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Abstract

Unmanned Aerial Vehicles and Systems (UAV or UAS) have become increasingly popular

in recent years for agricultural research applications. UAS are capable of acquiring images

with high spatial and temporal resolutions that are ideal for applications in agriculture. The

objective of this study was to evaluate the performance of a UAS-based remote sensing sys-

tem for quantification of crop growth parameters of sorghum (Sorghum bicolor L.) including

leaf area index (LAI), fractional vegetation cover (fc) and yield. The study was conducted at

the Texas A&M Research Farm near College Station, Texas, United States. A fixed-wing

UAS equipped with a multispectral sensor was used to collect image data during the 2016

growing season (April–October). Flight missions were successfully carried out at 50 days

after planting (DAP; 25 May), 66 DAP (10 June) and 74 DAP (18 June). These flight mis-

sions provided image data covering the middle growth period of sorghum with a spatial reso-

lution of approximately 6.5 cm. Field measurements of LAI and fc were also collected. Four

vegetation indices were calculated using the UAS images. Among those indices, the nor-

malized difference vegetation index (NDVI) showed the highest correlation with LAI, fc and

yield with R2 values of 0.91, 0.89 and 0.58 respectively. Empirical relationships between

NDVI and LAI and between NDVI and fc were validated and proved to be accurate for esti-

mating LAI and fc from UAS-derived NDVI values. NDVI determined from UAS imagery

acquired during the flowering stage (74 DAP) was found to be the most highly correlated

with final grain yield. The observed high correlations between UAS-derived NDVI and the

crop growth parameters (fc, LAI and grain yield) suggests the applicability of UAS for within-

season data collection of agricultural crops such as sorghum.
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Introduction

In recent years, unmanned aerial vehicles (UAV) or systems (UAS) are gaining significant

popularity as a potential technology that can acquire remote sensing imagery with ultra-high

spatial resolution by flying at low altitude [1]. Since early 2015, the Federal Aviation Adminis-

tration (FAA) has granted over 5500 petitions for commercial operation of UAS in the United

States [2]. The Association of Unmanned Vehicle Systems International (AUVSI) predicts that

80% of these UAS will be used in agriculture. Compared with other remote sensing platforms

such as satellites and manned aircrafts, UAS can be deployed easily and have lower operational

cost, making them a promising tool for frequent monitoring of agricultural research sites and

farmers’ fields. In the United States, the UAS technology is projected to generate more than

$82 billion for the economy in the coming years [1].

Commonly used UAS in agricultural research are fixed-wing or rotorcraft systems. Both

classes of vehicle have unique characteristics that make them useful for specific field-based

agricultural applications [3]. Rotorcraft UAS can vertically take off and land (VTOL) so that

the space requirements for take-off and landing are small. These types of UAS can also hover

above an item of interest which makes them enable to take clear images of selected areas. This

capability coupled with a very low forward speed when needed for imaging purposes are ideal

for collecting ultra-high resolution images, highly detailed plant measurements, and plant

health monitoring [4]. However, because the electric motor must directly lift the battery packs

in addition to the sensor, these systems often have low flight speed and short flight ranges

which limits their coverage areas. In contrast, fixed-wing UAS are equipped with wings for lift-

ing that make the system suitable for mapping larger areas by covering long distances [5]. One

disadvantage of the fixed-wing UAS is the need for a runway or launcher for takeoff and land-

ing. Because fixed-wing UAS require air moving over their wings to generate lift, they must

stay in a constant forward motion and cannot stay stationary the same way a rotary-wing UAS

can. Regardless of the class of UAS used, a range of customizable sensors can be integrated for

agricultural studies. Multiple types of cameras and sensors such as regular off-the shelf digital

cameras [6], custom-built multi-spectral cameras [7, 8], hyperspectral imaging systems [9],

and thermal cameras [10] are gaining popularity for measuring spectral information using

UAS.

In this study, we investigated the use of a fixed-wing UAS platform equipped with a Sentek

GEMS 35 multispectral sensor for assessing the growth and development of sorghum (Sor-
ghum bicolor L.), a major cereal crop. Leaf area index (LAI), plant height and fractional vegeta-

tion cover (fc) are some of the variables routinely used for monitoring crop growth and

development [11–13]. Most of the commonly used methods for measuring these variables are

field-based techniques conducted manually. Different remote sensing–based approaches are

available to quantify plant physiological variables. However, the majority of these studies are

based on satellite or aircraft remote sensing systems which produce coarse resolution images

that are not suitable for small plot research studies [14–17]. The recent advancements in sensor

technologies and availability of low cost UAS systems have promoted their use in row crop

agricultural research. Hunt et al. [18] used an image acquisition system mounted on an

unmanned helicopter to estimate biomass and nitrogen status for corn (Zea mays L), alfalfa

(Medicago sativa L) and soybeans (Glycine max L). Swain et al [19] used a radio-controlled

unmanned helicopter to acquire images to estimate grain yield and total biomass of rice

(Oryza sativa). They demonstrated that rice grain yield and biomass are highly correlated with

the Normalized Difference Vegetation Index (NDVI) estimated from images. Vega et al [20]

showed that there is a good correlation between NDVI extracted from images acquired from a

quadcopter and nitrogen content of sunflower (Helianthus annus). Zarco-Tejada et al [21]
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demonstrated the feasibility of a micro-hyperspectral imager and a light-weight thermal cam-

era mounted on a small UAS platform to track stress levels in citrus orchards. Recently, Elarab

et al [22] combined thermal and multispectral images obtained using a UAS called

AggieAirTM to estimate chlorophyll content of oats (Avena sativa).

The overall goal of the present study was to investigate the application of remote sensing

imagery acquired using a fixed-wing UAS for monitoring sorghum growth and development.

Specifically we examined the relationship between UAS-based vegetation indices with sor-

ghum growth parameters such as LAI and fc. We also examined the relationship between sor-

ghum grain yield and UAS-based NDVI at specific dates.

Methods and materials

Study area

The study site is located at the Texas A&M AgriLife Research Farm near College Station, TX

(30˚320 29.54@ N, 96˚ 250 37.24@ W; 103 m elevation). The region has a humid subtropical cli-

mate with average annual precipitation of approximately 1000 mm [23]. Mean air temperature

during the growing season in 2016 (April–August) was 20˚ C with total rainfall of 690 mm.

The soil type at this location is ships clay (very-fine, mixed, active, thermic Chromic Haplu-

derts) with 0–1% slope. The experimental design was a randomized split plot design with three

replications. The main plot treatments included three seeding rates (30,000, 60,000 and 90,000

seeds/acre) and subplot treatments included six grain sorghum hybrids (BH 4100, RV 9782,

AG 1203, DKS 37–07, DKS 53–53 and M75GR47). In total, there were 54 plots (3 m wide and

15 m long). Grain sorghum seeds were planted on 5 April 2016 with a four-row John Deere

1705 vacuum planter equipped with precision seed meters calibrated to deliver the desired

seeding rates. Row spacing was 0.76 m. All seeds were treated with Concep III (Fluxofenin, 0.4

g a.i. per kg seed) before planting. All treatments received 161 kg ha-1 ammonium polypho-

sphate (11-37-0) at planting and 100 kg ha-1 of urea ammonium nitrate (28-0-0; check) 60

days after planting (DAP). Plots were mechanically harvested with a John Deere 3300 plot

combine integrated with the HarvestMaster™ Grain Gauge HM800™ after reaching physiologi-

cal maturity on 31 August 2016.

Unmanned aerial system

In our study, we used a fixed-wing UAS (Model Anaconda, ReadyMadeRC, Lewis Center,

Ohio, USA; www.readymaderc.com) as shown in Fig 1. This UAS was selected primarily for its

low-cost (approximately $400), durable foam construction, and relatively large payload bay

that can be easily retrofitted to accept almost any sensor. The Anaconda has an empty weight

of 2.4 kg, a wingspan of 2.1 m, and can carry a payload of 1.8 kg for 45–60 minutes. Two 14.8v

5000 mAh lithium polymer battery (LiPo) packs were mounted in the nose in parallel to

achieve 10,000 mAh of power. Major airframe modifications were also needed to mount the

sensors in the correct positions. A center section of foam was removed from the underside of

the fuselage, and a 3D-printed multi-hole mounting structure was installed. The mounting sys-

tem is a light-weight and sturdy system that enables the capability of mounting multiple sen-

sors and switching the sensors easily and quickly in the field while maintaining structural

integrity. It ensures that at least two sensors can have a clear field of view of the ground at all

times. Details of the mission design and the flights used to collect the data presented in this

paper are contained in Valasek et al [5]. The sensor mounted on the UAS to acquire the imag-

ery was a Sentek GEMS 35 multispectral camera (www.precisionaguavs.com) with an inte-

grated GPS system. The camera acquires 1.2-megapixel images in four spectral bands (Near

infrared [NIR], Red, Green, and Blue bands) with 8-bit radiometric resolution.

Unmanned aerial systems-based remote sensing
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Image acquisition and processing

Images were acquired within ± 2.0 hours of solar noon with flight duration ranging from 20 to

25 minutes under clear sky conditions. Flight (flight speed and path) and sensor parameters

(exposure time, aperture, sensitivity, and frame rate) were selected to ensure that there was

adequate overlap between images for mosaicking [3]. The sensor setting resulted in 75% for-

ward overlap and 65% side overlap which was enough to generate good-quality mosaics. Flight

altitude was 120 m above ground level. The flight planning used the “moving box” technique

along with auto-triggering of the sensor [5]. Three flight missions were successfully performed

in the growing season at 50 days after planting (DAP; 25 May), 66 DAP (10 June) and 74 DAP

(18 June), providing image data covering the middle growth period of sorghum with spatial

resolution of approximately 6.5 cm.

After multispectral image acquisition, pre-processing operations included mosaicking and

radiometric calibration. Image mosaicking was performed using the Pix4Dmapper image anal-

ysis software (Pix4D SA, Lausanne, Switzerland), which combined all individual images

together into a large georectified mosaic image for the entire study area. Radiometric calibra-

tion and all post-processing operations were performed using the image analysis software

ENVI (Harris Geospatial, Boulder, CO, United States). Two 3 x 3 m reflectance reference tarps

(Group Eight Technologies, Provo, UT, United States) with a nominal reflectance of 0.03 and

0.22 were used for radiometric calibration. Calibration tarps were laid adjacent to the study

area during each flight mission. For each acquisition date, digital number (DN) values corre-

sponding to the calibration tarps were extracted from the UAS imagery using ENVI. Linear

regression equations were developed using tarp DN values and known reflectance values of the

tarp in each spectral band [Eq 1]:

rðx;y;iÞ ¼ ai � DNðx;y;iÞ þ bi ð1Þ

where ρ(x,y,i) is the radiometrically calibrated reflectance of pixel (x,y) in spectral band i; DN(x,y,

i) is the digital number of that pixel (x,y) in spectral band i of the mosaic; and ai and bi are the

Fig 1. The unmanned aerial system ReadyMadeRC Anaconda.

https://doi.org/10.1371/journal.pone.0196605.g001
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slope and intercept of the linear regression model. These calibration equations were used to

convert the UAS imagery from DN to reflectance [3].

After radiometric calibration, four different vegetation indices were calculated using the

Band Math function in ENVI. These include NDVI, Green NDVI, the enhanced vegetation

index (EVI), and the modified triangular vegetation index (MTV12). These vegetation indices

are illustrated in the following Eqs (2)–(5):

NDVI ¼
r NIR � r Red
r NIRþ r Red

ð2Þ

Green NDVI ¼
r NIR � r Green
r NIRþ r Green

ð3Þ

EVI ¼
2:5� ðr NIR � r RedÞ

ð1þ r NIRþ 6� r Red � 7:5� r BlueÞ
ð4Þ

MTVI2 ¼
1:5� ½1:2� ðr NIR � r GreenÞ � 2:5� ðr Red � r GreenÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð2� r NIRþ 1Þ
2
� ð6� rNIR � 5�

ffiffiffiffiffiffiffiffi
rRed
p

Þ � 0:5�

q ð5Þ

where ρ(Blue), ρ(Green), ρ(Red) and ρ(NIR) are the calibrated reflectance in Blue, Green, Red

and NIR spectral bands, respectively. For each field plot, a region of interest (ROI) was estab-

lished manually by choosing the central two rows and mean value of vegetation indices were

extracted corresponding to each plot.

Field data collection

From each study plot, LAI was measured using a LI-COR LAI-2200C Plant Canopy Analyzer

(LI-COR Biosciences., Lincoln, NE, United States) within one day of the UAS flight [22]. To

estimate fc, overhead photographs were taken using a standard digital camera mounted on a

pole positioned approximately 3 m above the ground looking directly down at the plant can-

opy. Three photos were taken from each plot. Overhead photos were cropped using Adobe

Photoshop (Adobe Systems, San Jose, CA, United States) to include central rows from each

plot. After cropping, photographs were imported into ENVI for estimating fc. The “maximum

likehood” supervised classification function was used to classify each image to vegetated and

non-vegetated pixels. Then, the “quick stats” function was used to determine the number of

pixels in the vegetated areas. Dividing the number of pixels in the vegetated portions by the

total number of pixels provided an estimation of fc in each cropped image. Grain yield from

each plot was determined after machine harvesting the center two rows. Final grain yields

were adjusted to 14% moisture content.

Statistical analysis

Regression models were developed to predict LAI and fc using NDVI, Green NDVI, EVI and

MTVI2 estimated from UAS images. Data from 54 plots over the three UAS image acquisition

dates resulted in 162 data points, which was divided randomly into training and testing data

sets. We used data from the training data sets for developing regression models. The test data

set were used for analyzing the performance of regression models. The performance of regres-

sion models in estimating LAI and fc were evaluated by calculating the root mean squared

error (RMSE) and the Mean Absolute Performance Error (MAPE). In addition, student’s t

tests were used to determine if the empirical models (observed vs. predicted) could predict fc

Unmanned aerial systems-based remote sensing
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and LAI with reasonable accuracy. If the values of slopes are not significantly different from 1

and the values of intercepts are not significantly different from 0, then it can be concluded that

the regression was not significantly different from the 1:1 line.

Results and discussions

Relationship between vegetation indices and sorghum growth traits

To assess the performance of each vegetation index for estimating LAI and fc, we first com-

pared the R2, RMSE and MAPE of the regression relationships for the training data set

(Table 1 and Table 2). The RMSE between NDVI, Green NDVI, EVI and MTVI2 with LAI

were 0.28, 0.34, 0.34 and 0.29 respectively. The coefficient of regression (R2) of the relation-

ships between NDVI, Green NDVI, EVI and MTVI2 with LAI were 0.91, 0.81, 0.79 and 0.86

respectively. The RMSE between NDVI, Green NDVI, EVI and MTVI2 with fc were 0.059,

0.08, 0.09 and 0.063 respectively with R2 of 0.89, 0.78, 0.72 and 0.86. For both LAI and fc,

NDVI showed the highest R2 and the lowest RMSE and MAPE. In our study, EVI showed

lower accuracy compared to other vegetation indices although EVI is sensitive to canopy struc-

tural variations [24]. This could be because of the coefficients we adopted in the EVI equation

[25]. The MTVI2 performed better than Green NDVI and EVI, however this index had low R2

and high RMSE and MAPE compared to NDVI. Hence, we chose NDVI for further analysis in

this study.

Fig 2A presents NDVI of the training data set plotted against corresponding LAI. The LAI

of the hybrids during the measurement period ranged from 0.2 to 3.3. For majority of row

crops, as LAI approaches 2.5 or above, canopy reflectance of red light is less than 5% as absorp-

tion peaks above 95% [17,18]. Hence, further increases in LAI do not cause significant changes

in absorption and reflectance of red light [23, 24,25,26]. This causes NDVI to become invariant

to further increases in leaf area development. In order to assess the accuracy and viability of

the empirical relationship of NDVI with LAI, we made a cross-validation of measured LAI

with the predicted LAI retrieved from the regression model presented in Fig 2A. Fig 2B shows

the results of the comparison between measured LAI and predicted LAI retrieved using NDVI

from UAS images for the test data set. There was a strong linear relationship between predicted

and measured LAI (RMSE of 0.16 and MAPE of 13%) (Fig 2B). The least-squared linear

regression equation fit to these points explained 96% of the total variance among the points.

Table 1. Regression models developed between vegetation indices and leaf area index (LAI) for the training data set. Best fit functions, determination coefficients

(R2), root mean square errors (RMSE) and mean absolute performance errors (MAPE) are presented for the four vegetation indices.

Vegetation Index Regression Model R2 RMSE MAPE (%)

NDVI 0.14exp(3.4�NDVI) 0.91 0.28 11

Green NDVI 0.0909exp(3.98�GreenNDVI) 0.81 0.34 16

EVI 0.567exp(2.21�EVI) 0.79 0.34 16

MTV12 0.574exp(2.295 MTV12) 0.86 0.29 13

https://doi.org/10.1371/journal.pone.0196605.t001

Table 2. Regression models developed between vegetation indices and fractional vegetation cover (fc) for the training data set. Best fit functions, determination coef-

ficients (R2), root mean square errors (RMSE) and mean absolute performance errors (MAPE) are presented for the four vegetation indices.

Vegetation Index Regression Model R2 RMSE MAPE (%)

NDVI 1.08 (NDVI) − 0.18 0.88 0.06 8

Green NDVI 1.57 (GreenNDVI) − 0.54 0.78 0.08 15

EVI 0.59 (EVI) − 0.26 0.72 0.06 21

MTV12 0.76 (MTV12) − 0.26 0.86 0.06 12

https://doi.org/10.1371/journal.pone.0196605.t002
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Results of a student’s t test showed that the slope was not significantly different from 1

(p = 0.14) and the intercept was not significantly different from 0 (p = 0.15). Thus, we can con-

clude that the regression line was not significantly different from the 1:1 line. Statistical analy-

sis suggests that the NDVI-LAI regression model did not depend on the choice of the training

data set, predicting LAI without a systematic over or under-estimation.

Fig 3A presents the relationship between NDVI and vegetation cover (R2 = 0.89). Unlike

the NDVI-LAI relationship, NDVI-fc relationship was linear in nature. This could be expected

as the relationship between LAI-fc is curvilinear in nature as demonstrated in Fig 4. Measured

LAI values from all study plots were plotted against corresponding fc measurements in Fig 4.

Fig 2. (a) Relationship between normalized difference vegetation index (NDVI) and leaf area index (LAI); (b) Measured LAI vs. corresponding values of LAI predicted

using the empirical equation in Fig 2A. The solid black diagonal line in the graph is the 1:1 line. The dashed black line is the least-squares linear regression between the

measured and predicted values.

https://doi.org/10.1371/journal.pone.0196605.g002

Fig 3. (a) Relationship between normalized difference vegetation index (NDVI) and fraction cover (fc); (b) Measured fc vs. corresponding fc values predicted using

empirical equation in Fig 3A. The solid black diagonal line in the graph is the 1:1 line. The dashed black line is the least-squares linear regression between the measured

and predicted values.

https://doi.org/10.1371/journal.pone.0196605.g003
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As seen in the figure, the sorghum canopy covered approximately 70% of the ground area

when it reached an LAI of about 2.5. Further development in leaf area, did not cause any

changes in vegetation cover and the relationship became curvilinear in nature. Hence, plots

with high vegetation cover will have similar NDVI values although LAI could be still increas-

ing. This will result in a cluster of points at high fc when NDVI is plotted against fc as seen in

Fig 3A. Similar to the NDVI-LAI relationship, we made a cross-validation of measured fc with

predicted fc retrieved using the regression model presented in Fig 3A. Fig 3B shows the results

of the comparison between measured fc and predicted fc using the regression equation in Fig

3A. Fig 3B demonstrates that predicted and measured fc were in good agreement with R2 of

0.90, RMSE of 0.05 and MAPE of 4%. The slope of this regression (0.91) was close to 1, while

the intercept (0.05) was close to zero. Results of a student’s t test showed that this slope was not

significantly different from 1 (p = 0.07 and the intercept was not significantly different from 0

(p = 0.05).

The results from our study showed that empirical relationships of vegetation indices and

crop biophysical parameters are useful for predicting within-season crop growth traits. The

type of NDVI-fc and NDVI-LAI relationships that we observed in our study is consistent with

previous studies that reported linear relationships between fc and NDVI and exponential rela-

tionships between LAI and NDVI [27–31]. The NDVI saturation issue can reduce its function-

ality for LAI prediction at very high LAI values. However, NDVI is still one of the most widely

used vegetation indices to predict LAI and fc from remotely sensed data especially from early

to mid-growing season. Reliable empirical relations developed using within-season data such

as in this study can be used to convert UAS multispectral imagery into maps of plant

Fig 4. Relationship between leaf area index (LAI) and fraction cover (fc) of sorghum.

https://doi.org/10.1371/journal.pone.0196605.g004
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physiological properties. For example, Fig 5 shows the fc map for the study field which was

developed using UAS image data acquired on 10 June 2016. The fc map of this sorghum field

Fig 5. Fractional vegetation cover (fc) map of the sorghum field derived from UAS imagery acquired on 10 June 2016.

https://doi.org/10.1371/journal.pone.0196605.g005
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showed considerable variations in vegetation cover. The areas with dark green color show

dense canopy while the areas with red to yellow color shows sparse canopy, which represents

bare soil or plots with low seeding rates. These types of maps have particular applications in

plant breeding research. The number of plots in a plant breeding program at a single location

can range from few hundred to several thousands in a single growing season [32]. With-in sea-

son empirical relationships developed and validated using a smaller number of plots could be

applied to map and quantify plant physiological properties for the remaining larger number of

plots. However, caution should be taken before applying the empirical relations for extrapola-

tion to areas other than where it was developed. Changes in soil characteristics may require the

development of newer algorithms. Similarly, temporal stability of these relationships over mul-

tiple growing seasons require further investigations.

NDVI and seeding rates

Fig 6 shows the responses of NDVI to seeding rates for six sorghum hybrids at three different

dates of UAS image acquisition. In general, there was a significant positive correlation between

NDVI and seeding rates for all sorghum hybrids. The relationships between NDVI and seed-

ing rates were linear or quadratic in nature (Fig 6). Positive linear relationships were more fre-

quently observed between NDVI and seeding rate when plant NDVI was relatively higher.

Early in the season when plant NDVI was low (50 DAP), quadratic relationships were more

pronounced. The average NDVI value at 50 DAP was 0.39 at the low seeding rate (30,000 ha-

1). NDVI increased to an average of 0.49 and 0.51 for the medium (60,000 ha-1) and high

(90,000 ha-1) seeding rates, respectively. The average NDVI increased to 0.66, 0.72 and 0.77 at

66 DAP for the low, medium and high seeding rates, respectively. The average NDVI at 74

DAP was 0.80, 0.84 and 0.86, for the low, medium and high seeding rates, respectively. As the

results in our study show, a lower seeding rate may not lead to low NDVI compared to

medium and high seeding rates. When sorghum is planted at a lower density, the additional

spacing between plants may trigger formation of new, well-developed tillers as the season

progress [33]. In our study, difference in NDVI between seeding rates were more pronounced

at 50 DAP and 66 DAP. Hence early season NDVI measurements could be a useful index for

estimating plant population density. This agrees with previous research results involving field-

based remote sensing measurements [34,35].

Sorghum yield

The average sorghum yield in our study was 2,720 kg ha-1, with the lowest yield of 1,242 kg ha-

1 and the highest yield of 4,144 kg ha-1. The final sorghum yield was correlated with three dif-

ferent NDVI data sets extracted from UAS images acquired on 24 May, 10 June and 18 June,

2016. The statistical results showed that NDVI values calculated for 18 June had the highest

correlation with final sorghum yield indicating imagery taken at this particular growth stage

(flowering) could be a better indicator of yield (Fig 7). However, the R2 value for the linear

regression between NDVI and grain yield was 0.58 for this analysis due to variabilities in har-

vested grain yield caused by inclement weather conditions at the time of harvest. Frequent pre-

cipitation (approximately 228 mm) received towards the end of the growing season delayed

harvesting of the study plots. Frequent precipitation and humid weather conditions immedi-

ately prior to harvest had caused grain mold disease and impacted yield to some extent in our

study. Similar issues with grain mold disease and yield reduction in sorghum had been

reported by other researchers [36,37]. Measurements of leaf chlorophyll content, plant height,

and plant density using UAS data could be incorporated in yield prediction models to improve

the accuracy of yield estimation. However, such an analysis was outside the scope of this study.
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Fig 6. Relationships between normalized difference vegetation index (NDVI) and seeding rates for six different sorghum hybrids at 50, 66 and 74 days after

planting (DAP) in 2016. Each data point represents the mean of three replicates and was regressed against seeding rate.

https://doi.org/10.1371/journal.pone.0196605.g006
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Conclusions

Results presented in this paper show that high resolution images acquired using UAS can be

used effectively for within-season data collection from agricultural fields. We used a cost-effec-

tive multi-spectral sensor mounted on a fixed-wing UAS for collecting image data of six sor-

ghum hybrids planted at three different seeding rates during the 2016 growing season. Three

UAS flights were carried out in the growing season. The relationship between NDVI and LAI

and between NDVI and fc were validated and proved to be robust for estimating LAI and fc

from UAS derived NDVI values. NDVI obtained for 18 June 2016 (74 DAP) was found to be

best correlated with final grain yield, indicating imagery taken at flowering stage could be a

better indicator of yield rather than NDVI obtain at earlier growth stage of sorghum crop. Our

results also showed that early season NDVI measurements could be a useful index for estimat-

ing plant population density in sorghum. The observed high correlation between UAS-derived

NDVI with fc, LAI and grain yield indicates the applicability of UAS for within-season data

collection of agricultural fields. Future work will focus on additional experiments using differ-

ent sensors to investigate the possibility of estimation of different agronomic parameters

through various other indices for greater precision in crop monitoring.
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