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Abstract

Fluorescent staining is a common tool for both quantitative and qualitative assessment of

pro- and eukaryotic cells sub-population fractions by using microscopy and flow cytometry.

However, direct cell counting by flow cytometry is often limited, for example when working

with cells rigidly adhered either to each other or to external surfaces like bacterial biofilms or

adherent cell lines and tissue samples. An alternative approach is provided by using fluores-

cent microscopy and confocal laser scanning microscopy (CLSM), which enables the evalu-

ation of fractions of cells subpopulations in a given sample. For the quantitative assessment

of cell fractions in microphotographs, we suggest a simple two-step algorithm that combines

single cells selection and the statistical analysis. To facilitate the first step, we suggest a sim-

ple procedure that supports finding the balance between the detection threshold and the typ-

ical size of single cells based on objective cell size distribution analysis. Based on a series of

experimental measurements performed on bacterial and eukaryotic cells under various con-

ditions, we show explicitly that the suggested approach effectively accounts for the fractions

of different cell sub-populations (like the live/dead staining in our samples) in all studied

cases that are in good agreement with manual cell counting on microphotographs and flow

cytometry data. This algorithm is implemented as a simple software tool that includes an

intuitive and user-friendly graphical interface for the initial adjustment of algorithm parame-

ters to the microphotographs analysis as well as for the sequential analysis of homogeneous

series of similar microscopic images without further user intervention. The software tool enti-

tled BioFilmAnalyzer is freely available online at https://bitbucket.org/rogex/biofilmanalyzer/

downloads/.
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Introduction

One of the key issues in both pro- and eukaryotic cell studies is the quantitative characteriza-

tion of cellular subpopulations like the estimation of the fractions of either live or dead cells in

a given population, differentiation of bacterial species in mixed biofilms or eukaryotic cell

types in culture. There are two common experimental approaches to these issues, namely the

flow cytometry and the fluorescent microscopy. In both methods the cells are stained with

fluorescent dyes which specifically differentiate the cells of interest. Thus, Syto9/PI, DioC6/PI,

AO/PI, CFDA/PI, Calcein AM/PI, Hoechst/PI and many other combinations of dual staining

are widely used to differentiate viable and non-viable cells [1–3]. Normally, the first dye is bio-

chemically modified by viable cells followed by the production of the green-fluorescent prod-

uct. The second dye like the propidium iodide or ethidium bromide penetrates through the

damaged membrane of dead cells forming complexes with nucleic acids and providing red

fluorescence. Despite of multiple reports that the estimation of viable cells fraction by using

vital staining often exhibits significant differences in comparison with the values obtained by

using classical microbiological methods [4], fluorescent staining remains a fast and easy

approach to the quantification of (non-)viable cells.

While flow cytometry typically provides with a more accurate assessment of the cell sub-

population fractions [5, 6], it has several principal limitations that significantly narrow its

application area [7]. In particular, cells being adhered to each other and to external surfaces

should be suspended prior to their infusion into a cytometer that appears difficult when, for

example, bacterial biofilms or strongly adherent cells are analyzed, or the original structure of

the cell colonies, cell complex or tissue structure should be preserved. Moreover, flow cytome-

ter is normally unable to detect particles <0.500 μm [8]. Finally, currently available flow

cytometry systems require considerable amount of maintenance and highly skilled operators.

Fluorescent microscopy is largely free of above limitations and provides a reasonable alter-

native to the cytometric measurements. However, in the presence of adherent and/or spore-

like cells they largely overlap leading to the limitations of direct cell selection and counting

algorithms in the microscopic images. The situation gets even more complicated when the

cells are not equidistantly stained, image quality and color balance varies in different fields of

view. Despite of the above limitations, manual counting is usually still possible, while it

requires significant efforts from experts increasing the lab personnel workload drastically.

Thus, automatic or semi-automatic analysis of cells seems to be a fast and easy approach to the

microscopic data quantification. In the last two decades, a number of methods and computer-

assisted algorithms have been developed to resolve the cell counting issue implemented in a

number of both commercial and free software tools [9–13]. Existing software solutions include

cell counting and classification algorithms [14], estimation of their parameters from micro-

scopic imaging [15], 3d reconstructions from confocal microscopy data [16] and several other

more specific applications. However, automatic microscopic image analysis remains challeng-

ing in the presence of adherent and/or spore-like cells that are common conditions in biofilm

studies. Automatic counting methods are usually based either (i) on detection, selection and

counting of discrete objects, or (ii) on the statistical analysis of the image properties that avoid

direct counting approach and estimate some effective characteristics from the statistical prop-

erties of the entire image [17]. While the detection methods fail under cell overlapping condi-

tions, the statistical assessment methods are unable to differentiate between various types of

cells. Among few exceptions that largely overcome the above limitations, a very recently

designed software tool for the quantification of live/dead cells in a biofilm based on a series of

image transformation could be mentioned [18].
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Another common disadvantage of many automatic image analysis tools in practical settings

is often, though may sound surprising, their excessive use of automation. Quite often image

analysis algorithms use complex transformations and filtering procedures with parameters

that can be hardly controlled by the user who is often not an expert in digital image processing.

As a result, there is little or no feedback between the algorithm and its end user. Thus, the user

deals with a kind of black box design, where an image is inserted and a value comes out, with-

out being able to cross-check the performance of the algorithm at some intermediate steps.

Despite the increasing complexity and performance of image processing tools, the variety of

cell structures and microscopic imaging conditions to our opinion is still too broad to fully

rely upon automation in all cases.

Here we suggest an algorithm based on a simple combination of the object counting and

statistical approaches implemented in an easy-to-use cell-counting software tool, BioFilmAna-
lyzer, freely available at https://bitbucket.org/rogex/biofilmanalyzer/downloads/. Following

preliminary threshold-based filtering and segmentation of the image, an effective number of

cells is calculated under partially-manual control by the investigator. To support the investiga-

tor with finding the right balance between the parameters that should be adjusted at the initial

segmentation step, namely the selection threshold and the typical size range of single cells, we

suggest a simple procedure that includes estimation of the histograms of the sizes of isolated

objects after threshold-based filtering and an objective criterion based on the analysis of these

histograms. Based on a series of experimental measurements performed in bacterial cells of S.

aureus and B. subtilis exhibiting different shapes as well as eukaryotic cells, we show explicitly

that the suggested approach effectively accounts for the fractions of live/dead cells in all studied

cases. The validity of the BioFilmAnalyzer based cells live/dead fractions quantification was

assessed by comparison with the results of manual counting performed by several experts in

visual microscopic image analysis and cytometric measurements.

Materials and methods

Bacterial strains, cell lines and fluorescent microscopy

The fluorescent microscopic images of bacterial cells obtained in previous works were used

[19–23]. Briefly, Staphylococcus aureus (ATCC1 29213™) and Bacillus subtilis 168 grown in

35-mm TC-treated polystyrol plates (Eppendorf) for 48 hours under static conditions at 37˚C

to obtain rigid biofilm structures were further subjected to differential live/dead fluorescent

staining.

The human colon adenocarcinoma Caco-2 cells (RCCC) were cultured in DMEM supple-

mented with 10% FBS, 2 mM L-glutamine, 100 μg ml−1 penicillin and 100 μg ml−1 streptomy-

cin. The cells were seeded in 24-well plates at the density of 30000 cells per well and allowed to

attach overnight. The cells were cultured at 37 ºC and 5% CO2 until 70% confluence and camp-

tothecin (Sigma-Aldrich) was added in final concentration of 6 μM. After 24 h of exposition

the cells were subjected to fluorescent staining and analyzed with flow cytometry and fluores-

cent microscopy.

The viability of biofilm-embedded cells was evaluated by staining for 5 min with the

Acridine orange (Sigma) at final concentration of 0.12 μg/ml (green fluorescence) or 3,30-

Dihexyloxacarbocyanine iodide (DioC6) (Sigma) at final concentration of 0.02 μg/ml (green

fluorescence) and propidium iodide (Sigma) at final concentration of 3 μg/ml (red fluores-

cence) to differentiate between bacteria with intact and damaged cell membranes (live and

dead cells). The eukaryotic cells were stained with DioC6 (0.02 μg/ml) and propidium iodide

(3 μg/ml). The microscopic imaging was performed using either Carl Zeiss Observer 1.0

microscope or Carl Zeiss CLSM780 with 40–100× magnification.
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Flow cytometry

Cytometric analysis was performed using BD FACSCanto II flow cytometer. The Caco-2 cells

were stained as described above. Following data analysis was carried out using FACSDiva

software.

Image analysis methodology

Image analysis starts with the preliminary detection of pixels with given color channel intensity

(red, green, blue, or overall) exceeding a given threshold. Fig 1A shows a sample of original

microscopic image, while Fig 1B shows the result of threshold-based selection of the red chan-

nel according to the differential rule IR − IG> T, where IR and IG are the intensities in the red

and in the green channels, respectively, T = 30 is the threshold setting. In the next step, the pre-

processed image is segmented into separate non-overlapping objects by adjusting horizontally,

vertically or diagonally neighboring pixels above the threshold to the same object. Addition-

ally, objects with a given set of properties that determine the cell subpopulation are selected.

Fig 1C exemplifies the results of selection by size, with objects only in a given size range

between smin = 500 and smax = 1000 pixels being highlighted, where the color encodes each

object.

In the following, we count the selected objects, calculate their total area, and obtain the

average size of the typical cell from the studied subpopulation. Next we determine the effective

number of cells by dividing the total area above the threshold (Fig 1B) by the average size of

the selected cells (Fig 1C) according to

Neff
R ¼

SR
�SR½smin . . . smax�

and Neff
G ¼

SG
�SG½smin . . . smax�

;

where Neff
R , Neff

G are the effective numbers of cells in the red and the green channels, respec-

tively; SR, SG are the total area of selected cells belonging to the red and the green channels,

respectively; �SR½smin . . . smax�,
�SG½smin . . . smax� are the average area of cells with a size range

between smin smin and smax.

While T, smin and smax have to be appropriately chosen, their choice has to be performed

once in a series of similar experiments considering similar cell types as well as similar staining

and imaging conditions. Accordingly, so far their manual choice by expert seems to be the

Fig 1. Consecutive steps in cell quantification by BioFilmAnalyzer. (A) original image containing overlapped red and green channels, (B) selected red channel data

after threshold-based filtering, (C) selected cells of size between smin and smax that are used to determine the effective single cell size with each separate cell shown by

another color as determined by the automatic segmentation algorithm.

https://doi.org/10.1371/journal.pone.0193267.g001
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easiest solution option, since the feedback from the samples tested first allows for a more spe-

cific adjustment of these parameters, to avoid potentially bizarre results that may arise in the

case of blind choice of algorithm parameters with no feedback. In the following, for the entire

image series the parameters are fixed and no further manual adjustment is required. Thus a

series of images representing different fields of view under identical conditions in simply

passed through an algorithm. When the differences in the conditions are minor and do not

change significantly the microscopic images, but influence only some of their parameters like

the live/dead cell fractions, such as testing antimicrobials with gradually changing concentra-

tions, several series of images can be submitted without further adjustment of the algorithm

parameters. The implemented software solution organizes the results of calculations in a table

that could be exported and represents them graphically.

Statistical assessment

Here we used simple linear regression without the intercept term, i.e. y = kx. In the suggested

regression model the ideal case corresponds to k = 1 or simply y = x that would mean perfect

agreement between automatic and manual expert counting. The quality of the results is char-

acterized by two independent coefficients. The first one is the standard coefficient of determi-

nation R2 ¼ 1 �
SSres
SStot

, where SStot is the total sum of squares SStot ¼
X

i

ðfi � �yÞ2 and SSres is the

residual sum of squares SSres ¼
X

i

ðyi � fiÞ
2
, here �y ¼ 1

n

Xn

i¼1

yi is the mean value of all analyzed

data points and fi is calculated regression point. The R2 coefficient indicates how well the ana-

lyzed data set is replicated by the regression model.

In our study it was also important how close is the regression model to the ideal case y = x.

Therefore we introduced a similarly designed metric of how well the model y = kx is close to

the ideal counting line y = x which we denote here by L2. Its definition is similar to R2 besides

the calculation is performed for the regression points fi. SSres for L2 is calculated as

SSres ¼
X

i

ðfi � xiÞ
2
, where xi is the corresponding abscissa value for the current fi, and SStot is

the same as in R2. In ideal case when observational regression line follows y = x,

L2 ¼ 1 �

X

i

ðfi � xiÞ
2

X

i

ðfi� �f Þ2
¼ 1 � 0X

i

ðfi � �f Þ2
¼ 1. Thus both R2 and L2 coefficients range from 0 to 1.

Results and discussion

Software description

BioFilmAnalyzer software (S1 File) can be used to count any bacterial or eukaryotic fluorescent

stained cells from two-dimensional microphotographs provided either as single images or as

series of images obtained under similar conditions such as staining, magnification and color

balance (for example, several views of the same sample taken with fixed camera settings). This

in-house algorithm was implemented in C++ programming language and is compatible with

Windows (2000/XP versions and higher). The software tool has a simple user-friendly envi-

ronment for the image analysis with the two-step algorithm allowing manual parameter

adjustments by end user at the initial step and automatic image series analysis at the second

step. The user’s manual is available as S2 File. The logic of the image analysis is based on the

preliminary adjustment of the algorithm parameters by using one or several images that the

investigator finds more or less representative for the studied cohort in terms of imaging
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conditions. In the first step, simple drag & drop of a single image into the program window

initiates its instant processing including threshold based detection of cells according to a speci-

fied rule based on the exceedance of a given threshold by either a certain color channel, differ-

ence between color channels or overall intensity. The threshold value T which is the only

algorithm parameter in this first step can next be adjusted by the investigator by its increasing

in cases of strongly autofluorescent background or by its decreasing in low contrast images

until the background noise is eliminated. The view can be easily switched between the original

and the processed images by a single click on the upper image panel.

For image series exhibiting strongly non-homogeneous color distributions in the studied

color channels, there are two common solutions, including (I) adaptive adjustment of the

threshold value T for each of the images individually, as well as (II) preliminary image color

normalization that often appears a faster alternative. Since color normalization is a simple and

standard image preparation procedure that is straightforward and thus can be applied consec-

utively to a series of images using many commercial or free image processing software tools

(e.g., ImageMagick, Gimp etc.), we do not focus further on this issue. However, often signifi-

cant image preprocessing leads to other problems, such as the increased level of the back-

ground noise that is enhanced together with the useful parts of the image when amplifying the

intensity of the color channel with low intensity in the original image. For that reason, adaptive

thresholding often appears a more efficient solution. As we show below, our algorithm is

robust against moderate variations of the threshold T around its optimized value for a given

color distribution, and thus the color normalization appears unnecessary for image series with

moderate variations of color distributions. For those images exhibiting considerable variations

of staining and imaging conditions, or pronounced color imbalance, the more preferable adap-

tive thresholding procedure is still possible.

In the second step, the effective cell size should be adjusted such that only or nearly only

single cells appear in the lower image panel, which shows the processed image after a simple

segmentation procedure. Increasing the lower limit of the cell size helps to eliminate some

noise bursts, while decreasing the upper limit eliminates large patches of adherent cells from

the effective cell size statistics. With the cell size window representing only a simple criteria

that often appears insufficient, whenever necessary, further elimination of anomalous seg-

ments can be done manually by selecting and double-clicking over them in the lower image

panel. Since the parameters including sizes of different sub-population of cells can differ from

one another (e.g., non-viable eukaryotic cells are commonly smaller than viable cells), the

effective cell size should be re-adjusted for each studied sub-population of cells. For this rea-

son, the analysis of each color channel should be performed separately, and thus with the

exception of the intensity based analysis rule, all other options analyze color channels individu-

ally. Thus they perform similarly for single or overlapped color channel images.

In general, the threshold T and single cell size range are interdependent. Since single cells

are represented by inhomogeneous color intensity, with increasing the threshold T typical

sizes of isolated objects representing single cells decrease, due to the removal of some pixels

with intensity smaller than T. For that reason, it is important to keep the right balance between

the chosen threshold T and the single cells size range between smin and smax. In the following,

we suggest an objective criterion for keeping such balance based on the analysis of the histo-

grams of isolated objects sizes that is implemented in the software tool and validated by multi-

threshold analysis.

Finally, the effective number of cells is determined as the total area of the image exceeding

the threshold T shown in the upper panel divided by the effective cell size determined from the

lower image panel. Once a reasonable set of algorithm parameters in found, a series of up to

100 images can be dropped onto the program window for fully automated analysis with the
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same set of parameters as determined from the first one or several representative images with-

out further user intervention. Finally, the results can be exported to MS Excel for validation of

the results and following statistical analysis.

In comparison with some other freely available image processing and analysis software [18,

24, 25], our image analysis procedure is semi-automatic: the initial settings, while based on an

objective statistical criterion, are modified by manual adjustment of the algorithm parameters

and each step of the processing algorithm is fully visualized to enable expert controlled and

assessment of the analysis quality. Once optimized for a representative sample image, the soft-

ware tool next analyzes the entire image series automatically over coffee-break.

Software validation by bacterial cells counting

We analyzed the efficiency of the proposed algorithm using the fluorescent images of coccal

(Staphylococcus aureus) and rod (Bacillus subtilis) cell morphologies containing different frac-

tion of viable (green-stained) cells. Since the cell suspension can be easily analyzed with flow

cytometry, we focused on the analysis of adherent, biofilm-embedded cells. For that, we used

previously obtained series of microphotographs of S. aureus in 48–72 h old biofilms treated

with different antimicrobials [19, 21]. Cells were stained with DioC6 and propidium iodide to

differentiate the viable and non-viable cells, and non-viable cells fraction was quantified with

BioFilmAnalyzer software. As a representative example, twelve images with overlapped red

and green channels containing different fraction of viable cells are shown in Fig 2. Since the

image brightness, contrast and saturation vary from image to image depending on the staining

quality, microscope settings and sample itself, for each microphotograph shown in Fig 2 the

thresholds T (ranging from 25 to 55) and effective cell sizes were chosen individually. Next to

validate the performance of the algorithm when the intensity threshold is chosen quite arbi-

trarily without careful manual adjustment to the imaging conditions, these microphotographs

were analyzed consequently for different analysis thresholds (15, 20, 30, 45 and 60) and the

results obtained by the automatic cell counting were plotted as a linear function y = kx of the

manual cell counting (Fig 3A–3C). While the number of both red (non-viable, Fig 3A) and

green (viable, Fig 3B) cells decreases at higher thresholds, their fractions (i.e., live/dead ratio)

remained rather the same for each threshold value exhibiting no significant differences with

the manual evaluation data (compare thick dashed line corresponding to the ideal fit of man-

ual and automatic counting, Fig 3C).

Table 1 shows the regression coefficients k for the linear regressions y = kx and their coeffi-

cients of determination R2. Since by definition there should be no systematic shift between the

automatic and the manual count, i.e. in the absence of viable or non-viable cells the respective

number of cells equals zero, we used the simplest linear regression model without intercept.

Since the ideal counting corresponds to k = 1 or simply to the y = x line, we also calculated

another coefficient denoted L2 that determines the deviation of the obtained regression line

y = kx from the ideal counting line y = x. Of note, the automatic cell enumeration by BioFilmA-
nalyzer software exhibited the best fit with manual count at the analysis threshold of 45 (for

images presented in Fig 2). For further details on the statistical analysis of our results, we refer

to the Materials and Methods section.

Individual adjustment of the threshold and effective cell size is obviously possible only

when a small number of images should be analyzed. For a more accurate quantification, a

series of 10 or more images from the same sample should be analyzed. The BioFilmAnalyzer
software allows analysis with constant settings of threshold and cell size of two or more images

when they are dragged & dropped simultaneously onto the program window. To estimate the

performance of the software when the images with different quality are analyzed without
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individual optimization of the intensity threshold, a series of 115 microphotographs randomly

taken from different experiments were analyzed consequently for different thresholds (15, 20,

30, 45 and 60) with fixed cell size ranges used to determine the effective cell sizes. The results

Fig 2. Evaluation of the S. aureus biofilm-embedded non-viable cells fraction by using BioFilmAnalyzer software exemplified for 12 microscopic images. The

percentage of red-stained cells quantified by the BioFilmAnalyzer software is shown in each panel.

https://doi.org/10.1371/journal.pone.0193267.g002
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were compared against manual cell counting data (Fig 3D–3F). Similarly to previous results

obtained for 12 images with accurate settings of both thresholds and cell sizes, the live/dead

ratio remained almost the same for each threshold value and the obtained regression fit was in

Fig 3. S. aureus cells count and live/dead ratio dependence on the image analysis threshold T. Full lines show the linear regression lines, while dashed line shows the

ideal counting line as determined by the manual analysis performed by several experts in visual microscopic image analysis. Panels A-C show data for the 12 images

presented in Fig 2. Panels D-F show data for the 115 microscopic images taken randomly from different experiments with various imaging conditions.

https://doi.org/10.1371/journal.pone.0193267.g003

Table 1. Regression coefficients k, the coefficients of determination R2 and the accuracy coefficient L2 indicating the correspondence between the automatic and the

manual counting for the S.aureus live/dead ratios on fluorescent images.

12 images 115 images

Threshold k R2 L2 k R2 L2

15 1,01 0,95 1,00 1,02 0,63 1,00

20 1,00 0,94 1,00 1,05 0,65 0,99

30 1,05 0,94 0,99 1,08 0,66 0,98

45 1,05 0,73 0,99 1,11 0,72 0,96

60 1,09 0,59 0,98 1,17 0,67 0,92

https://doi.org/10.1371/journal.pone.0193267.t001

Simple tool for the quantitative analysis of fluorescent images

PLOS ONE | https://doi.org/10.1371/journal.pone.0193267 May 1, 2018 9 / 24

https://doi.org/10.1371/journal.pone.0193267.g003
https://doi.org/10.1371/journal.pone.0193267.t001
https://doi.org/10.1371/journal.pone.0193267


an excellent agreement with the manual cell counting data indicated by L2 being very close to

1.0 at thresholds in the range of 15–30 (Table 1).

Next, similar analysis was performed for the microscopic images of B. subtilis biofilm-

embedded cells treated with different antimicrobials [20]. Like in the previous example, Fig 4

Fig 4. Evaluation of the B. subtilis biofilm-embedded non-viable cells fraction by using BioFilmAnalyzer software exemplified for 12 microscopic images. The

percentage of red-stained cells quantified by the BioFilmAnalyzer software is shown in each panel.

https://doi.org/10.1371/journal.pone.0193267.g004

Simple tool for the quantitative analysis of fluorescent images

PLOS ONE | https://doi.org/10.1371/journal.pone.0193267 May 1, 2018 10 / 24

https://doi.org/10.1371/journal.pone.0193267.g004
https://doi.org/10.1371/journal.pone.0193267


shows 12 representative images with different fraction of viable cells quantified with BioFilmA-
nalyzer software. Fig 5A–5C are designed similarly as Fig 3 and show the interdependence of

the image analysis threshold and cell count calculated by BioFilmAnalyzer. Similar to S. aureus
microphotographs, the cell count calculated automatically increased at high threshold with the

best fit with manual count at threshold value of 45, while the live/dead ratio remained

unchanged with L2 exceeding 0.96 at thresholds up to 45, suggesting that the performance of

the algorithm does not depend on the fine tuning of the threshold and on the cell shape. Fig

5D–5F show the analysis of 50 randomly chosen images of live/dead stained B. subtilis cells.

Similarly, statistical analysis did not reveal significant differences between automatic and man-

ual live/dead ratio estimation (Table 2).

While the absolute cell count depends on the image analysis threshold which should be

adjusted manually and therefore has a factor of subjectivity, the live/dead ratio quantification

does not depend on the threshold settings in the range of 15–60 color intensity units (on the

0.255 scale) exhibiting linear function with R2 values exceeding 0.9 and regression coefficients

Fig 5. B. subtilis cells count and live/dead ratio dependence on the image analysis threshold T. Full lines show the linear regression lines, while dashed line shows the

ideal counting line as determined by the manual analysis performed by several experts in visual microscopic image analysis. Panels A-C show data for the 12 images

presented in Fig 4. Panels D-F show data for the 50 microscopic images taken randomly from different experiments with various imaging conditions.

https://doi.org/10.1371/journal.pone.0193267.g005
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of k ranging between 0.9 and 1.1 (Tables 1 and 2). This fact allows performing automatic analy-

sis of multiple images with constant settings optimized from the first image in a series.

Eukaryotic cells counting

The performance of BioFilmAnalyzer software was also analyzed for the eukaryotic cells. For

that, Caco-2 cells were treated with different concentrations of camptothecin and analyzed

after 24h of exposition. Figs 6 and 7C show the fractions of viable cells quantified with BioFil-
mAnalyzer software on microphotographs with overlapped green and red channels. Here, the

best fit of manual and automatic count of either live or dead cells was observed for the analysis

threshold T = 30 (Fig 7). In contrast to bacterial cells, the accuracy was lower (L2 over 0.80),

probably, because of the discrepancies in the cell sizes and uneven staining of cells. In contrast,

when the software performance was evaluated on a series of 87 randomly chosen images (Fig

7D–7F), the automatic estimation of live/dead fractions fits with manual one with high confi-

dence level (L2 equals 1.0, see Table 3). This effect could be attributed to larger effective sizes

and thus also smaller average number of cells in each field of view for eukaryotic cells com-

pared to bacterial cells that in turn requires analyzing more images in order to obtain similar

statistics.

To verify the accuracy of the overall procedure including both microscopic imaging and

automatic cells counting, treated cells were detached from the wells by trypsin treatment,

stained with DioC6 and ethidium bromide and aliquoted. One half of the sample was analyzed

with flow cytometry to evaluate the fraction of necrotic cells, while the other half was subjected

to microscopy and quantified by BioFilmAnalyzer. Fig 8 shows fractions of non-viable cells in

4 independent repeats quantified with flow cytometry versus automatic analysis of series of 10

microphotographs from each sample with separate green and red channels (representative

examples of images are shown in the Fig 8).

Quantification of confocal images with Z-stacks

Finally, we used the same algorithm and software to analyze confocal images with Z-stacks,

including 4 confocal images of S. aureus cells treated with different antimicrobials from our

recent work [22, 23]. For that, we analyzed the raw series of 2D images that were used previ-

ously to reconstruct 3D images in [22, 23], where the fraction of live/dead cells were evaluated

by both automatic and manual expert counting (Fig 9).

Typically 2d images obtained by confocal layer scanning technique are lower quality in

comparison with single layer fluorescent microscopic images considered above. There are gen-

erally several contributing effects including defocus aberration of the cells that appear close

but nevertheless displaced against the focal point due to the limited depth of focus as well as

motion blur due to the sample shift during operation. Both effects lead to blurred images, the

Table 2. Regression coefficients k, the coefficients of determination R2 and the accuracy coefficient L2 indicating the correspondence between the automatic and the

manual counting for the B.subtilis live/dead ratios on fluorescent images.

12 images 50 images

Threshold k R2 L2 k R2 L2

15 1,02 0,92 1,00 1,08 0,72 0,97

20 1,09 0,93 0,97 1,11 0,74 0,95

30 1,07 0,91 0,98 1,17 0,75 0,90

45 1,10 0,84 0,96 1,14 0,74 0,93

60 1,14 0,90 0,93 1,10 0,74 0,96

https://doi.org/10.1371/journal.pone.0193267.t002
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problem that is partially resolved in the 3d reconstruction algorithms by averaging or smooth-

ening filters that improve the overall image quality at the cost of its effective resolution. The

question is, whether raw 2d images obtained by confocal layer scanning technique can be used

Fig 6. Evaluation of the Caco-2 non-viable cells fraction by using BioFilmAnalyzer software exemplified for 12 microscopic images. The percentage of red-stained

cells quantified by the BioFilmAnalyzer software is shown in each panel.

https://doi.org/10.1371/journal.pone.0193267.g006
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for the cell sub-population quantification using our algorithm, and whether this would require

some preliminary filtering to reduce blurring effects. For the latter, two standard image filter-

ing techniques, namely the Gaussian and the Sobel filters have been tested. The Sobel filtering

Fig 7. Caco-2 cells count and live/dead ratio dependence on the image analysis threshold T. Full lines show the linear regression lines, while dashed line shows the

ideal counting line as determined by the manual analysis performed by several experts in visual microscopic image analysis. Panels A-C show data for the 12 images

presented in Fig 6. Panels D-F show data for the 87 microscopic images taken randomly from different experiments with various imaging conditions.

https://doi.org/10.1371/journal.pone.0193267.g007

Table 3. Regression coefficients k, the coefficients of determination R2 and the accuracy coefficient L2 indicating the correspondence between the automatic and the

manual counting for the Caco-2 live/dead ratios on fluorescent images.

12 images 87 images

Threshold k R2 L2 k R2 L2

15 nd nd nd nd nd nd

20 0,86 0,69 0,80 1,03 0,73 1,00

30 0,92 0,53 0,93 1,00 0,76 1,00

45 0,88 0,46 0,83 0,92 0,71 0,97

60 0,87 0,40 0,81 0,99 0,73 1,00

70 0,91 0,54 0,92 0,97 0,71 1,00

https://doi.org/10.1371/journal.pone.0193267.t003
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aims on edge detection in the images using a discrete differentiation operator which computes

an approximation of the gradient of the image intensity function. Therefore this kind of image

preparation might be helpful to make edges of cells more stepwise and thus to reduce the

dependence of the performance of the cell counting algorithm on the choice of the threshold

Fig 8. The fraction of the non-viable eukaryotic cells quantified by flow cytometry versus automatic analysis with BioFilmAnalyzer.

https://doi.org/10.1371/journal.pone.0193267.g008
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that may then appear anywhere within this step. Alternatively, blurring may be treated as effec-

tive additive noise that could be reduced with simple Gaussian filter. Exhibiting a Gaussian

impulse response, such filter decreases the overall noise level in the image.

Fig 10 shows an example of 2d confocal Z-stack microscopic image before and after Gauss-

ian and Sobel filtering (upper panel) and the regression functions of automatic cells count at

different thresholds as a function of the manual cell count (lower panel) before and after pre-

liminary filtering of the images (obtained for the entire cohort of studied confocal images).

The Fig 10 shows that, while the image appears visually less blurred, there is no significant

improvement on cells fraction count according to the regression analysis results (see also

Table 4). Furthermore, preliminary filtering leads to the overestimation of the red-stained cell

count in some samples analyzed, this way also corrupting the overall sub-population fraction

estimates. Therefore, we find that due to the general robustness of the sub-population fraction

estimation against moderate variations of the threshold T (and thus also its relation with the

quantile of the image color distribution), 2d images obtained by confocal layer scanning tech-

nique can be analyzed without preliminary image filtering.

Adjustment of the threshold and single cell size balance

As we have already mentioned above, typical single cell sizes vary for different thresholds T,

and thus the choice of these parameters should be properly balanced. Therefore, in general, for

every chosen single cell size range there is an optimal threshold value T, and vice versa. Our

results indicate that moderate threshold imbalance does not affect the overall statistics signifi-

cantly, especially when averaging over large image series. However, in some cases adaptive

threshold adjustment is nevertheless required, either for overcoming significant imbalance

between different color channels or for the comparison between series of images obtained

under considerably different staining and imaging conditions which are unavoidable, such as

independent experimental repeats obtained in different time frames, with modified staining

agent, different imaging settings, replaced lightning or optical components and so on.

To overcome this issue, we next suggest a simple adaptive threshold adjustment procedure

that allows for an easy choice of the threshold value T for particular single cell sizes based on a

single objective criterion. This procedure is performed once before running the analysis of a

new image series given that the image parameters differ considerably from the previously

Fig 9. Automatic vs manual cell count cell count and live/dead ratio dependence for different image analysis thresholds T. Full lines show the linear regression

lines, while dashed line shows the ideal counting line as determined by the manual analysis performed by several experts in visual microscopic image analysis. Four

different confocal images containing between 12 and 23 Z-stacks each were taken for the analysis.

https://doi.org/10.1371/journal.pone.0193267.g009
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analyzed one. The entire procedure is based on the multi-threshold analysis and calculation of

empirical histograms of isolated objects sizes for every tested threshold value. These histo-

grams are exemplified in Figs 11–13 for three representative microscopic images of both coccal

and rod bacterial cell morphologies as well as for the eukaryotic cell lines, with raw images

shown in panels A of respective figures. In Figs 11–13 panels B and C show the isolated objects

belonging to a given size range after applying threshold T and cell size adjustment exemplified

Fig 10. The live/dead ratio dependencies for different image analysis thresholds T. Full lines show the linear regression lines, while dashed line shows the ideal

counting line as determined by the manual analysis performed by several experts in visual microscopic image analysis. Four confocal images containing between 12 and

23 Z-stacks were taken for the analysis, before and after being subjected to either Gaussian or Sobel filtering, as indicated.

https://doi.org/10.1371/journal.pone.0193267.g010

Table 4. Regression coefficients k, the coefficients of determination R2 and the accuracy coefficient L2 indicating the correspondence between the automatic and the

manual counting for the S.aureus live/dead ratios on confocal images.

No filters Gaussian Sobel

Threshold k R2 L2 k R2 L2 k R2 L2

15 1,01 0,81 1,00 1,02 0,85 1,00 1,08 0,87 0,98

20 1,03 0,81 1,00 1,04 0,83 0,99 1,10 0,84 0,97

30 1,11 0,82 0,95 1,15 0,76 0,92 1,17 0,77 0,92

45 1,14 0,77 0,93 1,25 0,71 0,78 1,24 0,79 0,87

60 1,14 0,68 0,93 1,32 0,60 0,69 1,30 0,78 0,78

https://doi.org/10.1371/journal.pone.0193267.t004
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Fig 11. Adjustment of the threshold and single cell size balance for S. aureus. (A)—the raw image, (B) and (C)–isolated objects belonging to a given size range

between 301 and 600 pixels, exemplified for the red (with T = 140) and the green (with T = 45) color channels, respectively. (D, F) the black curve gives the total area

above the threshold T, which is the sum of the lower (colored) curves that represent the total area of isolated objects within a given size range for the red (D) or the green

channel (F). (E, G) the black curve gives the total count of objects that appear isolated after threshold-based filtering for any given threshold value T, which is the sum of

the lower (colored) curves that represent the total count of isolated objects within a given size range for the red (D) or the green channel (F).

https://doi.org/10.1371/journal.pone.0193267.g011
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Fig 12. Adjustment of the threshold and single cell size balance for B. subtilis. (A)—the raw image, (B) and (C)–isolated objects belonging to a given size range

between 1001 and 2000 pixels, exemplified for the red (with T = 70) and the green (with T = 100) color channels, respectively. (D, F) the black curve gives the total area

above the threshold T, which is the sum of the lower (colored) curves that represent the total area of isolated objects within a given size range for the red (D) or the green

channel (F). (E, G) the black curve gives the total count of objects that appear isolated after threshold-based filtering for any given threshold value T, which is the sum of

the lower (colored) curves that represent the total count of isolated objects within a given size range for the red (D) or the green channel (F).

https://doi.org/10.1371/journal.pone.0193267.g012

Simple tool for the quantitative analysis of fluorescent images

PLOS ONE | https://doi.org/10.1371/journal.pone.0193267 May 1, 2018 19 / 24

https://doi.org/10.1371/journal.pone.0193267.g012
https://doi.org/10.1371/journal.pone.0193267


Fig 13. Adjustment of the threshold and single cell size balance for eukaryotic cells. (A)—the raw image, (B) and (C)–isolated objects belonging to a given size range

between 1001 and 2000 pixels, exemplified for the red (with T = 15) and the green (with T = 25) color channels, respectively. (D, F) the black curve gives the total area

above the threshold T, which is the sum of the lower (colored) curves that represent the total area of isolated objects within a given size range for the red (D) or the green

channel (F). (E, G) the black curve gives the total count of objects that appear isolated after threshold-based filtering for any given threshold value T, which is the sum of

the lower (colored) curves that represent the total count of isolated objects within a given size range for the red (D) or the green channel (F).

https://doi.org/10.1371/journal.pone.0193267.g013
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for the red and green color channels, respectively. In panel D, the upper (black) curve gives the

total area above the threshold T, which equals the sum of the lower (colored) curves represent-

ing the total area of isolated objects within a given size range. Similarly, in panel E the upper

(black) curve gives the total count of objects that appear isolated after threshold-based filtering

for any given threshold value T, which equals the sum of the lower (colored) curves represent-

ing the total count of isolated objects within a given size range. Similar quantities for the green

color channel are shown in panels F and G, respectively. These histograms are in direct corre-

spondence to the key quantities used in our algorithm, since the ratio of the respective color

curves gives us the effective single cell size, while the black curve in panel D divided by this

effective cell size gives us the effective cell count. By comparing panels D vs E as well as F vs G

one can see that the histograms exhibit similar shapes, thus indicating that their ratio is rela-

tively stable, again confirming the robustness of our algorithm against moderate threshold

imbalance. Furthermore, when black curves for both color channels (red and green) depicted

in panels D and F decrease with increasing threshold T by the same functional form, such that

their ratio is roughly constant at least within a certain threshold range, any chosen threshold T
within this range would, by definition, lead to the same relative fractions of counted cells.

Moreover, for a series of images, it is sufficient that this condition is fulfilled for all analyzed

images in average. This shows explicitly why in the previous tests we obtained similar results

for relative quantities for a wide range of threshold values T, while individual cell counts were

in some cases overestimated for small and underestimated for large thresholds T, in compari-

son with manual count. Prominent exceptions from this rule can be observed in Fig 11, where

pronounced color imbalance can be observed. In contrast, Figs 12 and 13 show that even

under moderate color imbalance the above conditions are met to a certain extent.

The Figs 11–13 also show that the overwhelming majority of isolated objects are small

objects, which are below 300 pixels for coccal cells and below 1000 pixels for both rod and

eukaryotic cells, respectively. Let us next focus on Fig 11D and 11E. In a marked contrast to

the red curve for the small objects, histograms for larger sizes exhibit characteristic maxima,

which are most pronounced in the green curve for the objects of sizes between 301 and 600

pixels. Assuming that the most common objects of similar size in the image except small noise

bursts are single cells, we can choose the optimized threshold from the respective histogram

maximum, which is around T = 140. For larger sizes, the blue histogram splits into two charac-

teristic regimes with local maxima at around T = 55 and 130, respectively. This shows strong

non-homogeneity of the objects that belong to this size that is untypical for single coccal cells,

indicating that these are likely cell clusters. For larger sizes, the histograms of object counts are

well below the green curve, indicating that objects of these sizes are less common than typical

single cells, and significantly fluctuating due to the lack of statistics. Thus we next set the

threshold T = 140 and size range 301. . .600 and obtain the results of single cell selection

depicted in panel B of Fig 11.

Now similar procedure can be easily repeated for the green channel. As one can see clearly

from Fig 11F and 11G, while the green curve is again above the curves for larger sizes, due to

the considerably lower intensity of the green channel, the optimal threshold values is now

around T = 45. After the corresponding threshold adjustment, we obtain the typical examples

of single cells depicted in Fig 11C.

Similar conclusions can be drawn from the analysis of Figs 12 and 13 for rod and eukaryotic

cells, respectively. In both cases, following the same criterion based on finding the maximum

of the histogram for the most common objects leads to reasonable selection of typical single

cells, as indicated by panels B and C for the red and green channels, respectively.

Therefore, the suggested approach allows dealing with images obtained with considerable

color imbalance as well as comparison of repeats obtained under different staining and
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imaging conditions that are sometimes unavoidable in routine lab practice, due to equipment

and reagent aging, repairs, and replacements. Since all further analysis is based on the effective

number of cells that is determined independently for each color channel with its own opti-

mized threshold and single cell size values, the above adjustments do not affect any further

stages of analysis.

Conclusion

To summarize, our results indicate that the sub-population fraction estimates obtained from

fluorescent-stained cells imaging data by BioFilmAnalyzer are very close to the results obtained

by other techniques such as expert manual counting and flow cytometry. The two-step algo-

rithm implemented in the BioFilmAnalyzer that normalizes the stained image area in the units

of the effective single cell size that are determined following the suggested objective criterion

while remaining under manual consistency control by the investigator performs largely inde-

pendently of the cell shape and imaging conditions providing feasible results for cells aggre-

gated in clusters. Moreover, it requires neither preliminary preparation nor filtering of raw

images.

Thus, we suggest that the proposed algorithm implemented as the BioFilmAnalyzer software

can be used for numerous applications. First, preliminary evaluation of cell counts and live/

dead ratios can be quickly obtained without expertise in image processing. Second, the analysis

of surface-adherent bacterial or eukaryotic cells without their resuspension and maintenance

of the native distribution pattern on the surface is possible. Third, the quantification of cellular

sub-populations from 2d confocal layer images is also possible. Fourth, the software allows

quantification of the cells sub-populations expressing fluorescent proteins during long-term

incubation. Finally, because no further user intervention is required after few initial adjust-

ment and cross-check procedures which usually take a couple of minutes using few representa-

tive images, further processing can be done over coffee-break by automated analysis of a series

consisting up to 100 images.

We believe that the suggested algorithm and software would be useful in saving time and

efforts in cells sub-population quantification from fluorescent microscopy data that is com-

monly required in various biomedical, biotechnological and pharmacological studies, espe-

cially for the analysis of biofilm-embedded cells where the performance of conventional

techniques based on cell counting or flow cytometry is strongly limited. Both the algorithm

and the BioFilmAnalyzer can be freely downloaded at https://bitbucket.org/rogex/

biofilmanalyzer/downloads/, utilized and redistributed.
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