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Abstract:
With the advent ofmodern day high-throughput technologies, the bottleneck in biological discovery has shifted
from the cost of doing experiments to that of analyzing results. clubber is our automated cluster-load balancing
system developed for optimizing these “big data” analyses. Its plug-and-play framework encourages re-use
of existing solutions for bioinformatics problems. clubber’s goals are to reduce computation times and to fa-
cilitate use of cluster computing. The first goal is achieved by automating the balance of parallel submissions
across available high performance computing (HPC) resources. Notably, the latter can be added on demand,
including cloud-based resources, and/or featuring heterogeneous environments. The second goal of making
HPCs user-friendly is facilitated by an interactive web interface and a RESTful API, allowing for job monitor-
ing and result retrieval. We used clubber to speed up our pipeline for annotating molecular functionality of
metagenomes. Here, we analyzed the Deepwater Horizon oil-spill study data to quantitatively show that the
beach sands have not yet entirely recovered. Further, our analysis of the CAMI-challenge data revealed that mi-
crobiome taxonomic shifts do not necessarily correlate with functional shifts. These examples (21metagenomes
processed in 172 min) clearly illustrate the importance of clubber in the everyday computational biology envi-
ronment.
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1 Introduction

Fast-paced growth of high performance computing (HPC), coupled with the recent appearance of new cloud
computing solutions, created a new scope of possibilities for applications in today’s science. At the same time,
more advanced and less expensive high throughput experimental assays have led to exponential growth of new
biological datasets. Having access to sufficient computational resources to deal with the growing “big data” is
therefore essential not only for computational, but also for experimental biology research labs, particularly
those working in genomics. Less than two decades ago the first human genome took 13 years and $2.7 billion
to sequence [1]. Today sequencing a genome takes a day and $1000, with costs projected to go even lower in
the near future. Recent projects like the 1000 Genomes Project [2] and others currently under way [3], [4] will
provide the field with an unprecedented amount of data, opening up new possibilities to significantly improve
current models and tools.

These developments come at a cost, as traditional HPC is quite expensive both in purchase and mainte-
nance. Research labs espouse different models for dealing with this computing need – some have their own
computational power, others share machines across an institute or outsource their computing to collaborators.
Although usability varies significantly across setups, compute nodes rarely reach the often-targeted utilization
rates of 75–85 % consistent workload. Usage usually peaks with a specific high priority project running on the
Maximilian Miller, Yana Bromberg are the corresponding authors.
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cluster for a limited time or with short-term jobs submitted through a web interface, where timing and respon-
siveness are essential. Cloud computing offers new alternatives, but is not always an adequate replacement for
traditional HPC. The nature of cloud solutions often creates new challenges, such as the transfer of enormous
amounts of data to and from the remote cloud storage.

Both from time and performance points of view, there is a clear advantage in making use of all available
computational resourceswhen necessary.However, this is a considerable challenge as the, often distributed and
setup-disparate, clusters have distinct runtime pre-requisites. Ideally all resources would “speak” the same lan-
guage, i.e. have a shared common base (OS, executables, job scheduler, etc.) Existing tools [5], [6] for bringing
together disjoint computational resources and for distributing jobs among them require significant IT-related
knowledge to get up and running. Moreover, none of these were designed explicitly for evaluations and ap-
proaches common in computational biology. Their capability is mostly limited to retrieval of job results from
compute clusters and does not extend to downstream processing. Thus, post-processing and publishing of re-
sults is not automated and has to be dealt with individually.

Here we describe our novel clubber (CLUster-load Balancer for Bioinformatics E-Resources) framework,
available at http://services.bromberglab.org/clubber. clubber is designed specifically to facilitate and accel-
erate common computational biology experimental workflows and used in conjunction with existing methods
or scripts to efficiently process large-scale datasets. Using clubber is as simple as downloading and installing
Docker [7], a software container platform available for every environment, and using a single command to
run the Docker-cloud clubber container [8]. From there, any interaction for basic configuration, job submission,
monitoring and displaying results is achieved via the clubber web interface. Note that clubber can also be run
from command-line using an interactive console, or from within a Python project by importing the clubber
package. Due to our method’s modular design, all of its main components (Manager, Database, Web Interface)
can run separately on different environments/machines. Further, clubber can be easily configured to use any
of the databases or webservers and thus to directly integrate into existing external services. Results can be ac-
cessed directly from the clubber web interface, either as downloadable files or as searchable data tables (given
an appropriate output format). A RESTful [9] API provides programmatic access to the jobs managed by club-
ber, enabling other frameworks to monitor individual job progress and retrieve and display the final results.
Very importantly, the clubber API facilitates integration into existing and new web services; i.e. tasks submit-
ted through a web interface can be simply “handed over” to clubber and results queried once available. clubber
can be set up on a dedicated server to be accessible by all members of a research group or by a selected few
authenticated via a built-in user authentication module.

Existing workflow frameworks like Galaxy [10] and Nextflow [11] allow users to create computational
pipelines to process and analyze biological data. Although both environments are highly usable, they have
some limitations. Galaxy, for example, requires some time for setup of all components and limits the selection
of available tools to those for which corresponding plugins have been written. Nextflow, on the other hand, has
limited data filtering and visualization capabilities. Further, both tools can be configured to run jobs on a remote
cluster, andGalaxy additionally providesmeans tomake results accessible via aweb interface.However, in both
cases, jobs are submitted sequentially to only one previously configured cluster. Distributing jobs to multiple
resources requires manual interaction and, potentially, adaptation of the necessary submission scripts. This
leads to extensive computation times, directly correlated with the amount of processed data.

We designed clubber to deal with the challenges of growing datasets, which are particularly obvious in
genome research. The current clubber package includes built-inmethods to simplify parallelized job submission,
e.g. splitting a single multi-sequence input file to submit parallel jobs, each containing a user-defined number
of sequences. All of these features make clubber an essential tool for processing and analyses of vast amounts
of biological data in a parallel, efficient, and (very) fast fashion.

2 Methods

clubber works in all environments and integrates seamlessly with existing workload managers. We made
clubber available as a ready-to-launch Docker image. Adding a computing resource (an HPC cluster) requires
only a valid username and password combination for a user who is eligible to submit jobs on this specific
resource. Note that there is no need for any additional software to be installed on these resources. The stan-
dalone clubber python installation has only two requirements: (i) access to a MySQL database (version 5.x) and
(ii) availability of python (version 3.x). The optional web interface additionally requires access to a webserver
with installed PHP module (version 5.6.x). Detailed installation instructions and sources can be found online
[8]. Figure 1 illustrates the clubber workflow. clubber’s three components, Manager, Database, andWeb Interface,
are independent from each other. The Manager accesses registered clusters via Secure Shell (SSH) and commu-
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nicates with the Database usingMySQL queries. TheWeb Interface interacts with the Database to register jobs,
monitor their progress and retrieve results.

Figure 1: The clubber pipeline. Jobs can be submitted either through a web interface or via command-line to the clubber
manager. These are registered and managed using a relational database. The manager uses an automated balancing ap-
proach to distribute jobs among available clusters; the manager daemon runs locally and communicates with available
clusters, transferring completed job results and storing them locally or, optionally, in the database.

clubber bundles computational resources, providing an interface for a simple centralized submission.
clubber can be used in two different ways: through an interactive web interface or via command-line. First, a
clubber project is created, defining basic parameters like project name, selection of clusters to use and the envi-
ronment variables necessary for job submission. Projects can contain binaries or database files required by the
associated jobs. Note that single jobs can be submitted without creating a project; these will automatically be
assigned to a default project with no environment variables set. After a project has been created and automat-
ically initiated on the specified clusters, jobs can be submitted using the web interface or from command-line.
Additional environment and job specific variables are defined in a simple syntax described in the clubber docu-
mentation. The manager uses an auto balancing approach to automatically distribute new jobs between regis-
tered clusters. Three factors determine how many jobs are submitted to each cluster during the auto balancing
process. These are, in decreasing priority: (i) the cluster workload, (ii) the expected queuing time and (iii) the
average job runtime. Cluster workload is calculated as a percentage of total possible workload, with 100 % rep-
resenting a fully occupied cluster. The expected queuing time and the average job runtime are normalized to a
[0,1] range, with one representing themaximum amount of time spent in either queue or run state, respectively,
over all jobs of the same project among all active clusters. Both factors are set to one by default and are updated
automatically during the progression of a project. In order to obtain the cluster specific load balancing factor
(LBF) they are combined with the respective cluster workload (Eq. 1).

(1 − workload) × 0.5 + (1 − queuingfactor) × 0.3 + (1 − runtimefactor) × 0.2 (1)

clubber communicateswith clusters exclusively via encrypted SSH. The rsync [12] utility and Secure Copy (SCP)
are used to transfer files to and from the clusters. Since some of the inquiries sent to the many clusters takemin-
utes to process, all communication is threaded to avoid blocking faster transactions. This architecture enables
clubber to efficiently distribute and retrieve jobs in a highly parallelized fashion.

To track and update current job states clubber relies on a relational database. This approach results in very
robust job exception handling, both regarding errors on remote clusters and exceptions like lost connections on
the machines running the clubber manager. The database also allows independent services, which use clubber
as a job manager, to monitor current job states and retrieve results. Job success is continuously and extensively
validated, ensuring that a project with millions of jobs is completed correctly even after allowing for power
failures and compute node breakdowns. Once a job is identified as finished, the validation pipeline ensures
that the expected results are present and correctly retrieved from the clusters. In case of errors, jobs are reset
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and re-sent out for computation. A detailed logging and notificationmodule tracks these processes and notifies
the user if specific jobs produce recurring errors.

clubber is designed to be used with existing software tools. Our plug-and-play framework makes it pos-
sible to use any existing tools or scripts within the clubber environment. User-defined specific pre- and post-
processing actions can also be re-used with clubber projects. This allows for manipulation of input data prior
to batch processing (e.g. converting fastq to fasta format) and for automatic processing of job results once they
have been retrieved from the clusters. In its initial release, clubber includes two built-in methods for specific pre-
and post-processing to simplify parallelized job submission. They allow to automatically split a single multi-
sequence input file to submit parallel jobs and merge results once all jobs have been computed. The number of
sequences used for each parallel job is user-defined. We expect that with increasing use of clubber (available as
Git repository hosted on bitbucket) [8], the community will produce a larger repertoire of common pre- and
post-processing tools, e.g. file conversion, filtering, etc., commonly applied in every-day computational biology.

3 Results and Discussion

clubber significantly reduces the “real-world” compute time by parallelizing and optimizing the workload
distribution across available resources. We evaluated clubber performance by measuring the time required to
complete one thousand individual jobs, requiring 1-min CPU time each. Note, that these jobs did not require
any data to be transferred to remote clusters. The evaluation was performed in various scenarios. We compared
the required time at different cluster workloads when using clubber with one to five separate clusters available
vs. a standard job submission (Figure 2). A standard job submission is defined as a manual submission of a
single shell script running all thousand jobs on a single local HPC cluster. Note that workloads for remote
clusters registered with clubber are conservatively estimated to be consistently at 50 %; the actual gain in com-
putation efficiency could be substantially higher. Also note that 0 % workload is here defined as the ability to
run at most 100 jobs in parallel. For the (ideal, but also rare) case of no (0 %) workload on the local cluster, only
two additional registered clusters, both exhibiting a workload average, reduce the overall computation time by
approximately 50 %. The total gain in computation time is directly correlated to the current workloads on the
remote clusters. clubber’s auto-balancing job submission ensures that clusters with a low workload are prefer-
entially selected, optimizing and reducing to a minimum the total required computation time. As expected,
the more clusters are registered with clubber the less effect single clusters with a high load have on the final
computation time. The advantage of using clubber is particularly obvious in a scenario where only one cluster
is available for computation vs. having two clusters – a local and one additional remote cluster. Using clubber
speeds up computation by up to 100 %. Note that simply logging into another cluster and submitting job sub-
sets is tedious task, which would not, even in the best case scenario, achieve similar speed up – as one cluster
finishes, the other is still only somewhat through its assigned computation.
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Figure 2: Efficiency fold-change of clubber vs. standard job submission: Efficiency fold increase in submitting jobs using
clubber as compared to a standard job submission. Primary cluster workload is varied between 0 % and 90 %, where 0 %
workload is defined here as the ability to run at most 100 jobs in parallel (100 CPU cluster). Compute time is measured
for a submission of 1000 jobs, each requiring 1-min CPU time and no data transfer. Active workloads for remote clus-
ters registered with clubber are conservatively estimated to be consistently at 50 % of possible total. None of these clusters
dropped below that threshold in our use experience. They have, however, gone significantly higher. Thus, the actual gain
in computation efficiency could be even higher than that displayed.

clubber facilitates fast evaluation of millions of sequences. Our recent work required a total of 19.4 million
bacterial sequences to be analyzed for all-to-all pairwise similarity using BLAST [13]. We estimated that our
single local cluster of 640 compute cores in its entirety would have taken roughly 4 months to perform the
computation. This estimate is based on a 24 day-long 3,797,793 job BLAST run against the 19.4 M sequence
database. Using clubber to run on three additional clusters (800, 1536, and 3120 cores, respectively; of varied
load, but no more than 50 % of any one cluster available at any given time), speeds up this time to a bit over 2
months (70 days, a factor of 1.8).

Deepwater oil spill metagenome analysis using mi-faser. Our lab’s recently created web service [14], mi-
faser [15], uses clubber to rapidly annotate gigabytes of genomic sequence read data for the molecular function-
ality encoded by the “read-parent genes” without the need for assembly. For every inputmetagenome, mi-faser
computes a function profile – a list of Enzyme Commission (EC) numbers and the associated read abundances.
To illustrate clubber functionality, we ranmi-faser on 16 beach sandmetagenomes from four phases of the Deep-
water Horizon oil spill [16] (BioProject PRJNA260285) study – Pre-oil, two samples of Oil, and Recovery phases
(available at http://services.bromberglab.org/mifaser/example). Analysis of this data (73GB sequence reads)
using the mi-faser web interface with a clubber back-end was done in only 1 h, with clubber distributing a total
of 4.5 k jobs among three compute clusters. Note that running these jobs using only our local cluster (640 cores)
with an average workload (unavailability of nodes) of 30 %, took 170 min – 3-fold slower than clubber.

For further analysis, we removed sample-specific functions and normalized the individual entries of the
function profile vectors by the total number of annotated reads. We found that microbiome functional profiles
of samples from different phases significantly differ from each other (Figure 3, non-metric multidimensional
scaling (NMDS) analysis [17]; P < 0.001, permanova test [18]). Interestingly, the samples from the Oil phases
show higher variation than the samples from the Pre-oil phase and the Recovery phase, suggesting that “nor-
mal” ecosystem microbiomes are functionally more consistent than those in the disturbed ecosystems. The
samples from Oil phases are functionally closer to the samples from the Recovery phase than to the Pre-oil
phase, indicating that the beach sands have likely not entirely recovered.

Figure 3: Microbiome functional capabilities of beach sand metagenomes from a study of the Deepwater Horizon oil spill
(16) (BioProject PRJNA260285) differ across phases. The samples were collected from four phases, including Pre-oil phase
(OS-S1, OS-S2, OS-S3 and OS-S4), Oil phase 1 (OS-A, OS-B, OS-C and OS-D), Oil phase 2 (OS-E, OS-F, OS-G and OS-H)
and Recovery phase (OS-I600, OS-I606, OS-J598 and OS-J604). The distances between samples in this non-metric multidi-
mensional scaling (NMDS) graph represent the variation between sample function profiles. Samples from Pre-oil phase,
Oil phases and Recovery phase localize separately. Oil phase samples are closer to Recovery phase samples than to Pre-oil
phase samples.

Regardless of the significant differences between phases, the fraction of housekeeping functions (compiled
from [19]) was highly consistent across samples (22.1±0.5 %); e.g.DNA-directed RNApolymerase (2.7.7.6) is the
most abundant function in all samples (about 4∼5 %). As the number of reads encoding a particular function-
ality is highly correlated to the number of individual cells performing said functionality, these results are not
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very surprising – all bacterial phyla, nomatter howdifferent, carry housekeeping genes. This finding serves as a
confirmation of mi-faser’s accuracy, while highlighting its ability to estimate functional diversity in a non-taxon
dependent level.

Critical Assessment of Metagenomic Interpretation (CAMI) challenge analysis using mi-faser. We further
usedmi-faser to evaluate a high complexity data set from the CAMI [20] challenge. The data set contains a time
series of five Hiseq samples (15 Gbp each) with small insert sizes sampled from a complex microbial commu-
nity. With clubber optimizing job submissions, the total computation time for 500 M sequence reads was only
1 h 59 min. Note that the CAMI challenge did not evaluate runtimes for the submitted tools/predictions, but
they note that this evaluation is a necessary feature of future method development [20]. Metagenome compar-
ative analysis revealed that the microbiome functional profiles remain highly consistent (Table 1), regardless
of a clear community composition shift (Table 2). Interestingly, these results indicate that, over time, microbial
species were exchanged, while maintaining the same functional capacity. Thus, the time effect on the microbial
community is not as striking as what the taxonomical changes would suggest. This example highlights the fact
that inferring microbiome function from its taxonomy composition is misleading. Thus, metagenomic analysis
tools such as mi-faser are essential for a deeper understanding of microbiome functional potentials. Note that
clubber is uniquely responsible for allowing our lab to make the mi-faser web interface available to the general
public for the purposes of extremely fast (and accurate) functional annotation ofmillions of raw sequence reads.

Table 1: Spearman correlation between taxonomic profilesa of CAMI metagenomes.

RH_S001 RH_S002 RH_S003 RH_S004 RH_S005

RH_S001 1 – – – –
RH_S002 0.78 1 – – –
RH_S003 0.64 0.75 1 – –
RH_S004 0.51 0.59 0.73 1 –
RH_S005 0.45 0.51 0.54 0.71 1

aThe taxonomic profiles were obtained from http://cami-challenge.org.

Table 2: Spearman correlation between functional profilesa of CAMI metagenomes.

RH_S001 RH_S002 RH_S003 RH_S004 RH_S005

RH_S001 1 – – – –
RH_S002 0.99 1 – – –
RH_S003 0.99 0.99 1 – –
RH_S004 0.99 0.99 0.99 1 –
RH_S005 0.99 0.99 0.99 0.99 1

aThe functional profiles were annotated by mi-faser (15).

Dealing with tool heterogeneity in clubber-accessible resources. Even though clubber is highly successful
in facilitating HPC use, there may be still scenarios, which require manual interaction with the individual
compute clusters. When creating a clubber project that includes binaries, the user has to validate these binaries
on each of the cluster resources. When using pre-installed tools local to each resource, all installs have to be
of the same version and produce identical results given identical input. To prevent erroneous results in these
scenarios, clubber offers the option to automatically compare cluster environments and submit test jobs before
starting a project run on different computing resources. Note that virtualization solutions, e.g. Docker, offer a
simple solution to these problems by guaranteeing identical environments on every resource. In this scenario
(planned for the next release of our software) clubber distributes a user provided Docker image to the clusters
and relays job parameters when starting a Docker container.

Impact of dataset size on clubber performance. clubber was developed to process extremely large datasets
using remotely accessed resources. The remoteness of these resources, thus, poses a bottleneck in transferring
data between compute clusters. For the larger compute centers, it is safe to assume that an appropriately fast
connection is available. For smaller set-ups, data transfer speeds may vary. In testing to evaluate the contribu-
tion of transfer times for our collection of clusters, some smaller and some larger ones, we found that times
did not vary across remote and local machines and did not affect the relative performance. For all five of our
clusters the transfer times varied by as little as 6 %, despite being located in different places of the world (New
Brunswick, NJ, USA and Garching, Germany); the speed of transfer of 1Gb of data was 146 ± 8 s. Note that
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jobs requiring large data transfers would necessarily be slowed down, but roughly in equal measure for local
or remote machines. The slow-down is especially visible in cases where the computation time for a single job
is fairly short. Increasing the number of jobs processed reduces this initial impact as performance improves by
use of additional resources.

Better resource management and faster processing speeds with clubber. Our clubber framework provides
a simple way to bundle available, possibly heterogeneous, computational resources and to distribute computa-
tions minimizing the required processing time. This approach avoids long computation times associated with
an overloaded local cluster when there are in fact additional resources available elsewhere. Simple job submis-
sion/monitoring and automated exception handling make clubber easy-to-use and ideal for handling projects
with millions of jobs. Its ability to use cloud-computing services like Amazon Web Services (AWS) with club-
ber on-demand, additionally allows for temporary, large-scale increases in computational resources. With all
of these features, web services, the bread-and-butter of the computational biology community, are made ex-
tremely responsive with clubber.

With the exponential growth of available data in computational biologywaiting to be analyzed, bioinformat-
ics, not experimental analysis, has unexpectedly become the progress bottleneck. By combining the available
resources and using them in the most optimal fashion, clubber offers a new approach to tackling this challenge.
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