpilA mutant, which clearly lacked any stem [Fig. 2, F1 and F2 (white arrow)]. Because 

the minor pilins in P. aeruginosa were recently suggested to form a complex that primes 

pilus assembly (46) and the four minor pseudopilins in the T2SS are thought to prime 

pseudopilus formation by the major pseudopilin (47, 48), we generated mutants lacking as 

many as nine of the 10 minor pilins encoded in the M. xanthus genome (fig. S5A). Lack of 

nine of the minor pilins abolished T4P-dependent motility, and T4P did not assemble; 

however, all 10 core components of the T4PM accumulated at wild-type levels in total cell 

extracts (fig. S5, B to D). Consistently, when we imaged the mutant deleted for nine of the 

minor pilin genes, we did not detect T4P (table S1). We did, however, detect empty basal 

body structures, and they clearly lacked the short stem [Fig. 2, G1 and G2 (white arrow)].
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On the basis of these observations, we conclude that the extended stem is made of the major 

pilin PilA (Fig. 2, F3) and that the short stem is composed of an assembly-priming complex 

consisting of minor pilins and PilA (Fig. 2, F3 and G3). In the PilA and minor pilin mutants, 

the structure of the lower periplasmic ring was perturbed and the short stem was absent (Fig. 

2, F2 and G2, black arrows). Because it is unlikely for PilA to withdraw its hydrophobic α 
helix from the IM or pilus fiber to participate in the lower periplasmic ring, the simultaneous 

changes of the short stem and the lower periplasmic ring suggest a structural/functional 

linkage between them (see below).

PilC, PilM, PilB, and PilT

The T4PM components PilC, PilM, PilB, and PilT all have folded cytoplasmic domains and 

are therefore the candidates for the cytoplasmic ring, disc, and dome. Within the set of 

single-gene knockouts of these four proteins, only empty basal bodies were found on the 

ΔpilC, ΔpilM, and ΔpilB cells, as expected (Fig. 2, H1, I1, and J2), and only piliated T4PM 

basal bodies were found on the ΔpilT cells (Fig. 2, J1). In these four mutants, all the 

remaining T4PM proteins accumulated (fig. S2). Because the cytoplasmic ring was missing 

in the ΔpilM mutant (Fig. 2, I1) but appeared unperturbed in the ΔpilC, ΔpilB, and ΔpilT 
mutants, we conclude that the ring is composed of PilM (Fig. 2, I3). Because the ring and 

dome were retained in the ΔpilB mutant but not the disc, the disc must be PilB (Fig. 2, J2 

and J4). The fact that the cytoplasmic disc had a size corresponding to that of a hexameric 

secretion or traffic ATPase (37–40) also strengthens this conclusion (see below). The 

cytoplasmic dome and disc were both missing in the ΔpilC mutant (Fig. 2, H2), but the 

cytoplasmic ring was still present (Fig. 2, H1, black arrows), which suggests that the dome is 

composed of PilC and that the PilB disc does not localize in its absence (Fig. 2, H3). 

Notably, the short stem structure was also missing in the ΔpilC structure, revealing that PilC 

is required to stabilize it.

With the identification of the ring as PilM, the dome as PilC, and the disc as PilB, it follows 

that (i) the PilM ring assembles in the absence of the PilC dome or PilB disc, (ii) the PilC 

dome and PilB disc both require the PilM ring, and (iii) the PilC dome assembles without 

the PilB disc, but the PilB disc requires the PilC dome. These interdependencies match 

previous observations (fig. S2) except in one regard: Earlier immunofluorescence 

experiments demonstrated that PilC can be incorporated into the T4PM independently of 

PilM (21) (fig. S2). Our observation that in the ΔpilM mutant all cytoplasmic densities and 

the short stem are missing in averages (Fig. 2, I2) clarifies that the PilM cytoplasmic ring is 

important for consistent incorporation of the other cytoplasmic proteins and formation of the 

short stem.

After the cytoplasmic ring, dome, and disc had been assigned to PilM, PilC, and PilB, 

respectively, no additional cytoplasmic density was available to interpret as PilT. The most 

likely explanation is that PilT occupies the same location as PilB. When generating 

subtomogram averages, because we could not tell whether any particular pilus was in the 

extension or retraction state, we averaged all identified particles. The fact that the ΔpilT 
mutant displayed more T4Ps than wild-type cells in our images (table S1) confirmed that the 

T4Ps were actively extending and retracting in our wild-type sample. Hence, the wild-type 
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piliated structure was an average of both PilB- and PilT-bound states. The ΔpilT piliated 

structure (Fig. 2, J1), however, showed no clear addition or loss of cytoplasmic densities 

relative to the wild type (fig. S1, B and D), which suggests that the differences between 

PilB- and PilT-bound particles are not visible at this resolution. We conclude that both PilB 

and PilT form cytoplasmic disc structures (Fig. 2, J4) and bind to the basal body in a 

mutually exclusive manner.

To test this idea, we generated a ΔpilB ΔpilT double mutant. As expected, this mutant lacked 

T4P-dependent motility and all other T4PM proteins accumulated as in the wild type (fig. 

S6). When we imaged the ΔpilB ΔpilT double mutant (Fig. 2, J3), no clear differences were 

observed on its empty basal body relative to that of ΔpilB and wild-type strains (Fig. 2, A2 

and J2), confirming our assignment of both PilB and PilT ATPases to the same cytoplasmic 

disc. The ATPase density was located ~2 nm away from the IM, preventing any direct 

interaction between the ATPases and pilin subunits. We therefore conclude that PilC, which 

forms the cytoplasmic dome structure, lies between the ATPases and the stem and transduces 

force generated by ATP hydrolysis into pilus extension and retraction. In agreement with this 

model, the N-terminal cytoplasmic domain of PilC was recently shown to interact directly 

with PilB, and the C-terminal cytoplasmic domain was suggested to interact with PilT (49).

Placing available component structures into the overall molecular envelope

Because atomic structures are available for homologs of >90% of the domains of the T4PM, 

we next sought to test the plausibility of our component maps by trying to place these 

structures into the overall molecular envelope in a way that would satisfy the maps and all 

known constraints, including domain sizes, structures, and connectivities (see supplementary 

materials, in particular figs. S7 to S11, and for details, and Movie 1 for a presentation of the 

process in three dimensions). Remarkably, in this process, the sizes and shapes of all 

domains analyzed fitted well into the molecular envelopes and resulted in a hypothetical 

working model of the piliated and nonpiliated basal bodies (fig. S12). Because the 2- to 4-

nm resolution of the subtomogram averages was not high enough to reveal the orientation of 

each component within the EM envelope, we next generated models with most components 

filtered to 3-nm resolution (Fig. 3, B to E). The process of positioning and connecting the 

domains in the context of a full hypothetical structural model nonetheless revealed important 

relationships that rationalize numerous previous observations and suggest insights into 

T4PM assembly, structure, and function, as described below and shown in Movie 2.

Overall architecture and assembly

All T4PM components except the pilus and PilC appear to form rings. Each of the OM, 

peptidoglycan (PG), and IM cell envelope layers is negotiated or engaged by a proteinaceous 

ring, and there is an additional “floating” lower periplasmic ring. Each ring is linked to the 

rings above and below to create an integrated but flexible structure spanning the entire cell 

envelope. The subtomogram averages of assembled T4PM subcomplexes in different 

mutants provide snapshots of the assembly pathway and support the sequence [PilQ, TsaP] 

→ [PilP, PilN, PilO] → [PilM, PilC, PilA, minor pilins]→[PilB, PilT] (fig. S13). The 

coiled-coil domains of PilN and PilO form a cage-like compartment above and within the 
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IM. Although the exact number of subunit monomers in each ring remains unknown, the 1:1 

connectivities between PilQ-PilP, PilP-PilN-PilO, and PilN-PilM suggest that all the rings 

have the same stoichiometry. We found that 12 copies of the ring components fit best into 

the EM density, in agreement with observations of secretin channels of T4PM and T2SS in 

multiple species (41, 42, 50). The entire basal body is therefore robustly anchored to the PG 

by ~12 TsaP N-terminal LysM domains and ~36 PilQ AMIN domains arranged irregularly 

(for instance, as in Fig. 3D). PilQ in turn links to PilP, which links to the PilN-PilO ring, 

which links to PilM, which binds PilB (and PilT). Unless one of these known connectivities 

is only transitory in vivo, the only components free to rotate are PilC and potentially the 

pilus.

Pilus assembly and disassembly by a rotating PilC

The structure of the pilus can be thought of as either a 3-start left-handed helix or a 1-start or 

4-start right-handed helix. Because no substantial pilus rotation has been observed during 

pilus retraction or extension, three different assembly structures or mechanisms can be 

imagined (18): (i) a fixed structure with three active sites adding pilins at each of the three 

sites needed to extend a 3-start helix; (ii) a fixed structure with four active sites adding pilins 

at each of the four sites needed to extend a 4-start helix; or (iii) a rotating structure with one 

or a few active sites adding pilins one at a time as it rotates around the axis of the fiber, 

extending the fiber as a 1-start helix (3, 51). As described above, the OM pore complex, 

alignment complex, and PilM-ATPase complexes are all directly or indirectly linked and 

anchored to the PG. The only T4PM component able to rotate is PilC. We found that the 

space inside the PilM-PilN-PilO “cage” can accommodate no more than one PilC dimer. It is 

unlikely that a PilC dimer would have three or four active sites for interacting with different 

PilA molecules; therefore, our models point to a 1-start assembly mechanism in which PilC 

rotates as it assembles the helical pilus fiber. It is also known that N. gonorrhoeae T4Ps 

extend and retract in increments smaller than the length of one helical turn (52), which is 

most easily explained by a mechanism with more than one step per turn, corresponding to 

the 1-start assembly mechanism. Another reason to favor models that involve rotation of 

some component such as PilC is that the homologous archaeal flagellar motor clearly begins 

to rotate its flagellar filament once this filament has been assembled (53).

In our architectural model of the piliated basal body, the PilC dimer rests on top of (and is 

presumed to interact with) two opposing PilB subunits in the ATPase hexamer, and the six 

NTDs of PilB in the ATPase hexamer are clamped in place by interacting with every second 

PilM subunit in the cytoplasmic ring (fig. S12A). We therefore propose that ATP hydrolysis 

by the pairs of opposing PilB subunits that contact the PilC dimer causes PilB NTD 

movements that rotate the asymmetrical PilC dimer. We predict the rotation of PilC to have 

two consequences: (i) It “scoops” new PilA subunits one at a time out of the membrane and 

onto the base of the pilus, and (ii) PilC is transferred to the next pair of opposing PilB 

subunits. The transmembrane segments of PilC likely mate with the tapered tip of the helical 

pilus fiber in such a way as to extend and anchor the pilus to the basal body, thereby creating 

a complete binding pocket for the hydrophobic tail of the next PilA subunit to be 

incorporated. Once a new PilA subunit is incorporated, PilB drives PilC around a fraction of 
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a turn, pushing the pilus up a fraction of the length of a pilin subunit and recreating the 

binding pocket in the next available position.

One problem with this model is that the hexameric nature of PilB would predict elementary 

turns of 60° or 120°; neither would result in the exactly 3.6 subunits per turn needed to 

extend the pilus without any rotation. Perhaps the process does involve some slight rotations 

or Brownian motions of the proteins that would cause small slips in register. Pilus retraction 

would be accomplished by a switch from PilB to PilT. Thus, although the exact structure of 

the PilC dimer and its orientation in the T4PM remain uncertain, the architecture alone 

implies that both PilB and PilT act as ratchets biasing the assembly or disassembly process: 

While PilB holds the PilC-tip pocket on the next empty position of the pilus fiber until it is 

filled, and then quickly rotates to prevent subsequent dissociation, PilT holds the PilC-tip 

pocket on the last subunit of the tip until it dissociates back into the membrane, after which 

it quickly rotates to prevent reassociation.

The PilN-PilO and PilM rings likely sense pilus retraction signals and guide 

ATPase selection

Previous studies have shown that pilus retraction is induced by adding pilin-binding 

substrates (54) or pulling on the pilus directly (52). Recent studies with antibodies showed 

that tension induces conformational changes in the pilus itself (55), which could propagate 

into the basal body. Substrate binding may also induce similar conformational changes. Our 

results point to a model in which the alignment complex is an IM-crossing transmission 

module: Pilus retraction signals carried by the pilus itself into the basal body could be 

sensed in the periplasm by the PilN-PilO ring and then transmitted via the coiled-coil 

domains through the IM to modulate the conformation of the PilM ring, which in turn 

governs which ATPase is bound. This model rationalizes the recent report that 

conformational changes are required in the coiled-coil domains of PilN-PilO during the 

transition between T4P extension and retraction, which suggests that the alignment complex 

is not simply a static connector between IM and OM components, but instead plays a critical 

role in T4P dynamics (56).

The power of combined structural approaches to dissect complicated 

molecular machines

Solving the structures of large macromolecular machines is challenging. Traditional 

structural methods such as x-ray crystallography, nuclear magnetic resonance spectroscopy, 

and single-particle cryo–electron microscopy can deliver near-atomic resolution, but they all 

rely on purified samples. Many important biological structures such as flagellar motors (57), 

chemoreceptor arrays (58), and the T4PM studied here, however, may never be purifiable in 

a native state; we found that even the PilQ (fig. S4), PilC (fig. S10), and PilM-PilN-PilO 

(fig. S14) subcomplexes lose their native structure when purified. As a result, only structures 

of isolated subunits and small subcomplexes have been determined. Cryo–electron 

tomography can reveal at least the architectures of these large machines in situ, as our work 

has shown. When there is sufficient additional information about the structures and 
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connectivities of the components, working models can be built that provide a path toward 

structural understanding, where both the structural relationships and the new mechanistic 

insights they suggest can then be tested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Visualizing the T4PM in intact M. xanthus cells
(A) A frozen-hydrated M. xanthus cell on an EM grid. (B) Slice through tomogram of the 

cell pole. White arrows, piliated T4PM basal bodies; black arrow, an empty T4PM basal 

body. Outer and inner membranes (OM and IM) are indicated. (C and D) Examples of slices 

through subtomograms containing piliated and empty T4PM basal body structures, 

respectively. Red asterisks denote periplasmic and cytoplasmic density layers. (E and H) 

Schematic envelopes of the subtomogram averages of wild-type piliated (E) and ΔpilB 
empty (H) T4PM basal bodies, showing their molecular dimensions. (F and G) Slices 

through subtomogram averages of wild-type piliated (F) and ΔpilB empty (G) T4PM basal 

bodies, with annotations of structural features. Scale bars, 500 nm (A), 50 nm (B), 5 nm [(C) 

and (D)], 10 nm [(F) and (G)].
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Fig. 2. Mapping T4PM components
First and third columns: Central slices of subtomogram averages of piliated and empty 

T4PM basal bodies, respectively, from different M. xanthus strains. Second and fourth 

columns: Differences in the T4PM mutant structures versus the wild type (red and yellow 

colors respectively denote addition and omission of densities, with opacities of 10%, 20%, 

30%, 40%, and 50% corresponding to density differences of 1, 1.5, 2, 2.5, and 3 standard 

deviations, respectively, overlaid on the wild-type subtomogram averages). White arrows 

indicate the component locations identified by the difference maps. Fifth column: Schematic 
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representations of piliated (left) and empty (right) T4PM basal bodies showing each 

identified component location. Scale bar in A2, 10 nm (applies to columns 1 through 4).
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Fig.3. Architectural models of the T4PM
(A) Summary schematics showing the component locations identified in the piliated and 

empty T4PM basal body structures. (B and C) Central slices of the architectural models of 

piliated and empty T4PM basal bodies, respectively, in which atomic models of T4PM 

components are placed in the in vivo envelopes according to the component maps in (A) and 

previously reported constraints and filtered to 3-nm resolution. (The process of how each 

component was placed is detailed in Movie 1 and the supplementary materials.) Models of 

each component are colored as in (A), with the transmembrane segments of PilN and PilO 

shown as cylinders; “x3” indicates three AMIN domains per PilQ monomer, only one of 

which is shown. Note that the empty T4PM basal body is shown with five PilA major pilin 

subunits in the short stem; however, the short stem likely also contains minor pilins. (D) Top 

view of the PilP HR domains and the PilQ N0 and N1 domains in the architectural model 

[colored as in (B) and (C)], with PG model (colored green) as background; 36 AMIN (β) 
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domain models from 12 PilQ proteins are randomly placed on PG and connected by long 

flexible linkers (black) with lengths within 20 nm between β1 and β2 domains (70 residues), 

12 nm between β2 and β3 domains (40 residues), and 12 nm between β3 and N0 domains 

(40 residues). (E) Overall architectural models of piliated (left) and empty (right) T4PM 

basal bodies. For clarity, the PilQ AMIN domains displayed in (D) are not shown.
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