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Abstract

The primate visual system has an exquisite ability to discriminate partially occluded shapes. 

Recent electrophysiological recordings suggest that response dynamics in intermediate visual 

cortical area V4, shaped by feedback from prefrontal cortex (PFC), may play a key role. To probe 

the algorithms that may underlie these findings, we build and test a model of V4 and PFC 

interactions based on a hierarchical predictive coding framework. We propose that probabilistic 

inference occurs in two steps. Initially, V4 responses are driven solely by bottom-up sensory input 

and are thus strongly influenced by the level of occlusion. After a delay, V4 responses combine 

both feedforward input and feedback signals from the PFC; the latter reflect predictions made by 

PFC about the visual stimulus underlying V4 activity. We find that this model captures key 

features of V4 and PFC dynamics observed in experiments. Specifically, PFC responses are 

strongest for occluded stimuli and delayed responses in V4 are less sensitive to occlusion, 

supporting our hypothesis that the feedback signals from PFC underlie robust discrimination of 

occluded shapes. Thus, our study proposes that area V4 and PFC participate in hierarchical 

inference, with feedback signals encoding top-down predictions about occluded shapes.
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1 Introduction

In natural scenes, objects rarely appear in isolation; rather, animals often have to 

discriminate and recognize partially occluded objects. While recognition under occlusion is 

difficult for even the best computer vision system, animals seldom have trouble. But the 
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neural basis of this capacity is poorly understood. Here, we study the physiological 

underpinnings of a special case of the general problem, where occluders can be detected as 

distinct stimulus features.

Feedback projections from higher cortices are hypothesized to be important for successful 

recognition of occluded objects (Rust & Stocker, 2010; Gregoriou et al., 2014), and there are 

abundant feedback connections in the visual stream. Despite this, models of object 

recognition are typically hierarchical feedforward circuits (Fukushima, 1980; Riesenhuber & 

Poggio, 1999; Serre et al., 2007; Cadieu et al., 2007; Yamins et al., 2014). This is partly 

because of the complexity of including feedback signals, but also because little is known 

about where the relevant feedback signals originate, where they terminate in visual cortex, 

and how they contribute to recognition. Developing a computational framework explaining 

how feedback facilitates shape recognition under occlusion, therefore, is a prominent 

challenge for visual neuroscience.

Recent experimental results provide key insights into how interactions between area V4, a 

fundamental stage in the primate shape processing pathway (Roe et al., 2012; Pasupathy & 

Connor, 1999, 2001), and the prefrontal cortex, important for the control of complex 

behavior (Miller & Cohen, 2001), may underlie the ability to recognize partially occluded 

objects (Kosai et al., 2014; Pasupathy et al., 2015; Fyall et al., 2017). Specifically, in 

monkeys trained to discriminate pairs of shapes under varying degrees of occlusion, 

dynamics of V4 and PFC activity suggest that feedback signals from PFC to area V4 may 

serve to discount the effect of occlusion on the responses of V4 neurons –thereby increasing 

shape selectivity. This raises the question of how the feedback signals in V4-PFC circuitry 

perform the computation necessary for shape recognition. In this paper, we propose and test 

the hypothesis that this occurs via a hierarchical predictive coding. With the proposed model 

based on predictive coding, we successfully explain the dynamics of a subpopulation of 

neurons in V4 that exhibit delayed peak of responses (Pasupathy et al., 2015; Fyall et al., 

2017), presumably induced by feedback signals from PFC.

Predictive coding has been proposed as a method to create efficient neural codes, and has 

successfully described neural responses in a variety of different sensory systems (Bogacz, 

2015; Bastos et al., 2012; Friston & Kiebel, 2009a, b; Srinivasan et al., 1982; Rao & Ballard, 

1999; Spratling, 2016; Rao, 1997, 1999, 2004, 2005; Lee & Mumford, 2003; Yuille & 

Kersten, 2006). Notably, the predictive coding framework reproduces center-surround 

antagonism in retina (Srinivasan et al., 1982) and endstopping effects in V1 (Rao & Ballard, 

1999). In these studies, feedforward signals from each cortical area represent the residual 

errors between the feedback predictions and the encoding expectation. This interpretation of 

feedforward signals, however, has met the criticism (Koch & Poggio, 1999) that it implies 

reduced firing when familiar sensory inputs are encountered, differing from the common 

view in which sensory neurons respond strongly to preferred features. Here, we introduce a 

novel implementation of predictive coding, where the responses in V4 and PFC correspond 

to their most likely (or optimal) values given the stimulus and a hierarchical representation 

of its likelihood. Furthermore, the hierarchical inference is implemented in two steps, 

initially reflecting only the feedforward sensory signals and later integrating the feedback 

predictions, to explain the dynamic shape selective responses in V4.
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In addition to assigning an algorithmic role to the feedback signals, our model makes further 

predictions on the structure of the network, representation of the stimuli, and prior 

expectations encoded in V4 and PFC. Previous studies have shown that shapes can be 

discriminated based on V4 activity at the population level (Meyers et al., 2008; Pasupathy & 

Connor, 2002), and shape identity information is already available at the level of V4. 

However, in our model feedback predictions effectively re-map the population responses and 

amplify the shape identity information that are reduced by partial occlusion. Furthermore, 

our model predicts that such amplification of the shape identity information following 

feedback predictions occurs only when the occlusion is salient and distinct from the shape.

In sum, our model suggests that feedback signals to V4 during the representation of 

occluded shapes can be interpreted in the context of predictive coding. These results shed 

light on how prior expectation contribute to the recognition of complex images in V4 and 

higher cortical areas.

2 Methods

2.1 Experiments

Experimental procedures are described in detail by Kosai et al. (2014); Fyall et al. (2017), 

and are only briefly outlined in this section to provide the background.

Animals were trained on a sequential shape discrimination task, where two stimuli were 

presented in sequence and the animal had to report whether they were the same or different 

with a rightward or a leftward saccade, respectively. The second stimulus in the sequence 

was presented in the receptive field of the V4 neuron under study and was partially 

occluded. During recordings in area V4, all task details were customized to the preferences 

of the single neuron under study. Specifically, one of the two discriminanda was a preferred 

shape that elicited strong responses from the neuron while the other was a non-preferred 

shape. Both shapes were presented in a preferred color for the cell and the occluding dots 

were in a non-preferred color so they provided only a modulatory influence. For recordings 

in the PFC, we studied many neurons simultaneously and did not customize stimulus shape 

or color to individual neuronal preferences as is customary in the field. Each day the 

experimental session began as follows. We chose two stimuli to serve as the discriminanda. 

This was followed by two phases. First, during the training phase, animals performed the 

sequential discrimination task with the unoccluded versions of the discriminanda. This 

typically included 20 attempts and was to ensure that the the unoccluded versions of the 

discriminanda were discriminable in the periphery. This was followed by the test phase 

during which the discriminanda were occluded to different levels with a field of randomly 

positioned dots. The level of occlusion was titrated by varying dot diameter while the 

number of dots was held constant, and was quantified as the percentage of the shape area 

that remained visible (% visible area).

All animal procedures conformed to NIH guidelines and were approved by the Institutional 

Animal Care and Use Committee at the University of Washington.

Choi et al. Page 3

Neural Comput. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 Coding assumptions

We explain the response dynamics of V4 and PFC neurons during the shape discrimination 

task by building a computational model based on a few coding principles, which we 

introduce here.

First, we assume that average firing rates of the neuronal populations recorded in 

experiments reflect the most likely representation of the neuronal responses given the input 

visual stimulus and a specific hierarchical model of the responses that we define below. 

Thus, assuming the sensory system seeks to infer the most likely representation of neuronal 

responses {r1, …, rn} of hierarchical areas ranging from the lowest area 1 to the highest area 

n, we simply find the set of responses that maximizes the posterior probability p(r1, …, rn|κ), 

where κ represents the sensory input. We refer to these as the optimal firing rates.

Second, the model is constructed based on the hierarchical predictive coding principle. In 

predictive coding (Rao & Ballard, 1999; Friston & Kiebel, 2009a; Bogacz, 2015), feedback 

from higher cortical areas is interpreted as a prediction about activities in lower cortical 

areas. In the lower cortical areas, bottom-up sensory signals are combined with these top-

down predictions. With the predictions and the sensory inputs thus combined, probability 

distributions of the neural responses are constructed based on hierarchical Bayesian 

inference (Rao & Ballard, 1999; Bogacz, 2015; Lee & Mumford, 2003; Yuille & Kersten, 

2006). Under this assumption, combined with predictive coding, neuronal activities depend 

on the activities of the next higher area, but are conditionally independent of activities in 

other cortical areas. In other words, the neurons in area i + 1, whose activity is denoted as ri

+1, make the ‘top-down’ prediction Pred(ri+1) of the neuronal activity ri in area i. The noise 

ηi characterizing the differences between the actual neuronal response ri and the prediction 

made by the next higher layer Pred(ri+1), is given as

ηi = ri − Pred(ri + 1) . (1)

We assumed the noises to have a distribution gi(ηi) with zero mean. This leads to p(ri|ri+1), 

the distribution of the neuronal activity ri in area i given the next level activity ri+1, having its 

mean at the top-down prediction Pred(ri+1).

The posterior probability of the response representation across all levels given the sensory 

stimulus κ therefore factors as

p(r1, …, rn ∣ κ) = ν · p(κ ∣ r1, …, rn)p(r1, …, rn)
= ν · p(κ ∣ r1)p(r1 ∣ r2)…p(rn − 1 ∣ rn)p(rn),

(2)

where ν is a normalization constant.

Above we described the general and classical framework for hierarchical representation of a 

stimulus κ via a sequence of firing rates. In summary, we assume that the brain aims to have 
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neuronal activity in every layer get as close as possible to the prediction made by the 

responses of the next higher layer, where the discrepancy is given by a noise term ηi. Then, 

the neural firing rates adjust to those that are most consistent, i.e., most likely, given the 

stimulus κ. We next describe the specific form of the representation that we use here.

2.3 Model architecture

Our model is composed of two layers, a V4 layer and a PFC layer (Fig. 1A). We designate 

the higher cortical area as PFC based on the experimental evidence indicating feedback from 

PFC as a likely precursor of the delayed responses in V4 (Pasupathy et al., 2015; Fyall et al., 

2017) (see Results). Furthermore, previous experimental studies have found anatomical and 

physiological evidence for direct feedforward (Ninomiya et al., 2012) and feedback (Brabas 

& Mesulam, 1985; Ungerleider et al., 2008) connections between V4 and PFC in the primate 

brain.

The V4 layer is composed of three units: two that are selective for each of the two visual 

shapes that are being discriminated, namely, shape A and shape B (Fig. 1A, V4 unit 1 

(green) and V4 unit 2 (blue), respectively), and a third V4 unit that responds selectively to 

the occluder-specific features, such as color (Fig. 1A, V4 unit 3 (red)). Shape selectivity has 

been previously demonstrated in area V4 (Pasupathy & Connor, 1999). While the existence 

of V4 cells that are selective exclusively for occluders has not been confirmed 

experimentally, a recent experimental study has found such strictly occluder-selective cells 

in the IT cortex (Namima & Pasupathy, 2016). Furthermore, we do not require that neurons 

corresponding to V4 unit 3 would be exclusively selective for occluders independent of other 

stimulus features – rather, they could respond preferentially to any occluder-specific 

features. The V4 cells that preferentially respond to the color of the occluders are a good 

candidate, as in the experiment occluders were presented in a different color than the shape 

or the background. Supporting this, many V4 neurons are known to have color-selectivity 

(Zeki, 1973; Schein & Desimone, 1990; Bushnell et al., 2011a; Bushnell & Paupathy, 2012), 

and many are sensitive simply to stimulus area rather than shape (Eghbali et al., 2016). 

Indeed, in Fig. S1B, we present example V4 cells that respond strongly to presence of 

occluders regardless of whether these occluders are presented with the preferred or the non-

preferred shape. Each V4 unit can be interpreted as a sub-population of V4 neurons with 

similar tuning properties.

The model includes two PFC units, which represent two distinct neuronal populations in 

PFC. While the roles of PFC neurons are not well-understood, PFC is believed to be 

involved in planning complex behavior and tasks involving short-term memory (Miller & 

Cohen, 2001). Experimental recordings (Pasupathy et al., 2015; Fyall et al., 2017) from PFC 

also show that a subset of PFC neurons have mild shape selectivity, while also responding 

strongly to occluders.

The sum of PFC activities weighted by the connection weights between V4 and PFC units 

(Fig. 1A) is represented as the feedback signal to V4 units. The initial feedback connection 

weights between V4 units and PFC units are chosen so that the PFC units show appropriate 

selectivity after training. Namely, one of the PFC units in the model is designated to be 
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weakly shape A-selective and the other PFC unit is weakly shape B-selective. Both PFC 

units respond strongly to partially occluded shapes, and only weakly to unoccluded shapes.

In this way, PFC neurons of the model respond strongly to both the task-relevant visual 

features (shape identity) and nuisance variables (occlusion level), while each of V4 

populations responds preferentially to single feature of the input visual stimulus. Thus, 

although the V4 responses are already modulated by both shape and occlusion level, the 

signals become even more mixed as they go up in the hierarchy. Previous studies have 

shown that such mixed selectivity in the PFC plays an important computational role in a 

high-dimensional population encoding of task-relevant information (Rigotti et al., 2013; Fusi 

et al., 2016).

2.4 Probabilistic network model

As we detail further below, the responses of the neuronal units evolve toward values that 

maximize the posterior probability of these responses given the input shape stimulus. In 

other words, the neuronal activities, and synaptic weights at a slower time scale, are found 

by estimating the most likely values given the shape stimulus.

In our model, visual inputs are simplified and represented by κ, which includes the shape 

identity s (shape A or shape B, s ∈ {A, B}) and the degree of occlusion c (c ∈ [0, 1]), so that 

κ = (s, c). We assume that the V4-PFC circuitry builds a two-level hierarchical description of 

the input stimulus κ, via firing rates of V4 (rv4) and PFC neurons (rpfc). As it is assumed 

that each successive random variable is conditionally dependent only on the random variable 

in the adjacent higher level, the posterior probability of the V4 and PFC responses given κ 
factors as

p(rv4, rpfc ∣ κ) = h0 · p(κ ∣ rv4, rpfc)p(rv4, rpfc)
= h0 · p(κ ∣ rv4, rpfc)p(rv4 ∣ rpfc)p(rpfc)
= h0 · p(κ ∣ rv4)p(rv4 ∣ rpfc)p(rpfc)
= h · p(κ ∣ rv4)p(rv4 ∣ rpfc),

(3)

where h0 and h are constants. The first equality comes from Bayes’ theorem, with a 

normalization term h0. The second equality is simply a property of joint probability. The 

third equality is based on the assumption that the probability distribution is set up 

hierarchically. Based on the assumption of spatially Markovian inference (Lee & Mumford, 

2003; Rao & Ballard, 1999; Friston & Kiebel, 2009a; Bogacz, 2015), we made a 

simplification p(κ|rv4, rpfc) = p(κ|rv4) in Eq. 3. Finally, a flat prior on the PFC firing rates is 

assumed, which is embedded in the constant h on the last line of Eq. 3, and therefore, the 

posterior probability of the neuronal responses is

p(rv4, rpfc ∣ κ) = h · p(κ ∣ rv4)p(rv4 ∣ rpfc) . (4)
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The firing rates of the V4 and PFC units are given as

rv4 =

rv4, 1
rv4, 2
rv4, 3

, rpfc =
rpfc, 1
rpfc, 2

, (5)

where rv4,1 and rv4,2 represent the average firing rates of the shape-selective V4 neuronal 

populations (preferring shape A and shape B, respectively), and rv4,3 is the average firing 

rate of the occluder feature-selective V4 population.

We first describe p(κ|rv4) and how V4 firing rates depend on the input stimulus κ. We define 

μ as the bottom-up representation of the stimulus

μ =

μ1
μ2
μ3

. (6)

The difference between this bottom-up representation and the V4 responses rv4 gives the 

noise term η1,

η1 = μ − rv4, (7)

which has a Gaussian distribution with zero mean and diagonal covariance matrix

∑1 =

σ1
2 0 0

0 σ2
2 0

0 0 σ3
2

. (8)

The distribution p(κ|rv4) is the likelihood of the V4 neuronal activities given the sensory 

input κ. Assuming a flat prior on rv4, p(κ|rv4) ∝ p(rv4|κ). Thus,

p(rv4 ∣ κ) = N(rv4; μ, ∑1) . (9)

The mean μ and the covariance matrix Σ1 are determined by the input shape identity s and 

the occlusion level c. Changes in μ and Σ1 describe the sensory-input driven responses of the 
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V4 populations to different shapes under various degrees of occlusion. In other words, for 

each occlusion level and the shape identity, there is a most-likely firing rate of each V4 unit 

given by μ, and that likelihood falls off according to the covariance Σ1.

Here we describe how we modulate μ and Σ1 based on the sensory input κ. Let’s assume the 

animal is presented with shape A as the test shape. With shape A presented, μ1, the Gaussian 

mean of the firing rate distribution of V4 unit 1 in Fig. 1A (the shape A-selective V4 

population), decreases as occlusion c increases (Fig. 1C, green). On the other hand, μ2 of the 

V4 population preferring shape B (V4 unit 2 in Fig. 1A) stays constant at a “baseline” firing 

rate, independent of the change in occlusion level. That is, the V4 unit 2 does not prefer 

shape A, it responds with a low firing rate regardless of the occlusion level (Fig. 1C, blue). 

The standard deviation σ1 of the preferred V4 unit increases as occlusion increases, in order 

to capture the increasing uncertainty of the shape identity under higher degrees of occlusion 

(see Fig. 1C, where the green distribution widens as occlusion increases). The standard 

deviation σ2 of the non-preferred V4 population (V4 unit 2) is assumed to be constant.

A justification for increasing the input variance σ1, but not σ2 with occlusion is as follows. 

These terms represent uncertainty in shape identity signals. We hypothesize that occlusion 

introduces the most uncertainty for neuronal responses to preferred shapes, as randomly 

placed occluders may either hide critical features of the preferred shapes or fail to hide these 

features. In the first case, shape signals will be strongly suppressed; in the second, they will 

be maintained. For non-preferred shapes, which lack critical features, we hypothesize shape 

signals for different occlusion patterns will be less volatile. Supporting this, while random 

placement of occluders may form accidental contours, a previous experimental study in V4 

has shown that responses to preferred contours are suppressed when those contours are 

accidentally formed at the junction between the occluded and occluding objects (Bushnell et 

al., 2011b). Accordingly, the variance σ2 should be roughly constant with added occlusion, 

or if increasing, only by a small amount. In Results, we explore which trends in variances 

are consistent with the data in more detail (Fig. 9).

Finally, for V4 unit 3, the relevant stimuli (occluding dots) are present on every trial but 

slightly shifted in position; as we assume that this unit responds to the presence of occluders 

but not their specific configuration, the variance σ3 is taken to be constant across occlusion 

levels (Fig. 1C, red). As occlusion level increase, μ3 of the occluder-selective V4 population 

(V4 unit 3) also increases.

The dependence of the means and the variances on the occlusion level c was set to be linear: 

μ = μ0 + α · c and Σ1 = Σ0 + β · c with μ0 = [50 20 20]T, α = [−5 0 100]T, Σ0 = I3, and β = 

[5 0 0]T. The slopes (α, β) and the values defining the response distributions when the shape 

is unoccluded (μ0, Σ0) at c = 0, were manually chosen to match the peak firing rates 

observed in experiments. With this choice of α, as occlusion level increases, the peak of the 

response distribution decreases, stays constant at a low baseline firing rate, and increases, for 

V4 unit 1, 2, and 3, respectively. Thus, V4 units 1 and 2 reproduce response patterns of V4 

neurons to preferred and non-preferred shapes under varying degrees of occlusion in 

experiments (Fig. 2; S1A), and unit 3 replicates V4 neurons that respond strongly to 

occlusion (Fig. S1B). The values chosen for β, on the other hand, indicate that ambiguity of 
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the stimulus feature increases only for the test shape preferred V4 unit 1. In this way, the 

input stimuli– shape A and shape B with various degrees of occlusion – are represented by 

the response distributions of three different V4 populations given κ, rather than by using 

actual pixel images.

The second term on the right side of Eq. 4, p(rv4|rpfc), provides the top-down effects on the 

posterior distribution, also described as Gaussian. Here, the mean is the prediction made by 

PFC, u · rpfc, which is the sum of the two PFC population responses weighted by the 

connection weight matrix u. In more general cases, this weighted sum is filtered by a 

nonlinearity f, thus yielding the top-down prediction f(u · rpfc) (Fig. 1B). For the simulations 

in this study, however, the nonlinearity on weighted PFC responses was ignored and the 

predictions were assumed to be linear, i.e., f(u · rpfc) = u · rpfc, as in Rao & Ballard (1999). 

The connection weights between the V4 and PFC neuronal units are given as

u =

u1, 1 u1, 2
u2, 1 u2, 2
u3, 1 u3, 2

. (10)

The difference between u · rpfc, the top-down prediction made by PFC, and the V4 

responses rv4 is then

η2 = rv4 − u · rpfc, (11)

where the noise η2 has a Gaussian distribution with zero mean and covariance matrix Σ2,

∑2 =

σ′1
2 0 0

0 σ′2
2 0

0 0 σ′3
2

. (12)

The distribution of V4 responses given the PFC responses, p(rv4|rpfc), is then

p(rv4 ∣ rpfc) = N(rv4; u · rpfc, ∑2) . (13)

The standard deviation of the response distribution of each V4 unit given the PFC responses 

determines the relative significance of the top-down predictive contribution on shaping the 

V4 responses. Specifically, a smaller standard deviation leads to smaller noise terms, forcing 

closer matches between PFC and V4 responses. These standard deviations were chosen as σ
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′1 = 10, σ′2 = 10, and σ′3 = 1. Thus, the top-down component is more strongly emphasized 

for V4 unit 3, the V4 neuronal population selective for occluders. We found that such 

emphasis on the predictive component for the occluder-selective V4 population was 

necessary to reproduce the experimentally observed PFC response characteristics – an 

increase in PFC responses with a rise in occlusion level (see Results).

Given the visual stimulus κ, the firing rates rv4 and rpfc adjust in order to maximize the 

posterior distribution, namely, p(κ|rv4)p(rv4|rpfc). Maximizing this is equivalent to 

minimizing its negative logarithm, which is defined as the cost function E,

E = (rv4 − μ)T∑1
−1(rv4 − μ) + (rv4 − u · rpfc)

T∑2
−1(rv4 − u · rpfc) . (14)

Note that this cost function is the sum of the squared error η1
Tη1 between the V4 responses 

and the sensory-input imposed representation, and the squared error η2
Tη2 between the V4 

responses and the top-down prediction made by PFC, weighted by their inverse variances.

The optimal “parameters” – the neuronal responses and the connection weights – are thus 

found by minimizing this cost function E with respect to the parameters rv4, rpfc, and u. The 

initial V4 responses in experiments, that presumably depend only on the feedforward 

sensory input, are found by minimizing only the first term of Eq. 14. The initial responses 

are therefore equal to the sensory-driven representation μ. However, the delayed V4 

responses, which we hypothesize to depend on both the feedfoward sensory input and the 

feedback prediction, are found by minimizing the entire cost function Eq. 14.

2.5 Training protocol: weight adjustment during the preliminary phase

We divide the optimization process into two phases based on the experimental setup: the 

preliminary phase and the test phase. In this section, we discuss how the synaptic weight 

matrix between PFC and V4 is found during the preliminary phase. To find these weights, 

we minimized the cost function E with respect to rv4 and rpfc as well as with respect to the 

connection weight matrix u, over a series unoccluded trials. Then during the test phase, the 

optimal estimates of the neuronal responses to shapes under varying degrees of occlusion are 

determined by minimizing the cost function with respect to rv4 and rpfc, with the connection 

weights fixed at the learned values.

The preliminary phase corresponds to the stage at the beginning of the experiment where the 

animal is exposed to a pair of unoccluded shapes used for the experimental session for ~ 20 

times. We introduced its equivalent in the simulation, during which the cost function E is 

minimized by gradient descent with respect to the firing rates of the V4 units rv4 and PFC 

units rpfc, as well as the connection weight matrix u. During this phase, unoccluded shape A 

and shape B are randomly chosen and used as inputs to the model for up to 30 trials.

The optimal estimates of rv4, rpfc, and u are obtained by performing gradient descent on E 
with respect to these parameters at different learning rates:
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drv4
dt = − kr

∂E
∂rv4

drpfc
dt = − kr

∂E
∂rpfc

du
dt = − ku

∂E
∂u .

(15)

The learning rate of u was a significantly smaller value ku = 0.001, compared to that of rv4 

and rpfc, which was kr = 0.1. This models the relatively faster dynamics of firing rates and 

slower dynamics of synaptic plasticity. For each selected shape, we carried out gradient 

descent either until the firing rates reach steady states after a minimum 20 iterations, or until 

the iteration exceeds the maximum of 500 iterations. While rv4 and rpfc rapidly converge to 

a fixed point for each of the sampled shapes, the connection matrix u gradually converges 

over the course of multiple samples of shape A and B. In this way, the weight matrix u is 

tuned over the course of the preliminary phase, which corresponds to the animal’s 

familiarization with the pair of the shapes at the beginning of the experiment.

We set initial weights for u1,2 and u2,1 smaller than the initial values of other connection 

weights, to slightly bias one of the PFC populations (PFC unit 1) to be shape A-selective and 

the other (PFC unit 2) to be shape B-selective.

We acknowledge a limitation of the gradient descent method on E in Eq. 15, which is that it 

requires nonlocal computation. In other words, the activities and the synaptic strengths of all 

the neuronal units in the system must be known in order to take a gradient descent step, a 

requirement that is not physiologically realistic. This issue also exists in previous models of 

predictive coding and sparse coding in the visual system (Rao & Ballard, 1999; Olshausen & 

Field, 1996, 1997), as pointed by Bogacz (2015); Zylberberg et al. (2011). While we do not 

pursue this matter further here, we note that Zylberberg et al. (2011) shows that in the limit 

that the neuronal activity is sparse and uncorrelated, the non-local gradient descent rule is 

approximately equivalent to a synaptically local rule.

2.6 Optimal stimulus representation during the test phase

Once the weight matrix u has converged over the course of the preliminary phase, it is fixed 

at the learned values during the test phase. The test phase corresponds to the recording 

session where the animal performs the matching task while test shapes with varying degrees 

of occlusion are displayed. We hypothesize that the V4 and PFC recordings from the 

experiment are represented by the average firing rates of the V4 and PFC populations in the 

model network, rv4 and rpfc, that minimize the cost function E. Either shape A or shape B 

can be used as the input to the network. In this paper, however, without loss of generality we 

only show the simulations with shape A as the test shape so that the V4 unit selective for 

shape A (V4 unit 1) is the “preferred” population and the shape B-selective V4 unit (V4 unit 

2) is the “non-preferred” population. The weight matrix u is fixed at the learned values from 

the preliminary phase.
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For each occlusion level, the optimization is carried out in two parts, to reflect the dynamics 

of the V4 responses. The initial responses of V4 neurons observed in experiments are 

compared to the V4 responses rv4 that minimize the first part of the cost function E (Eq. 14), 

namely,

E1 = (rv4 − μ)T∑1
−1(rv4 − μ) . (16)

E1 is simply a weighted difference between the V4 neuronal responses and the V4 responses 

predicted by the bottom-up sensory input. Therefore, rv4 that minimizes E1 are interpreted 

as the V4 responses shaped by only the feedforward inputs.

On the other hand, the delayed responses of V4 neurons, as well as the PFC responses, are 

found by minimizing the entire cost function E (Eq. 14) with respect to rv4 and rpfc. We 

rewrite the full cost function E as E2:

E2: = E = (rv4 − μ)T∑1
−1(rv4 − μ) + (rv4 − u · rpfc)

T∑2
−1(rv4 − u · rpfc) . (17)

E2 includes a term that depends on the difference between rv4 and the top-down predictions 

made by PFC, u · rpfc, in addition to the error term between the rv4 and the V4 responses 

predicted by the input visual stimulus. Therefore, rv4 that minimizes this cost function E2 is 

interpreted as the V4 responses shaped by both the feedforward and the feedback signals. 

This rv4 is compared to the delayed responses in V4 neurons in experiments that we 

hypothesize to be induced by feedback from PFC.

E1 and E2 are minimized using gradient descent and MATLAB fminsearch with respect to 

rv4 and rpfc, starting from the initial value at 10 (spikes/s) for all neuronal units.

3 Results

We first present experimental evidence that supports the hypothesis that feedback signals 

from PFC modulate shape representations in V4 (Experimental evidence for feedback 
signals in area V4). We then compare the outcomes in our probabilistic network model 

(Structure and design of probabilistic network model) to physiology and explain how robust 

shape recognition can be achieved in our model (Two-step inference on neuronal dynamics). 

Subsequently, we identify necessary assumptions on the network structure (Parsimony of the 
network structure) and the signal structure (Structure of inputs to V4; Differential weighting 
of feedforward and feedback inputs) of the model to capture the key trends in the 

experimental results. Finally, using our model, we make predictions on shape selective 

neuronal responses to a new type of reduced stimulus clarity (Model prediction for 
responses to non-salient occlusion, noise, or reduced contrast).
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3.1 Experimental evidence for feedback signals in area V4

Recent experiments demonstrated that neurons in V4 and PFC show strikingly different 

response patterns in monkeys performing a sequential shape discrimination task. 

Specifically, a class of V4 neurons shows evidence of feedback signals from PFC, supported 

by interesting response patterns in these V4 neurons and PFC neurons. Our goal in this study 

is to provide a normative model describing these experimental results.

Fig. 2A shows the response dynamics of an example V4 cell to a preferred shape (left) and a 

non-preferred shape (right). The V4 neuron exhibits two transient peaks when the preferred 

shape was presented, but only one smaller peak for the non-preferred shape. In the initial 

transient at the onset of the preferred shape stimulus, the V4 neuron responded strongly to 

the unoccluded shape (black), and an increase in occlusion weakened the shape selective 

responses (color). While the first peak shows a dramatic dependence on occlusion, the latter 

peak of responses shows a weaker dependence. Fig. 2B shows the averaged responses of the 

V4 neuron during the initial transient (50–125 ms) and the delayed transient (175–250 ms), 

illustrating the differential effects of occlusion on V4 responses over time. The reduced 

effect of occlusion on V4 responses to the preferred shape during the second transient leads 

to enhanced shape selectivity, as previously observed in Pasupathy et al. (2015); Kosai et al. 

(2014); Fyall et al. (2017). Such response patterns were observed in many other V4 neurons 

in experiments. In Fig. S1A, we show a few more example V4 cells which exhibit shape 

selective responses that are less sensitive to occlusion during the delayed response peak.

In contrast to V4 neurons, PFC neurons exhibit one peak, and show strongest responses to 

occluded stimuli and weakest responses to unoccluded stimuli, as shown for an example 

PFC neuron in Fig. 2C (Pasupathy et al., 2015). Fig. 2D shows the time averaged responses 

of the PFC neuron as a function of occlusion level, for both the preferred and the non-

preferred shapes. As occlusion increases, the PFC responses increase, which is the opposite 

trend as for V4. Moreover, the timing of the peak PFC responses is between the initial and 

the delayed transients of V4 responses, consistent with the hypothesis that the PFC 

responses, which arise from feedforward transmission of sensory information, in turn send 

feedback inputs and drive the second peak of responses in V4. These experimental 

observations led us to the hypothesis that the feedback inputs from PFC and other higher 

cortices underlie delayed improvement of shape selective responses under occlusion in V4. 

For more details on the experimental results, see Kosai et al. (2014) and Pasupathy et al. 

(2015).

3.2 Structure and design of probabilistic network model

We sought to understand the response dynamics of V4 and PFC neurons in the context of 

predictive coding, a hierarchical encoding of stimuli widely used to probe interactions of 

lower and higher sensory areas. We first pose a probabilistic network model of the V4-PFC 

circuitry with the presumptive feedback based on predictive coding, and introduce an 

innovation that differentiates our model from previous predictive coding models.

In each layer of our V4-PFC network model, there are distinct units, each of which 

represents a neuronal population with similar tuning properties. The V4 layer is composed 
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of three units which respond preferentially to different features of the visual stimulus (Fig. 

1A): unit 1 to shape A, unit 2 to shape B, and unit 3 to an occluder-specific feature, for 

example the color of the occluders. In PFC, there are two units that respond strongly to 

occlusion, while also exhibiting some degree of shape selectivity. The representation of a 

population of neurons as a single unit is a common simplification but we find that each unit 

replaced by a population of multiple neurons with mild heterogeneity yields qualitatively the 

same response trends as with the single unit model (See Appendix S2).

In the model, V4 receives feedforward sensory inputs and seeks to match the responses 

imposed by the sensory inputs. At the same time, feedback predictions from PFC bias the 

V4 responses. The weighted sums of PFC responses provide top-down predictions 

conditioned on underlying visual stimulus, and are regarded as the feedback from PFC to 

V4. With hierarchical Bayesian inference assumed, the most likely representation of the 

responses is obtained by finding a set of responses that maximize the posterior probability 

given the visual stimulus, which is equivalent to the product of conditional probabilities of 

the neuronal activities given only the activities of the next higher area (See Methods, Eq. 3). 

Note that we are not only finding the optimal responses of V4 units, but also the optimal 

responses of PFC units to minimize the cost function. Therefore, the V4 neuronal responses 

drive the PFC responses while the PFC predictions drive V4 neurons, enacting feedforward 

and feedback connections between V4 and PFC. Here, the visual input to each V4 unit is 

represented as a Gaussian distribution, whose mean and variance change according to the 

shape identity and the occlusion level (Fig. 1C). Similarly, the feedback from PFC to each 

V4 unit is described by a Gaussian distribution with the peak at a sum of the PFC responses 

weighted by the synaptic strengths (Fig. 1B).

In this way, the optimal representation of the neuronal responses integrates both the bottom-

up sensory input and the top-down prediction. This is done by minimizing a cost function 

composed of the difference between the V4 activities and the top-down predictions as well 

as the difference between the V4 activities and the V4 responses predicted by the sensory 

input, with each term inversely weighted by its respective variance (See Methods, Eq. 14). 

We compare this optimal representation directly to the neuronal responses in experiments; 

this differs from previous studies (Rao & Ballard, 1999; Srinivasan et al., 1982) where the 

residual error between the prediction and the neuronal activity was associated with 

physiologically measured responses. With this reformulation, neural activity conveys both 

the sensory input and the internal prediction, preventing the situation in original 

implementations of predictive coding in which neurons have depressed activity when 

familiar stimuli are presented regardless of the sensory tuning properties.

3.3 Network training and synaptic weight matrix

First, the network was trained following the experimental procedure where the animal was 

exposed to the pair of unoccluded shapes. During this preliminary phase, the connection 

weight matrix u between PFC and V4 is learned by gradient descent on the cost function E 
with respect to the weights u as well as the neuronal responses rv4 and rpfc, while 

unoccluded shape stimuli randomly selected from the set of shape A and shape B, are input 

to the network. The learning rate for neuronal firing rates is significantly larger than that for 
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weights (See Methods, Eq. 15). Thus, for each sampled shape, the firing rates of the 

neuronal units converge rapidly. The weight matrix u converges on a slower time scale, over 

the course of the preliminary phase with multiple presentations of unoccluded shapes. With 

initial values of the connection weights set to

u =
1 −1

−1 1
1 1

,

the connection weight matrix converges to

u =
2.32 0.21
0.26 2.37
0.94 0.94

,

where the asymmetric weights between the PFC units and the shape-selective V4 units 

indicate shape selectivity in PFC units. The shape selectivity in PFC units and resulting 

response characteristics are preserved as long as the initial values for u1,2 and u2,1 are 

sufficiently smaller than u1,1 and u2,2 to introduce an initial bias on shape selectivity.

The convergence of the weight matrix depends on the choice of initial conditions, given the 

non-convex and under-constrained nature of the cost function E, as there are multiple 

combinations of the connection weights and neuronal responses that minimize E. However, 

this does not limit our main results, as we can regard the biased initial values as the 

connections between a subset of PFC populations and the V4 population of interest before 

learning the shapes, which may have either weak negative values or positive values, among a 

wide range of random initial connection weights between PFC and V4. Depending on the 

initial connection weights, the connections will either become stronger or weaker over the 

course of training, and shape selectivity in PFC neurons emerges.

Our simulations with synaptic weights starting from different initial values show that the 

neuronal responses of the model are robust to precise choices of these initial weights. In Fig. 

3A, we randomly choose different initial weights, under the constraint that u1,1 and u2,2 start 

from stronger values (in the range from 0.5 to 3.5) than u1,2 and u2,1 (in the range from −1 to 

1). The initial weights between the occluder-selective V4 units and PFC units, u3,1 and u3,2, 

are randomly chosen in the range from 0 to 2. For all of these choices, the connection 

weights u1,1 and u2,2 converge to higher values than u1,2 and u2,1, resulting in mild shape 

selectivity in PFC units, with PFC unit 1 preferring the test shape (Fig. 3A(i),(iv)). If the 

initial connection weights of u1,2 and u2,1 are at larger values than u1,1 and u2,2, the shape 

preferences in PFC units switch (Fig. 3B(i),(iv)), but the response characteristics of V4 

neurons remain unchanged (Fig. 3B(ii),(iii)). Interestingly, responses of V4 units are highly 

robust to differences in initial weights, converging to almost indistinguishable identical 

values in each case, as shown in Fig. 3A,B (ii),(iii).
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The obtained connection weight matrix is interpreted as a stored template or memory of the 

shape pair, and is fixed during the following test phase. The memory of the shapes encoded 

in the connection weights is similar to the idea proposed in Mumford (1992) where it was 

suggested that descending pathways store templates in the weights of their synapses.

3.4 Two-step inference on neuronal dynamics

With the trained connection weights, we find the model responses of each unit to partially 

occluded stimuli are comparable to neuronal responses in experimental recordings during 

the sequential shape discrimination task described above. In particular, we separate the 

responses inferred strictly by feedforward sensory inputs from those generated by integrated 

signals of both feedforward inputs and feedback predictions, and show that the model 

responses capture the temporal dynamics in the electrophysiological recordings.

The optimal representations of the neuronal responses rv4 and rpfc that minimize either the 

first term (E1 from Eq. 16) or the full representation of the cost function E (E2 from Eq. 17) 

are computed at each occlusion level. As explained in Methods, these are equivalent to the 

optimal responses in hierarchical Bayesian inference that maximize the posterior probability 

of the V4 neuronal responses given the shape identity and the occlusion level. Here we 

assume that the occluders are of a color different from that of the shape or the background, 

i.e., occlusion is salient and distinct (Fig. 4B). The occluders therefore activate V4 unit 3, the 

occluder-selective neuronal population in the model.

We make the inference on the neuronal responses in two steps. First, only the bottom-up 

sensory input is considered, so that the posterior distribution depends only on the stimulus κ 
(Fig. 4A, solid box). In other words, the optimal representations of the activities of the V4 

units, rv4, are found by minimizing only the first term of the cost function E in Eq.14, or 

equivalently, by maximizing Eq.9. We hypothesize that these optimal responses modulated 

only by the bottom-up sensory inputs, to correspond to the initial transient in recorded V4 

responses. Thus, only feedforward signals are present at this stage.

The delayed transients in V4 responses following the peak of responses in PFC, on the other 

hand, are compared to the optimal responses that integrate both the bottom-up and the top-

down inputs. The model representations of the delayed V4 responses and the PFC responses, 

therefore, are obtained by finding rv4 and rpfc minimizing the full cost function E (Eq.14), 

which is equivalent to maximizing the full posterior distribution in Eq.4 composed of both 

the feedforward, κ-dependent distribution and the feedback, prediction-driven distribution. 

In this way, the model draws a connection between the response dynamics of V4 and PFC 

neurons and different computational stages in the feedforward-feedback loop.

The inferred optimal responses of each neuronal unit in V4 and PFC across a range of 

occlusion levels, before and after the feedback from PFC, are shown in Fig. 4C,D, and E. 

Both PFC unit 1 and unit 2 responses increase with added occlusion (Fig. 4C), in agreement 

with the experiments where PFC neurons respond strongly to occluded stimuli and weakly 

to unoccluded stimuli (Fig. 2D). Such increased PFC responses to occlusion result from the 

PFC connections to the occluder-selective V4 unit 3; through the synaptic connections, PFC 

predictions are compelled to match the responses of V4 unit 3 which responds preferentially 
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to occluders. The model PFC units also show shape selectivity, with PFC unit 1 showing 

higher responses than PFC unit 2 to the test shape A across occlusion levels. This agrees 

with physiological evidence for shape selectivity in PFC (Pasupathy et al., 2015).

The two-step inference on the V4 responses accurately predicts the response characteristics 

of the initial and the delayed peaks in experimental recordings of V4 neurons. While the 

responses of V4 unit 2 (the neuronal unit not preferring the test shape A) stay constant at a 

low rate across the occlusion levels, V4 unit 1 (the preferred V4 unit) shows a decreasing 

response pattern as occlusion increases, i.e., as unoccluded area decreases. Compared to the 

responses inferred only based on the feedforward sensory input (Fig. 4D, solid green), the 

firing rates are less dependent on occlusion level when the feedback predictions are included 

(Fig. 4D, dotted green). Thus, with the feedback, an increase in occlusion does not as 

extensively degrade the preferred V4 responses. The model predictions therefore agree with 

the experimental observation on the two transients in V4 (Fig. 2B), and are in accordance 

with our hypothesis that the initial V4 responses reflect the feedforward signals from the 

afferent areas, and the delayed peak of responses in V4 are computed based on both the 

feedforward sensory signals and the feedback predictions from PFC. Because the response 

of the preferred V4 unit becomes resistant to occlusion when the feedback prediction is 

included, we say that the feedback enables V4 neurons to have enhanced shape 

discriminability under partial occlusion.

We note that, in contrast to other sensory areas (Rao & Ballard, 1999; Srinivasan et al., 

1982) where this comparison has been successfully made, the responses of shape-selective 

V4 neurons are not accurately described by a direct comparison to the residual errors 

between the feedback predictions and the neuronal responses underlying the current estimate 

of the sensory signals. Here, the residual error of V4 unit 1 and 2 increases with added 

occlusion (Fig. 5), unlike the activity of shape-selective V4 neurons in experiments, which 

were strongest for unoccluded stimuli and weaker with occlusion (Fig. 2B, Kosai et al. 

(2014)). Instead, we identify the optimal estimates shaped by the feedforward input and the 

feedback predictions as the neuronal responses measured in V4, which do replicate response 

characteristics in experiments. Unlike the residual errors which reflect novelty of the sensory 

inputs, the optimal response representation conveys both sensory stimulus features and 

stimulus novelty.

Finally, the group of neurons that are hypothesized to respond preferentially to occluder 

saliency exhibits increasing responses as occlusion increases, both with and without the 

feedback (Fig. 4E). Although this class of neurons has not been systematically recorded in 

experiments, we identified several neurons with increasing responses to added occlusion 

regardless of the co-presented shapes (Fig. S1B), similar to the response patterns of V4 unit 

3 (Fig. 4E).

In the above we have compared the steady-state representation of neuronal responses in the 

model to transient peaks of responses in the experiments. The two-step inference does not 

have a mechanism for the shape of the transient activities observed in experiments. 

Specifically, instead of having the brief suppression of responses between the initial peak 

and the delayed peak (Fig. 2A), the gradient descent on E1 (Eq.16) and E2 (Eq.17) with 

Choi et al. Page 17

Neural Comput. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respect to rv4 simply predicts the V4 response dynamics rv4 to reach and stay at the 

respective steady state firing rates which minimize E1 and E2.

The gradient descent dynamics are shown in Fig. S3, where the feedback prediction term 

from PFC is included in the cost function after neuronal responses reach the steady state 

firing rates minimizing E1. Before optimization of the full cost function E2 starts, the 

responses may be brought down to the baseline firing rate for a brief interval rather than 

being continued from the values optimizing E1; in either case, the optimal responses 

measured at the end of optimization process of E2 do not change (Fig. S3 B,D), indicating 

that those values are robust within the range of firing rates we consider. Note that unless the 

responses are deliberately suppressed, the gradient descent dynamics do not exhibit transient 

peaks as observed in experiments. This implies that there may be additional physiological 

mechanisms in the cortical circuitry responsible for the transient dynamics. In principle, it is 

also possible that such temporal effects could be interpreted by extending the predictive 

coding to the temporal domain (Rao & Ballard, 1999; Friston & Kiebel, 2009a,b).

In summary, in this section we asked how the responses in a hierarchical predictive coding 

model compare to physiology. We find that, upon training, the model indeed predicts the 

observed responses in V4 and PFC, when the dynamics unfold over an initial feedforward 

and a second feedback stage.

3.5 Parsimony of the network structure

In the simulations above, we have assumed a specific network structure. This poses the 

question of whether these assumptions were necessary, and in general what aspects of 

network structure are required to reproduce the observed physiological responses.

Shape selectivity in V4 and PFC neurons is supported by experiments (Fyall et al., 2017), 

thus we included the test shape-preferred and non-preferred V4 and PFC units, namely, V4 

units 1 and 2 and PFC units 1 and 2. In addition, our model includes an additional group of 

V4 cells that responds strongly to occlusion. We found that such occluder-selective V4 

neurons are necessary to capture the response characteristics of PFC neurons observed in the 

experiments. Since the second term in the cost function Eq.14 is the squared difference 

between the PFC predictions – a linear combination of PFC responses – and the actual V4 

responses, the PFC responses minimizing the cost function tend to follow the response 

trends of the afferent V4 neurons. The shape A (test shape)-preferred V4 unit 1 exhibits 

monotonically decreasing firing rates as occlusion level increases, while the activity of the 

shape B-selective V4 unit 2 stays constant across degrees of occlusion, as a consequence of 

the bottom-up stimulus-dependent inputs. With only these two types of neuronal 

populations, therefore, the PFC responses cannot capture the firing rate increase induced by 

occlusion. Given our model architecture without any additional mechanisms, there has to be 

a class of V4 neurons that responds strongly to occlusion but only weakly to unoccluded 

stimuli, so that PFC follows the similar response trends. Moreover, we found that the 

increase in PFC responses with occlusion cannot be obtained by including a simple prior 

distribution of PFC responses in the cost function, instead of the third class of V4 neurons in 

question (the only way to have a prior implement the observed changes in PFC responses 

would be to have that prior itself change with occlusion level). As discussed above, there are 
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several candidates for types of V4 neurons represented by unit 3. These include populations 

of neurons that respond preferentially to the color of the occluding dots.

Another feature of our architecture – the convergence of the signals, with each of the PFC 

cells connected to multiple afferent V4 neurons from different populations –is also critical to 

replicate the shape selective responses that become more robust to occlusion after the PFC 

feedback. We experimented with different architectures and found that such convergence is 

crucial for transmitting information between different V4 units. Unless the same PFC unit 

makes predictions about both the shape-preferred V4 unit (V4 unit 1) and the occluder-

selective V4 unit (V4 unit 3), the information about the occlusion level encoded by the 

occluder-selective V4 unit will not be transmitted to the shape-selective V4 population, 

which is crucial for maintaining robust shape discrimination and weaker dependence on 

occlusion. This structure, where the neurons of the lower cortical areas with different tuning 

properties send convergent signals to neurons in higher cortices, agrees physiological 

findings in which signals become more mixed as they travel along the hierarchy (Felleman 

& Van Essen, 1991; Rigotti et al., 2013; Fusi et al., 2016).

Another feature of our model is that fewer units in PFC (2) combine to make linear 

predictions about the responses of a larger number (3) of V4 units. This is also necessary to 

capture the experimental data. Without such convergence, the V4 responses imposed by the 

bottom-up sensory input can be matched perfectly by the top-down predictions made by 

PFC units, leading the optimal predictive coding solution to make identical copies of the 

sensory input at each stage along the hierarchy – which clearly does not occur in 

experiments. Translating this constraint into biology, this does not mean there must be fewer 

neurons in higher areas of brain, but rather that there are fewer functional or active 

populations that can be grouped as single units in the higher area during the task.

In our model, information about the shape identity s and the occlusion level c are both input 

to V4. The system implements a feedforward-feedback loop involving the higher area PFC 

to enhance shape discriminability under occlusion, as illustrated in a state space view in Fig. 

6. Without the feedback predictions, during the initial responses, high occlusion moves noisy 

versions of the responses close to, or even above, the unity line, obscuring the shape identity 

(Fig. 6A). However, when the feedback from PFC is included, the responses move away 

from the unity line, thus clarifying the shape identity under partial occlusion (Fig. 6B). The 

convergent structure of the network is the key for this effect to occur. Although information 

about occlusion is initially present at the level of V4, it does not impact the shape selective 

V4 units without feedback from PFC. In other words, PFC predictions re-map the 

information about the shape identity and the occlusion level onto the shape-selective space 

in V4, enhancing the shape discriminability there.

We note that recurrent connections among V4 populations – rather than the feedback 

described above – could in principle also transmit information about the occlusion level to 

the shape-selective neurons. Which mechanism is more effective and efficient is an open 

question. However, the current experimental evidence showing the delayed peak of 

responses in V4 arising after PFC responses peak, as well as the strong PFC responses to 

occlusion, are suggestive of feedback.
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In summary, the proposed network, composed of two PFC units and three V4 units, has a 

parsimonious structure to explain the neuronal responses in the experiments under predictive 

coding principles.

3.6 Structure of inputs to V4

In the above simulations, we have assumed a simple input structure, where the sensory input 

is determined by probability distributions of V4 responses conditioned on shape identity s 
and occlusion level c. Based on experiments, we model μ1 for the test shape-preferred V4 

unit 1 to decrease from a high firing rate as occlusion level grow, μ2 for the non-preferred V4 

unit 2 to stay at a low baseline firing rate, and μ3 for the occlusion-preferring V4 unit 3 to 

increase. To provide a firmer basis for this, we show a several example V4 neurons in Fig. 

S1. Example cells in Fig. S1A behave like V4 units 1 and 2 with decreasing responses to 

preferred shapes under added occlusion and overall low responses to non-preferred shapes. 

On the other hand, the cells shown in Fig. S1B may correspond to V4 unit 3, which display 

relatively low, shape-selective responses to unoccluded shapes and increasing responses to 

both preferred and non-preferred shapes as occlusion level increases. The population 

averaged initial peak responses of V4 neurons to preferred and non-preferred shapes further 

support our implementation of μ (Fig. 7A). Specifically, the averaged responses of V4 

neurons with clear two transient peaks and shape selectivity exhibit a decreasing response 

pattern to preferred stimuli with added occlusion, but responses to non-preferred shapes stay 

at a constantly low firing rate across the range of occlusion levels.

In addition to the peak firing rate μ, another component that forms the input signals is the 

variance of the V4 response distributions given the sensory input. As discussed earlier, we 

hypothesize that σ1 increases with added occlusion as high degrees of occlusion obscure the 

shape identity, and that σ2 is constant across degrees of occlusion, since random placements 

of occluding dots on a non-preferred shape will not introduce as much variability in 

responses as on a preferred shape. We also modeled σ3 to stay constant regardless of 

occlusion level, as this unit responds to the presence of occluders but not their specific 

configuration. To test this hypothesis, we examined the consequence of other plausible 

assumptions for how variance depends on occlusion. First, when variances for all three V4 

units increase at the same rate (Fig. 8A), the response characteristics of the shape-preferred 

V4 unit 1 remain unchanged but the non-preferred V4 unit 2 shows increasing delayed 

responses to added occlusion. Such increasing delayed responses of unit 2 are also obtained 

when the input variances for both V4 unit 1 and unit 2 are increased with occlusion, while 

the variance for V4 unit 3 is kept constant (Fig. 8B,C). When the variances of all V4 units 

are decreased with added occlusion, on the other hand, we observe very different response 

patterns (Fig. 8D). Specifically, feedback does not improve the shape discriminability, as the 

initial and the delayed responses of V4 unit 1 are identical. Based on these simulations, we 

limit our model to the cases where introduction of occlusion increases the input variances for 

shape-selective V4 units.

Our simulations show that the experimental results (Fig. 2A,B; 7A; S1A) are best captured 

by different rates of variance increase for different V4 units (Fig. 4A; 8C), in particular, 

when the variances for V4 unit 1 increase with added occlusion, the variances for V4 unit 2 
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stay constant or increase by a smaller amount compared to V4 unit 1, and the variances for 

V4 unit 3 stay constant. As a result, shape selectivity under occlusion is consistently 

improved in the delayed signals (Fig. 8C).

The dependence of variance on occlusion may not be uniquely defined and likely vary 

among V4 neurons. Indeed, neurons in V4 show a spectrum of different response patterns to 

non-preferred stimuli, indicating that different V4 neurons encode input variances in more 

than one way. For example, the top two rows in Fig. S1A show example V4 neurons whose 

delayed responses to non-preferred stimuli do not increase with added occlusion, 

corresponding to our model simulation with a constant variance for V4 unit 2. On the other 

hand, the last row in Fig. S1A shows an example V4 neuron with increased delayed 

responses to occluded non-preferred shapes. The example V4 cells thus suggest that neurons 

in V4 may respond to partially occluded, non-preferred shapes with constant variances or 

slightly increased variances.

Our original model has only two V4 units of shape-selectivity, one tuned for the test shape 

and the other not preferring the test shape. A more biologically realistic model would consist 

of a population of V4 neurons with diverse response properties. To construct this population, 

we first examined response profiles of a population of 109 neurons in V4 previously 

reported in Pasupathy & Connor (2002). For some shapes, disparity between the responses 

of the neurons preferring the shapes and those of the non-preferred neurons is noticeable, as 

illustrated in the sorted population responses to a given shape in Fig. 7B, top panel. 

However, to many other shapes, the population of V4 neurons show more graded responses, 

as in Fig. 7B, bottom panel.

We next expanded the model network to a larger network with two PFC units and thirty V4 

units (Fig. 9A). Among the V4 units, 10 are occluder-preferred units and the remaining 20 

units are shape-selective. Instead of dividing the shape-selective V4 units into test shape-

preferred and non-preferred groups, we modeled the V4 units to have a spectrum of peak 

firing rates and variances for the input-driven responses (Fig. 9B). For the V4 units that are 

more tuned to the test shape (corresponding to higher values of μ), the input-driven variance 

increases by larger amounts with added occlusion (Fig. 9B). The connection weights from 

PFC units to the V4 units are also adjusted accordingly (i.e., so that in Fig. 9A, the green 

PFC unit has stronger connections to the green V4 units compared to the blue V4 units and 

vice versa).

This expanded model yields qualitatively the same results as the simple network with two 

shape-selective V4 units. The PFC units and the occluder-selective V4 units show increasing 

responses with added occlusion (Fig. 9C(i),(ii)), and the shape-selective V4 units yield 

decreasing response patterns with an increase in occlusion (Fig. 9C(iii)). Moreover, the 

delayed responses of the shape-selective V4 units obtained by optimizing the full cost 

function exhibit reduced sensitivity to occlusion, and the effect is stronger for the units with 

stronger test shape preference. To see this more clearly, Fig. 9C(iv) presents responses of a 

selected number of the shape-selective V4 units with high, intermediate, and low degrees of 

preference for the test shape. In sum, the delayed increase in responses to stimuli under 

occlusion induced by the feedback, in neurons that respond preferentially to the test shape is 
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maintained in a population of V4 units with graded response properties, validating the 

predictions made by our simplified model.

3.7 Differential weighting of feedforward and feedback inputs

In our model, the relative strength of feedback and feedfoward interactions are determined 

by assumptions about levels of variability in the inference errors (the noise terms in Eq.7,11) 

at each network layers (Eq.8,12). Here we ask how these assumptions impact the ability of 

the model to reproduce trends in experimental data.

Recall that the cost function E in our model has two terms, one based on bottom-up sensory 

inputs and the other based on top-down predictions (Eq.14). Contribution of each of these 

components is weighted by the inverse variance of the respective probability distribution. 

The pattern of the optimal responses to occlusion can therefore be modulated by these 

variances. Here we examine how this occurs, and show that the tradeoff between 

feedforward and feedback components achieved by the variances in Fig. 4 is necessary to 

capture the response characteristics observed in experiments.

We first discuss effects of the variances for the bottom-up input-driven distributions. In the 

original model (Fig. 4), for the bottom-up component, variances are set equal to 1 for all 

three V4 populations when the input shape is unoccluded. We also set the variance for the 

test shape-preferred V4 population (V4 unit 1) to increase as occlusion level increases, to 

capture the increase in uncertainty of the shape identity in presence of occlusion. We found 

that this increase in variance for the preferred V4 unit is necessary to mimic its weaker 

sensitivity to occlusion when feedback inputs are included. Without the increase in variance, 

this V4 unit depends relatively more on the bottom-up inputs under high degrees of 

occlusion, and as a result, shows a steep decrease in its responses as occlusion increases 

(Fig. 10A, left panel, green). By increasing the variance of the sensory input-dependent 

distribution, therefore, the optimal response of this V4 population becomes more dependent 

on the top-down predictions made by PFC. As the PFC populations respond strongly to 

occluded stimuli, weighting the bottom-up component less will result in a more gradual 

decrease in V4 responses to increasing occlusion, as in the original model in Fig. 4D.

Next, we examine the choice of the top-down variances in the original model that 

successfully captures experimental data. In the initial model (Fig. 4), the variances of the 

top-down component do not depend on the occlusion level and stay at constant values. 

However, the top-down effect is differentially weighted for each of the V4 populations; it is 

weighted more for the occluder-selective V4 population ( σ3′ = 1) compared to the shape A- 

and B-selective neurons ( σ1′ = σ2′ = 10). This is needed to reproduce the rise in PFC 

responses at higher levels of occlusion. The smaller variance, or equivalently, more 

“weight”, on the top-down predictions of the occluder-selective V4 unit drives the PFC unit 

to follow the same increasing response pattern as the occluder-selective V4. The smaller 

variance imposed on the top-down prediction for the occluder-selective V4 unit can be 

interpreted as the top-down predictions having more significance for occlusion than for 

identity of the shape.
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We investigated effects of changes in the top-down variances on the response patterns. When 

the feedback prediction-driven distributions for all V4 units are uniformly weighted with 

unit variance, the top-down effect becomes more pronounced (Fig. 10B) compared to the 

case with the variances at the original values (Fig. 4D). As a consequence, the delayed 

responses of the test shape-preferred V4 (V4 unit 1) increase with added occlusion, 

reflecting strong modulation by PFC (Fig. 10B, left panel, green dotted line). Similarly, 

when the top-down variances on all three V4 units are set to be larger than the bottom-up 

variances, relatively more influence is exerted by the bottom-up drive (Fig. 10C). As a result, 

the feedback no longer increases robustness of V4 unit 1 responses under partial occlusion 

(Fig. 10C, left panel, green dotted line).

In sum, we have shown that the ability to reproduce trends in experimental recordings in our 

predictive coding model requires the balance of top-down and the bottom-up influences that 

is given by the increase in the input-dependent variance with added occlusion for the test 

shape-selective neurons and the smaller variance in the top-down prediction on the occluder-

selective neurons.

3.8 Model prediction for responses to non-salient occlusion, noise, or reduced contrast

Above, we have assumed that occlusion is salient, and that there is a separate population of 

cells in V4 that responds preferentially to occlusion. But what happens to predictions of the 

model when the occlusion is non-salient – that is, indistinct from the shape? To answer this, 

we consider the case where the occluder reduces the shape signal, but does not activate a 

dedicated class of V4 neurons. For example, when the occluders are of the same color as the 

shape or the background, occlusion would increase ambiguity of the shape identity but 

would not induce responses in a V4 population separately responsive to a distinct color. 

Other examples include a decrease in shape clarity by white noise or reduced contrast 

(illustrated in Fig. 11B).

We simulated such non-salient occlusion and ambiguity in our model by setting μ3, and 

therefore the peak of the response distribution for the occluder-selective V4 conditioned on 

sensory stimulus, to a constant. Therefore, an increase in occlusion or ambiguity in the shape 

stimulus does not increase the responses of V4 unit 3, as shown in Fig. 11E. The peak μ1 for 

the shape A-preferring V4 unit, however, is assumed to decrease with occlusion, as for 

previous simulations. Note that such neuronal behaviors are assumed because the occluder-

selective V4 unit 3 is not modeled to specifically detect occlusion, but rather respond to 

some occluder-specific feature such as a distinct color with contrast relative to background. 

This results in a decrease in the preferred PFC responses with occlusion/ambiguity, and only 

a slight increase in the non-preferred PFC responses (Fig. 11C). Therefore, the feedback 

predictions made by PFC do not increase the preferred V4 unit 1 responses when the shape 

ambiguity (occlusion level) is high. In Fig. 11D, the preferred V4 responses after the 

feedback (dotted green) are therefore indistinguishable from the responses before the 

feedback (solid green). Our model thus predicts that when the shape signal is reduced in a 

way that is not salient, the feedback from PFC does not improve shape discriminability.

From the point of view of perception, this prediction seems plausible since we often have 

more difficulty recognizing an object when the obscurant is not distinct from the object. 
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Moreover, preliminary experimental observations show that PFC neurons do not respond 

strongly to occluders of the same color as the background. In addition, the second peak of 

responses were not observed in V4 neurons when the shapes were obscured by reducing 

their contrast. While these preliminary observations are in accordance with our model 

predictions, more data should certainly be collected before conclusions can be drawn.

4 Discussion

In this study, we have proposed that robust shape-selective V4 responses under partial 

occlusion can be explained in the framework of predictive coding and hierarchical Bayesian 

inference. We have used this framework to construct a model of V4 and PFC in which 

signals converge as they travel up the hierarchy. In particular, we suggest that top-down 

predictions made by PFC neurons with mixed selectivity for shape identity and occlusion 

play a significant role in maintaining robust shape discriminability under salient partial 

occlusion in V4. In this model, PFC neurons make linear predictions on V4 activities in the 

form of feedback signals, and the connection weights are interpreted to store the memory of 

the shape identities. We reformulated the traditional framework of predictive coding, so that 

the optimal representation of the internal states of the model V4 and PFC units, rather than 

residual errors, are comparable to the electrophysiological recordings in these areas.

Our model suggests that the initial responses in experimental recordings of a class of V4 

neurons are purely feedforward and computed solely based on the bottom-up sensory input, 

while the delayed responses are modulated by both the bottom-up sensory signals and the 

top-down predictions. The model further shows that the feedback signals in V4 improve the 

shape discriminability under occlusion by reducing ambiguity in the population 

representation of the shape identity, and that this is achieved by transmission of the 

occlusion information via a feedforward-feedback loop. This can be viewed as an extension 

of the concept proposed in Rao & Ballard (1999) where predictions made by higher visual 

areas with larger receptive fields enable neurons encoding the surround and the center in V1 

to share information; in our model of V4, neurons encoding different features of a shape 

stimulus such as curvature, color, etc, share information via predictions made by the higher 

areas.

The increase in the shape selective responses of V4 induced by the feedback depends on 

asymmetric weighting of the top-down and the bottom-up effects, so that the top-down 

prediction is weighted more strongly for the occluder-selective neurons and the dependency 

of the shape-selective neuronal responses on the sensory input decreases with added 

occlusion. Interesting future work could more directly test this weighting of the top-down 

and the bottom-up effects. For example, the top-down predictive component of our model 

would be weakened by training with a larger set of noisy shape stimuli under various 

degrees of occlusion, which will introduce larger variance terms in the feedback prediction. 

Model predictions for experiments where partially occluded shapes are used for training are 

given in Appendix S4. Our simulations predict that when training is done with partially 

occluded shapes, the V4 neurons do not exhibit a delayed increase in shape-selective 

responses, underlining the significance of initial exposure to unoccluded shapes (Appendix 

S4). If the variances (Σ1, Σ2) are allowed to be learned as well, using a noisy stimuli set 
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under various degrees of occlusion for training will weaken the top-down influence by 

increasing the top-down variance Σ2. Alternatively, cooling PFC is another way that more 

emphasis would be placed on the bottom-up sensory input. Overall, our model predicts a 

smaller or no increase in shape selectivity during delayed V4 responses in these cases where 

the effect of the top-down predictive signals is reduced.

For the input-driven response distributions, we have assumed the mean and the covariance to 

depend linearly on occlusion level. While this assumption keeps our model simple, detailed 

neuronal responses may be captured more accurately by implementing nonlinear 

dependence. For example, the example V4 cell in Fig. 2 shows the maximum delayed 

increase in shape-discriminability when the occlusion level is intermediate. However, in our 

model, the separation between the initial and the delayed V4 responses increases 

monotonically with added occlusion, more resembling example V4 cell 3 in Fig. S1A. The 

response pattern in Fig. 2, on the other hand, can be reproduced by nonlinear dependence on 

occlusion of the bottom-up mean and covariance (data not shown). Thus, the variability in 

detailed response patterns across cells may indicate heterogeneous occlusion-dependence 

functions of individual V4 neurons.

In this way, our model contributes to new understanding of both neurophysiological and 

computational mechanisms underlying discrimination of partially occluded shapes in V4, 

suggesting a possible functional contribution of feedback signals.

4.1 Relationship to previous models

Several previous theoretical studies investigated the computational mechanisms for 

recognition of partially occluded shapes, patterns, and objects (Fukushima, 1987, 2001, 

2005; Rao, 1997). However, these are strictly feedforward and often overlook feedback 

computation, in stark contrast to biological networks which feature abundant feedback and 

recurrent connections. One approach is based on an extended version of neocognitron– a 

hierarchical, multilayered, and feedforward neural network model (Fukushima, 1987, 2001, 

2005). This extended neocognitron has an additional “masker layer” which detects occluders 

by difference in brightness and suppresses them at an early state. A study by Rao (Rao, 

1997, 1999) uses a Kalman filter model and Bayesian optimal estimation theory of 

maximizing the posterior probability of the internal states. With robust optimization method 

which clips large residual errors, the model effectively segments the occluders from the 

image, treating the occluders as the outlier. The physiological mechanisms underlying the 

robust optimization method, however, are not known.

There have been a number of other modeling studies of V4 tuning to shape contours based 

on hierarchical feedforward models of object categorization, which have structural similarity 

to the ventral visual pathway (Fukushima, 1980; Riesenhuber & Poggio, 1999; Serre et al., 

2007; Cadieu et al., 2007; Yamins et al., 2014). These models are also purely feedforward, 

and while they have had successes in reproducing V4 shape selectivity (Cadieu et al., 2007; 

Yamins et al., 2014), they lack separate mechanisms to account for occlusion. Unlike these 

previous models, our model bridges hierarchical predictive coding and experimentally 

recorded response dynamics in area V4 and PFC.
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Our model is focused primarily on the encoding of the partially occluded stimulus, while the 

underlying behavioral task required animals to report whether the two stimuli presented 

were the same or different. Other literature has proposed how the sensory representation of 

the test stimulus may be compared to the memory representation of the reference stimulus 

(Hayden & Gallant, 2013; Murray et al., 2017; Romo & Salinas, 2003) to derive a 

behavioral decision, but this is beyond the scope of this paper.

4.2 Learning the shape templates with connection weights

Our model modifies the synaptic weights between V4 and PFC neurons during the 

preliminary phase which consists of a few presentations of unoccluded shapes. This step 

corresponds to the initial learning phase in experiments where the animal discriminates an 

unoccluded pair of shapes used for the session. In this setup, the fast learning of the shape 

pair after exposure to the shapes for just a few times, is achieved by the memory stored in 

the synaptic weights between V4 and PFC neurons. When partially occluded shapes are used 

during the preliminary phase, on the other hand, the system learns different values of 

synaptic weights and the feedback does not improve shape discriminability (See Appendix 

S4). Fast learning, as attested by the shape discrimination task here, has been observed 

widely, where new sensory stimuli are easily learned with just a few presentations (Seitz, 

2010; Rubin et al., 1997).

Physiological recordings in cortical cells in vitro, however, show only small changes in 

synaptic strength after a pair of pre- and post-synaptic spikes (Markram et al., 1997; Bi & 

Poo, 1998; Gerstner et al., 1996), suggesting that neurons learn a repeated stimulus more 

gradually, after a large number of presentations. Such seemingly contradicting evidence 

from physiology and behavioral observations can be reconciled by introducing stronger 

synaptic changes than usually observed in vitro, possibly aided by neuromodulation (Fusi et 

al., 2005). More recently, it has been proposed that even weak synaptic plasticity can support 

fast learning in the balanced-regime of excitation and inhibition (Yger et al., 2015). Due to 

the leverage effect from the excitatory and inhibitory balance in this regime, small synaptic 

modifications applied to many synapses onto a given neuron result in a large effect (Yger et 

al., 2015).

4.3 Mapping computational units in predictive coding to cortical circuitry

Different algorithms implementing hierarchical predictive coding share the general principle 

of a generative model: the brain has an internal representation of the world which is actively 

compared to the actual sensory inputs. However, the precise computational procedures 

employed by these algorithms as well as their connections to neuronal populations are 

controversial and vary widely across different studies (Spratling, 2016; Bastos et al., 2012; 

Bogacz, 2015; Rao & Ballard, 1999; Mumford, 1992; Spratling, 2008).

For example, in our model, the variances of the response distributions of different V4 units 

given the sensory input or the higher cortical activity are pre-defined to capture the response 

characteristics in experiments. However, they can also be treated as parameters to be 

optimized and are assigned to the most likely values, with a slight modification on the 

network structure as done in a few other models of hierarchical predictive coding. In these 
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studies, the variances are interpreted as synaptic weights and are obtained by minimizing the 

free energy (Bogacz, 2015; Friston & Kiebel, 2009a,b).

There are varied interpretations on the connections between predictive coding algorithms 

and computations done by cortical circuitry. Cortical areas have laminar structures, and 

different layers or populations within the cortical area may correspond to different local 

computational nodes that arise in predictive coding algorithms. However, there is no 

unifying description of the intra-cortical connectivity and the local computations within a 

cortical area. For example, inhibitory feedback connection implemented in the model 

proposed by Rao & Ballard (1999), is modified in Spratling (2008, 2016) to reflect 

excitatory feedback signals observed in physiology. In order to avoid negative responses, 

Spratling (Spratling, 2008, 2016) also replaced additive excitation and subtractive inhibition 

in Rao & Ballard (1999) by multiplicative and divisive modulations, respectively. In our 

model, we follow the approach in Rao & Ballard (1999) and implement additive excitation 

and subtractive inhibition for simplicity.

Within area V4, there surely are multiple neuronal populations across the laminar structures, 

and each neuronal node may perform different computations as suggested by earlier studies. 

In this work, we have shown that V4 neuronal responses to partially occluded shapes are 

better explained by the optimal representation of responses than the residual errors between 

the current estimates and the predictions, and thus correspond to the node that encodes the 

current estimates. However, neurons whose responses are less dependent on their tuning to 

stimuli features but more sensitive to novelty of the stimulus may correspond to the unit that 

computes residual errors. Investigations of specific neuronal populations within V4-PFC 

circuitry in the context of the corresponding computational nodes in the predictive coding 

algorithm will provide a better understanding and validation of our model.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic diagram of network model. (A) Model network of V4 and PFC populations and 

the schematic of the input shape stimulus. By optimizing the cost function with respect to 

both V4 and PFC responses, the network implements both feedforward connections from V4 

to PFC and feedback connections from PFC to V4. Note that the model is not image 

computable, and the input stimulus in the figure is given to illustrate the model setup. (B) 

Top-down predictions made by PFC on each of the three V4 units are represented by 

Gaussian distributions with means at f(u · rpfc) = u · rpfc. (C) Bottom-up component, which 

is represented by the conditional probability distributions of the V4 responses given the 

shape stimulus. When the input stimulus is unoccluded shape A, the response distribution of 

the shape A-selective V4 population has a higher mean than those of the shape B- and 

occluder-selective populations. As the occlusion level increases, the mean of the shape A-

selective response distribution decreases and the standard deviation increases. Shape B-

selective distribution stays at the constant baseline and the occluder-selective response 

distribution moves towards higher rates. The response distribution of each V4 population is 

shown in the same color as in (A).
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Figure 2. 
Recordings from V4 and PFC show characteristic response dynamics. (A) Example V4 cell 

responses to a preferred (left) and a non-preferred shape (right) during the discrimination 

task. Test stimulus onset was at time 0 ms. Level of occlusion was measured by % 

unoccluded area (line color). Black line (100% unoccluded) represents the unoccluded 

stimulus. Two transient peaks are identified by filled and open rectangles. (B) The time 

averaged V4 firing rates during the initial and the delayed peaks (identified in A) as a 

function of occlusion level. Solid lines show averaged firing rates for the preferred shape 

during the initial peak, and the dotted lines indicate averaged firing rates during the delayed 

transients, as marked above response traces in (A). (C) Response of an example PFC cell to 

the two shape stimuli (left and right) during the discrimination task. (D) Averaged PFC 

responses as a function of occlusion level. Responses to each of the two shapes are shown in 

green and blue, respectively. Population data follow the same trend. Data adapted with 

permission from Pasupathy et al. (2015); Fyall et al. (2017).
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Figure 3. 
Convergence of connection weights from different initial values. During the training phase, 

the gradient descent starts with ten different randomly chosen sets of initial weights (see 

text). (A) When the initial connection weights for u1,1 and u2,2 are higher than the initial 

connection weights for u1,1 and u2.2, the connection weights u1,1 and u2,2 converge to larger 

values than u1,2 and u2,1 during the training phase (i). With these connection weights, 

responses of V4 unit 1 and unit 2 (ii), V4 unit 3 (iii), and PFC unit 1 and 2 (iv) to the test 

shape under varying degrees of occlusion are generated, and are almost identical regardless 

of the precise initial condition. (B) Same as in (A), but with initial connection weights for 

u1,2 and u2,1 larger than the initial connection weights for u1,1 and u2,2.
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Figure 4. 
Model simulations. The optimal representation based on hierarchical Bayesian inference 

reproduces V4 and PFC responses in the experiments. (A) The network model schematic as 

in Fig. 1A. The solid rectangle shows the initial feedforward-only signal computation. The 

dotted rectangle encompasses the computations for the delayed response inferences that 

integrate the bottom-up sensory inputs and the top-down predictions from PFC. The 

corresponding optimal representations are shown in solid (initial, feedforward-only) and 

dotted (delayed, feedforward+feedback) lines in D–E. (B) Illustration of the input stimuli– 

shape A with varying degrees of occlusion. The actual images were not used as the input; 

the κ-dependent population response distributions of V4 neurons were used to represent the 

shape stimuli. Note that the occluders are of a different color than the shape or the 

background, and activate a group of V4 cells selective for the color. (C) Inferred PFC 

responses increase as occlusion level increases, in accordance with experiments. A weak 

shape selectivity is present, as PFC unit 1 responds at higher rates than PFC unit 2 to the 

presented shape A across the occlusion levels. (D) Inferred responses of the shape-selective 

V4 units before (solid) and after (dotted) the top-down prediction. The green lines are the 

optimal responses of the V4 population selective for the test shape– shape A (V4 unit 1), and 

the blue lines are those of the non-preferred V4 population that responds preferentially to 

shape B (V4 unit 2). (E) Model prediction of average firing rates of the occluder-selective 

V4 population (V4 unit 3), as a function of occlusion level. The salient occlusion activates 

this class of V4 neurons. Note that the x-axis shows fraction unoccluded.
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Figure 5. 
Error signals. (A) Squared difference between top-down prediction u · rpfc and the initial V4 

responses rv4 obtained by minimizing E1. (B) Squared difference between top-down 

prediction u · rpfc and the delayed V4 responses rv4 obtained by minimizing E2.

Choi et al. Page 35

Neural Comput. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Shape discriminability under occlusion increases with the top-down prediction. The optimal 

average firing rates across degrees of occlusion as in Fig. 4D (yellow), projected onto the 

state space of V4 unit 1 (preferred) and unit 2 (non-preferred) responses. For each occlusion 

level, 200 responses were generated with a white noise with the mean at the optimal average 

value (yellow) and standard deviation of 2 arbitrary chosen for illustration purpose (blue: 

low occlusion, green: high occlusion). When the population responses are under the unity 

line (dotted black), rv4,1 > rv4,2, and the animal concludes that the test shape presented is 

shape A. The opposite is true for rv4,2 > rv4,1. Before the top-down prediction (A), the noisy 

responses under high occlusion (green dots) lie close to the unity line, obscuring the shape 

identity. With the top-down prediction included (B), the average optimal responses to 

occluded stimuli are moved horizontally to larger rv4,1 values (yellow). Thus the noisy 

responses are more squeezed and moved away from the unity line, clarifying the shape 

identity.
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Figure 7. 
V4 population encoding of shape stimuli. (A) Population averaged initial peak responses of 

39 V4 cells that show clear two transient peaks and shape selectivity. The population 

averaged responses (normalized) to preferred shapes (green) decrease as occlusion increases, 

while those to non-preferred shapes (blue) remain at a relatively constant low activity level 

across the range of occlusion levels. Data adapted with permission from Pasupathy et al. 

(2015). (B) Normalized responses of 109 V4 neurons neurons to the shapes displayed in the 

insets (unoccluded), sorted based on firing rate. The population responses to the shape on the 

top have a sharp peak indicating a division between the neurons that show strong preference 

to the shape and the rest of the neurons. Responses to the shape on the bottom are more 

distributed across the V4 population. Data adapted with permission from Pasupathy & 

Connor (2002).
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Figure 8. 
Dependence of input variance on occlusion levels. Model responses across occlusion levels 

when (A) the variances σ1, σ2 and σ3 increase with added occlusion at the same rate (σ1 = 

σ2 = σ3 = 1 + 5 · c), and (B) the variances for the shape-selective V4 units σ1 and σ2 

increase at the same rate as occlusion increases, while σ3 remains unchanged (σ1 = σ2 = 1 

+ 5 · c; σ3 = 1), (C) the variances for the shape-selective V4 units σ1 and σ2 both increase, 

but σ2 at a slower rate; here σ3 again remains unchanged (σ1 = 1 + 5 · c; σ2 = 1 + 2 · c; σ3 = 

1), (D) the variances σ1, σ2, and σ3 decrease with added occlusion at the same rate (σ1 = σ2 

= σ3 = 1 − c)

Choi et al. Page 38

Neural Comput. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Model of graded encoding of feedforward sensory inputs across a heterogeneous V4 

population. (A) Schematic of an expanded model composed of two PFC units, ten occluder-

selective V4 units, and twenty shape-selective V4 units with graded shape preferences. (B) 

Input-dependent peak firing rates (top) and variances (bottom) as a function of occlusion 

level, for occluder-preferred V4 units (red) and shape-selective V4 units (blue-green). (C) 

The model responses of PFC units (i), occluder-selective V4 units (ii), and shape-selective 

V4 units (iii). A selected number of the shape-selective V4 unit responses are shown in (iv) 

for a better display. Solid lines indicate initial responses, and dotted lines correspond to 

delayed responses.
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Figure 10. 
Model simulations with modified top-down and bottom-up variances predict different 

response patterns in neuronal units. The responses of each neuronal unit when (A) the 

bottom-up variance of shape A-selective V4 response distribution σ1 stays constant with 

increasing occlusion, (B) the top-down predictive distributions all have unit variances 

( σ1′ = σ2′ = σ3′ = 1), (C) the top-down variances are all larger than the bottom-up variances 

( σ1′ = σ2′ = σ3′ = 10).
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Figure 11. 
Model simulation with indiscriminate occlusion or noise does not activate a class of V4 

neurons, predicting the top-down signals to have no effect on the V4 responses. (A) Model 

schematic. Same model as in Fig. 4A, but with an input stimulus obscured by non-salient 

occlusion, noise, or reduced contrast. (B) Illustration of the input stimuli: shape A with 

varying degrees of noise, contrast, and non-salient occlusion with occluders of the same 

color as the background or the shape. These types of visual ambiguity are not salient while 

obscuring the shape identity. (C) Inferred PFC responses as a function of fraction of the 

shape unoccluded (shape clarity). Reduced shape clarity alone does not increase the 

responses of shape A-selective PFC population. (D) Inferred responses of the shape-selective 

V4 units before (solid) and after (dotted) the top-down prediction, as a function of occlusion/

obscurity level. The responses are depicted by color and line type as in Fig. 4D. The 

responses of the preferred V4 population after the top-down inputs are not distinguishable 

from those before the top-down inputs. Therefore, the top-down prediction does not improve 

shape discriminability under occlusion. (E) Model prediction of average firing rates of the 

occluder-selective V4 population. The non-salient occlusion does not activate the V4 

population selective for some distinct feature (e.g. color) of the occluders. Note that fraction 

unoccluded on the x-axis means shape clarity in the case of reduced contrast or added noise.
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