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Abstract

Engineered T cells are transforming broad fields in biomedicine, yet our ability to control cellular 

activity at specific anatomical sites remains limited. Here we engineer thermal gene switches to 

allow spatial and remote control of transcriptional activity using pulses of heat. These gene 

switches are constructed from the heat shock protein HSP70B′ (HSPA6) promoter, show 

negligible basal transcriptional activity, and activate within an elevated temperature window of 40–

45 °C. Using engineered Jurkat T cells implanted in vivo, we use plasmonic photothermal heating 

to trigger gene expression at specific sites to levels greater than 200-fold. We show that delivery of 

heat as thermal pulse trains significantly increase cellular thermal tolerance compared to 

continuous heating curves with identical area-under-the-curve (AUC), enabling long-term control 

of gene expression in Jurkat T cells. This approach expands the toolkit of remotely controlled 

genetic devices for basic and translational applications in synthetic immunology.
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Recent developments in mammalian synthetic biology are providing new approaches to 

control complex cellular activity, such as cell signaling, communication, and differentiation 

using orthogonal cues including small-molecules, proteins, or light.1–3 These advances are 

leading to numerous applications for synthetic immunology; in particular, the design of 

engineered T cells with entirely new abilities4 such as the capacity to migrate toward 

synthetic chemical cues,5 deliver drugs to tumors,6 employ logic-gates to sense antigens,7 

and target cancer with chimeric receptors.8 Despite these advances, our ability to precisely 

control T cell gene expression at specific anatomical sites in vivo remains limited. This is 

particularly important for therapeutic applications of engineered T cells. Clinically used 

methods to control T cells that involve systemic administration of potent immune-

modulating drugs9 or biologics10,11 lack spatial and temporal precision and can be 

associated with significant adverse effects.12 Engineered T cells capable of being locally 

activated at desired locations in the body by externally applied cues—such as light3,13 or 

radio waves14—will increase the precision of engineered T cell applications for use in 

humans.

Inspired by the precision with which pulses of heat can be delivered to sites located both 

superficially and at depth inside the body (e.g., by laser heating,15 induction heating,16 or 

focused ultrasound17), we engineer Jurkat T cells with heat-triggered gene switches for 

remote control of transcriptional activity by plasmonic photothermal heating. Temperature 

control has a rich and longstanding clinical history such as the use of freezing temperatures 

for cryoablation18 and hyperthermia to increase radiosensitivity19 or enhance drug delivery.
20 Despite this, few engineered genetic systems have been designed that leverage 

temperature triggers to regulate cellular activity. Past work on mammalian gene switches 

include transcriptional activity triggered by small molecules, protein ligands, and light.1 

Genetically encoded thermal switches such as RNA thermometers21 or temperature-sensitive 
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transcriptional regulators22,23 have been developed for bacterial systems, but the prokaryotic 

origin of these approaches raises concerns with immunogenicity in T cells and potentially 

limits their use for cellular control in mammalian systems. By contrast, our thermal gene 

switches are constructed from endogenous promoters that drive the heat shock (HS) 

response, a highly conserved reactive mechanism to transient elevations in temperature (~3–

5 °C above basal temperature) that triggers expression of protective HS proteins at levels 

comparable to the strongest known viral promoters.24 The ubiquity of the HS response has 

driven past work on thermal gene regulatory systems in mammals, worms, fish and other 

organisms,25 including the use of plasmonic nanomaterials to remotely activate engineered 

cells.26–29 However, these approaches activated wild-type promoters with continuous 

heating methods that result in low cellular viability30 and preclude their use for longitudinal 

control of cells.

Here we show that Jurkat T cells engineered with thermal gene switches constructed from 

the heat shock protein 70B′ (HSPA6) promoter have negligible activity at basal body 

temperatures but trigger gene expression to levels greater than 200-fold following exposure 

to elevated temperatures within a narrow transition window (40–42 °C). We spatially control 

Jurkat T cell activity with heat delivered by the photothermal effect using the precision of 

near-infrared (NIR) laser light for targeting and plasmonic gold nanorods as transducers to 

convert incident NIR light into localized heat.15 We also demonstrate that the use of thermal 

pulse trains compared to heat delivered at a constant temperature significantly increases 

thermal tolerance to allow long-term control of Jurkat T cells for weeks in a living host.

RESULTS

Engineering a Thermal Gene Switch

Within the mammalian family of HS promoters, heat responsiveness is primarily mediated 

by Heat Shock Factor 1 (HSF1), a transcription factor that is normally present as an inactive 

monomer under basal conditions. During hyperthermia, HSF1 is converted to a homotrimer 

that then binds to heat shock response elements (HSEs) arrayed upstream of the transcription 

start site.31,32 These HSEs, together with putative negative regulatory regions, dictate the 

heat response characteristics of a promoter. Therefore, we sought to perform truncation 

analysis on the HSPA6 locus to characterize different regions of the wild-type promoter 

sequence to identify constructs with low basal activity and high fold-induction.33,34 We 

cloned 8 candidate constructs (labeled i–viii, Figure 1a) into HEK 293T cells starting at four 

upstream sites at −2964, −1231, −648, and −71 bp relative to the transcriptional start site, 

and ending at two downstream sites at +48 and +119 bp— the latter corresponding to the 

beginning of the open reading frame (ORF) of the HSPA6 gene. From our library, we 

selected construct ii for use in further studies based on several considerations: it had a high 

fold-induction, absolute level of activity, and small base pair footprint to allow larger gene 

inserts into viral vectors.

We next evaluated thermal switch activity in Jurkat T cells. While both transduced and 

untransduced cells did not produce measurable levels of Gluc luminescence at 37 °C (Figure 

S1), transduced Jurkat T cells incubated at 42 °C showed a sharp switch-on transition 6 h 

after heat treatment that resulted in a ~70-fold increase in luminescent signals (Figure 1b). 
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At time points greater than 9 h, no appreciable decrease in signals were observed that would 

indicate a switch-off transition. We attributed this result to the Gluc reporter we used 

because it is naturally secreted and not subject to intracellular degradation pathways such as 

ubiquitination. Therefore, to measure our thermal switch-off kinetics, we repeatedly sampled 

and replaced the cellular supernatant after maximum Gluc activity was attained at 9 h and 

determined a decay constant half-life of ~1h (Figure 1c). Additionally, incorporation of a 

GFP reporter revealed that ~90% of transduced Jurkats were actuated by heat treatments 

(Figure S2). These results show that thermal switches constructed from the HSPA6 promoter 

exhibit sharp switch-on and switch-off kinetics in transduced Jurkat T cells.

Triggering Cellular Activity with Pulses of Heat

To determine the relationship between heating duration, temperature, and thermal switch 

activity using continuous temperature inputs, we heated transduced Jurkat T cells for 15–60 

min at temperatures ranging between 37 and 42 °C (Figure 2a,b). Elevations in temperature 

as low as 39 °C (ΔT = 2 °C) were sufficient to induce switch activity, and either higher 

temperatures or extended heating durations increased output activity, with maximal levels 

occurring at 41–42 °C. Moreover, our data showed that the level of thermal switch activity 

was independent of path; therefore, we hypothesized that milder heating conditions using 

discrete pulses of heat could be used to increase T cell thermal tolerance yet achieve similar 

levels of thermal switch activity.

To test this, we compared the efficacy of delivering heat using pulse train or constant 

temperature profiles (Figure 2c). Under a 67% duty cycle comprised of a 10 min heat step at 

42 °C and 5 min rest period at 37 °C, each additional thermal pulse progressively increased 

cell output activity such that the cumulative effect from three pulses was ~50% higher 

compared to the intensity obtained using a constant temperature profile (i.e., 100% duty 

cycle) with an identical area under the curve (AUC) (Figure 2d). We observed a similar trend 

where output activity increased with the number of pulses at a lower activating temperature 

of 40 °C; however, the level of activity between three pulses and continually heated samples 

was statistically identical. We attributed this difference between 40 and 42 °C to the ability 

of Jurkats to better tolerate smaller elevations in temperature. To test this, we analyzed 

Jurkat viability by Annexin V and propidium iodide (PI) stains for apoptosis and cell death 

respectively, and found that at 42 °C, a 67% duty cycle significantly reduced double positive 

cells by over 70% compared to continuous heating, and maintained a cell viability of ~90% 

relative to that of unheated cells (Figure 2e,f). Conversely, no significant differences in cell 

death and viability were observed at 40 °C even after 40 min of constant heating (Figure S3). 

Collectively, our data showed that the number of pulses in a thermal train controls the level 

of output activity and significantly increases thermal tolerance of Jurkat T cells compared to 

constant temperature inputs.

Photothermal Targeting of Jurkat T Cells

We next set out to demonstrate temperature control of Jurkat T cells using externally applied 

triggers. Spatially targeted heating in human patients can be achieved in deep tissues using 

multiple platforms including focused ultrasound, inductive heating, and microwave heating.
20 Here we chose photothermal heating using near-infrared (NIR) laser light (λ = 808 nm) 
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irradiation of plasmonic gold nanorods (AuNRs).15 AuNRs are long-circulating 

nanomaterials whose geometry can be precisely tuned to absorb and convert incident NIR 

light into thermal energy by surface plasmon resonance (SPR) (Figure 3a). Passively 

targeted AuNRs accumulate in tissue across fenestrated endothelium such as tumors35,36 and 

allow for localized heating when the site is exposed to otherwise benign NIR light. To test 

this approach, we arrayed mixtures of AuNRs and luciferized Jurkats into a 96-well plate 

and confirmed coincident increases in both temperature and luciferase activity in wells 

treated with NIR laser light (Figure 3b), allowing spatial targeting of cellular expression in 

patterns such as the Georgia Tech logo (Figure S4). We then tested this system in vivo by 

laser heating subcutaneous matrigel implants encapsulated with Jurkat T cells and AuNRs 

(Figure 3c) under the guidance of a thermal camera to allow maintenance of target skin 

temperatures in real time (Figure 3d,e). At implant sites heated to focal skin surface 

temperatures of 42 and 45 °C, we observed over 105-fold and 209-fold increases in 

luciferase activity respectively compared to unheated sites kept at body temperature (Figure 

3f). In contrast to our in vitro studies showing maximum cell activation at 42 °C (Figure 2b), 

a surface skin temperature of 45 °C was required to robustly trigger our thermal switch in 
vivo. We attributed this difference to measuring temperature at the surface of the skin 

compared to the core of the implant. We did not observe tissue damage to the skin surface at 

45 °C and chose to work with this activating temperature for further in vivo studies. Taken 

together, our data showed that photothermal heating using NIR light and AuNRs effectively 

allows spatial targeting and control of cellular activity in vivo.

Thermal Pulse Trains for Long-Term Control of Jurkat T Cells In Vivo

On the basis of our in vitro studies which showed the benefits of heat delivery using thermal 

pulse trains, we sought to determine whether this method could be used to control Jurkat T 

cells over several weeks without significant reductions in cell viability and function. Serial 

modulation of T cell phenotype is especially relevant to chronic diseases such as HIV or 

refractory cancer that produce exhausted or anergic T cell populations37 and where 

recovering T cell effector functions requires repeated administration of activating drugs 

(e.g., cytokines and checkpoint blockade antibodies). To enable localized, extended control 

over Jurkat T cell behavior while maintaining high cell viability, we applied thermal pulse 

trains to repeatedly heat matrigel implant sites serially using NIR laser light and AuNRs. To 

confirm that the rate of heat transfer in vivo would allow on–off cycling of thermal pulses, 

we irradiated implant sites at a 67% duty cycle which produced discrete skin temperature 

profiles characterized by a decay half-life of 1.7 min between pulses and an area under the 

curve (AUC) of 1.2 compared to the ideal square wave input (Figure 4a). We then compared 

the viability of Jurkats recovered from in vivo matrigel implants heated with thermal pulse 

trains to those treated by continuous heating (Figure 4b) and, consistent with in vitro studies 

(Figure 2e,f), found greater than a 70% increase in viability (Annexin V−, PI−) within pulsed 

cells after 1 day (Figure 4c). Because of this significant reduction in viability using a 

constant temperature profile, we explored long-term control of cell behavior using repeated 

pulsatile heat treatments. Over the course of 14 days, implanted Jurkats steadily increased 

switch activity compared to unheated controls such that signals by Day 14 were more than 

4-fold higher than on Day 1 (Figure 4d,e). To confirm long-term pulsatile heating did not 

adversely affect implanted cells, we analyzed the Jurkat T cells on Day 15 and observed no 
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significant differences in apoptosis and cell death markers (Annexin V and PI) between 

pulsed and unheated cells kept at body temperature that were implanted concomitantly on 

Day 0 (Figure 4f). Together our data shows that heat delivered in discrete pulses preserves 

cell viability and allows remote control of Jurkat T cells for weeks in vivo.

DISCUSSION

Inspired by remote control of biological systems, we establish a framework for engineering 

mammalian cells with thermal gene switches for in vivo control using pulses of heat. 

Thermal gene switches constructed from the HSPA6 promoter activate within a narrow 

temperature window of 40–42 °C and trigger gene expression to hundreds of fold above 

basal levels while remaining silent at normal body temperature. Here we used wild-type 

promoter sequences but key thermal switch properties, including thermal activation 

temperatures and on–off ratios, could be further developed by directed evolution or 

incorporating similar genetic architectures from a wide range of species that have different 

temperature thresholds for heat shock activation (e.g., Arabian camel and zebrafish). This 

could provide orthogonal thermal band-pass circuits that express different genes depending 

on the temperature of the hyperthermic input as demonstrated recently in bacteria.23

In our study, we found that pulsatile heat delivery significantly improved thermal tolerance 

of Jurkat T cells compared to continuous heating profiles with identical AUCs, which 

allowed long-term control of cells in vivo without reduction in output activity or cellular 

viability. In past studies, thermal tolerance was achieved by pretreatment of cells with mild 

heat followed by a rest period to allow expression of protective HSPs before full thermal 

induction;38 however, this mechanism is unlikely to explain our results as our off-cycle 

interval (~5 min) did not allow sufficient time for protein expression. The induction of 

thermal tolerance under our heating schedule may be related to HSF1’s trimerization 

mechanism in which hydrophobic regions in repeated heptad domains are disrupted and 

form intermolecular coiled coils in response to hyperthermic conditions. These interactions 

allow HSF1 to stably trimerize and bind with high affinity to HSEs to initiate transcription.
24,31,32 Our pulsed delivery method may influence the rate at which these hydrophobic 

domains are exposed, or the population frequency of trimers since higher-order oligomers 

are formed as well.39,40 The exact mechanism may be elucidated by examining the heat-

response of substitution or deletion mutations within the hydrophobic domains that govern 

and regulate HSF1 trimerization.39,41–44

To heat specific sites in vivo, we chose to use NIR laser light and plasmonic gold nanorods 

to induce local hyperthermia in matrigel implants. The well-established biodistribution of 

nanoparticles45 in tissues with porous vessels such as secondary lymphoid organs (e.g., 
spleen or lymph nodes) or sites of disease (e.g., tumors) could allow engineered cells within 

these tissues to be remotely controlled. In humans, modalities such as focused ultrasound, 

radio- or microwaves are routinely used to precisely heat deeper tissues where targeting with 

optical techniques remains challenging.20 In a clinical setting, a future application is to 

incorporate thermal gene switches into engineered T cell therapies for cancer to allow local 

expression of potent immune-modulating biologics10,11—which are otherwise associated 

with significant off-target toxicity when administered systemically—to combat tumor 
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immunosuppression. Moreover, local heating may be targeted to sites implanted with 

biomaterials designed to enhance T cell function, including wafers that expand and disperse 

tumor-reactive T cells.46 Looking forward, this framework of activating gene expression by 

heat provides an orthogonal mechanism to control cellular activity in addition to small-

molecule47 or light-based methods.13 Such platforms may be integrated across different 

immune cell types for remote control of synthetic immunological systems.

METHODS

Plasmid Construction and Viral Production

The promoter of the HSPA6 gene (Uniprot P17066) was amplified from human genomic 

DNA (Clontech #636401) at positions indicated in Figure 1a similar to previous studies.33 

XbaI and XhoI sites were added to the 5′ and 3′ ends of annealing sequences listed in the 

Supplementary Methods, digested, and used to insert the promoters into the Lego-C plasmid 

(Addgene #27348) that contains the reporter mCherry as a selectable marker. This 

fluorescent reporter was used to sort transduced cells using FACS. Additional reporters 

including Gluc (LifeTech 16146), emGFP (Imanis DNA1023) and Fluc (Addgene #33307) 

were added under control of the heat shock promoter via restriction enzyme digestion and 

ligation. Plasmid DNA was purified using a Plasmid Maxi Kit (Qiagen cat #12163) and 

packaged into lentiviral vectors with psPAX2 (Addgene #12260) and pMD2.G (Addgene 

#12259). Cells were transduced in 10 μg/mL of protamine sulfate (Sigma) before FACS (BD 

FACS Aria) and downstream use.

Preparation of AuNRs

AuNRs were purchased from Nanopartz (item #A12-10-808-CTAB-500) and pegylated 

(Laysam Bio cat #MPEG-SH-5000-5g) to replace the CTAB coating before being 

resuspended in DI at 0.5 mg/mL. This solution was used in a 1:100 dilution for all laser-

mediated heating experiments in mice and 96-well plates.

Viability Studies

Jurkats were heated in a thermal cycler (Biorad) in HEPES buffered RPMI (25 mM) at a 

density of 106 cells/mL and incubated at 37 °C and 5% CO2. After 24 h, cells were assayed 

for viability using the Apoptosis Detection Kit (BD cat #556547). For cells recovered from 

implant sites, matrigel was excised from mice, physically dissociated and incubated in Cell 

Recovery Solution (Corning) according to manufacturer’s instructions before analysis with 

Apoptosis Detection Kit 24 h after conclusion of heating. All samples were analyzed with 

FlowJo, Version 10 (FlowJo LLC).

In Vitro Heating Assays

Cells were heated in a thermal cycler and immediately transferred to a 96-well plate and 

incubated until assayed. Unless otherwise indicated, cellular supernatant was sampled for 

reporter activity 24 h after heating. Density inside PCR tubes was 106 cells/mL. 

Luminescent activity was measured using a Cytation 5 plate reader (BioTek) and Gaussia 

Luciferase Assay Kit (New England Biolabs) according to manufacturer’s instructions.
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In Vivo Laser Heating

0.5 μg AuNRs and 2 × 106 engineered cells per 100 μL matrigel were used for laser heating 

with in vivo implants after subcutaneous injection into in nude mice (Jackson Laboratories). 

Mice were anesthetized with isoflurane gas and implant sites were heated using an 808 nm 

laser (Coherent) at a power density of ~9.5 A/cm2. All in vivo pulsatile heating profiles were 

performed for a total of 30 min of heat with a 67% duty cycle. Surface temperature was 

continually measured using a thermal camera (FLIR model 450sc). Rest periods during 

cyclic heating began when measured skin temperature reached 37 ± 1 °C.

In Vivo Bioluminescence and Imaging

Fluc activity was measured using an IVIS Spectrum CT (PerkinElmer) after i.p. injections of 

luciferin (Gold Bio) administered 4.5 h after conclusion of activating heat shock. Integration 

time was set to automatic and imaging was conducted for up to 1.5 h after injection. ROIs 

were defined within the Living Image software package (PerkinElmer) and measured as 

average radiance (photons s−1 cm−1 sr−1).

Statistical Analysis

All results are presented as mean, and error bars show SEM. Statistical analysis was 

performed using statistical software (GraphPad Prism 6; GraphPad Software). *p < 0.05, 

**p < 0.01, ****P < 0.0001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Heat-triggered gene switches in Jurkat T cells. (a) Eight constructs (i–viii) cloned from the 

heat shock protein HSPA6 locus used to evaluate sensitivity to thermal activation in HEK 

293T cells. Constructs i–iv extend to +119 bp beyond transcriptional start site while 

constructs v–viii terminate at +48 bp. Fold inductions of normalized luminescence (Heat/No 

heat) are listed to the right of each construct. RLU: Relative Luminescence Units, n = 3, 

error bars = SEM. (b) Kinetic trace of cumulative switch activity at 42 °C in Jurkat T cells 

following 1 h heating, n = 3, error bars show SEM and are smaller than the displayed data 

points, ****P < 0.0001, one-way ANOVA and Dunnett’s multiple comparison test. (c) 

Decay kinetics of switch activation after 1 h heating at 42 °C. Luminescent values were 

determined by sampling and replacing supernatant after maximum activity was reached, n = 

3, error bars = SEM.
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Figure 2. 
Thermal pulse trains augment switch activity and enhance Jurkat thermal tolerance. (a) 

Continuous heat treatment profiles with increasing time or temperature. (b) Luminescent 

traces showing that increases in both duration and temperature of heating augment switch 

activity in a pathway-independent fashion, n = 3, error bars = SEM. (c) Diagram of thermal 

pulse trains at a 67% duty cycle (10 min on, 5 min off) and continuous heat treatments. Total 

heated time for last two regimens were identical (30 min). (d) Supernatant luminescence 

after discrete pulses (1, 2, or 3 cycles) or continuous heating at 40 and 42 °C, n = 3, **P < 

0.01, one-way ANOVA and Tukey’s multiple comparison test, error bars = SEM (e) 

Propidium Iodide (PI) and Annexin V stains of Jurkat T cells heated at 42 °C. (f) 

Quantification of Jurkat viability across replicate samples and duty cycles. Total heating 

time = 30 min, n = 3.
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Figure 3. 
Photothermal control of mammalian cells in vivo. (a) Absorbance spectrum of AuNRs with 

a with a maximum absorbance (805 nm) within the NIR window (~650–900 nm). (b) Top: 

thermograph of 96-well plate with wells containing engineered Jurkats with (+) and without 

(−) AuNRs and heated with NIR laser light (+) or unheated (−). Bottom: Luminescent image 

showing Fluc activity of engineered Jurkats contained only to wells with AuNRs (+) and 

heated with laser light (+) for 20 min at 42 °C. (c) Photograph of nude mouse with 

subcutaneous matrigel implants (inset) containing engineered Jurkat T cells and AuNRs 

before heating. (d) Serial thermal images of mouse bearing AuNR-matrigel implants within 

5 min after laser activation. (e) Kinetic thermal traces (colored lines) showing average skin 

temperature of 3 × 3 pixel ROI centered on implant site immediately after laser is activated 

(triangle). Shaded regions around trace averages show STD of all heating runs, n = 3. (f) 

Radiant image of nude mouse with Jurkat implants after heating at skin temperatures of 37, 

42, and 45 °C for 20 min. Radiance calculated as the difference in value between implant 

site luminescence and background radiance of mouse skin, n = 3, error bars = SEM.
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Figure 4. 
In vivo pulsatile heating enables long-term control of mammalian cell activity. (a) Idealized 

pulse-wave thermal input with a 67% duty cycle (top) and trace of murine skin during 

photothermal treatment (bottom). Red line trace = average temperature of 3 × 3 pixel ROI 

centered on implant site during heating. Shaded regions around average trace show STD of 

three heating series, n = 3. (b) PI and Annexin V viability flow plots of Jurkats harvested 

from pulsatile and continuously heated implants, with (c) quantification, n = 5–6, error bars 

= SEM. (d) Radiance trace of implant sites after pulsatile heat treatments on days 1, 3, 7, 10, 

and 14 after implantation, n = 4, error bars = SEM. Inset: luminescent images of 

representative implant sites on days 1 and 14. (e) PI and Annexin V viability staining of 

Jurkats recovered from 37 and 45 °C heated implants in (d), n = 3, error bars = SEM, *P < 

0.05, two-tailed t test.
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