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Abstract

Capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) has been recognized as 

a useful tool for top-down proteomics. However, its performance for deep top-down proteomics is 

still dramatically lower than widely used reversed-phase liquid chromatography (RPLC)-MS/MS. 

We present an orthogonal multi-dimensional separation platform that couples size exclusion 

chromatography (SEC) and RPLC based protein pre-fractionation to CZE-MS/MS for deep top-

down proteomics of Escherichia coli. The platform generated high peak capacity (~4 000) for 

separation of intact proteins, leading to the identification of 5 700 proteoforms from the 

Escherichia coli proteome. The data represents a 10-fold improvement in the number of 

proteoform identifications compared with previous CZE-MS/MS studies and represents the largest 

bacterial top-down proteomics dataset reported to date. The performance of the CZE-MS/MS 

based platform is comparable to the state-of-the-art RPLC-MS/MS based systems in terms of the 

number of proteoform identifications and the instrument time.
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In top-down proteomics, intact proteins extracted from cells are typically fractionated by 

liquid chromatography (LC) or electrophoresis, followed by reversed-phase LC-tandem 

mass spectrometry (RPLC-MS/MS) analysis. The resulting MS/MS spectra are compared 

with a protein database derived from the genome sequence for proteoform identifications 

(IDs). [1–3] The state-of-the-art RPLC-MS/MS based workflows have approached 3 000–5 

000 proteoform IDs corresponding to around 1 000 proteins. [4–7]

Capillary zone electrophoresis (CZE)-MS/MS has been recognized as a useful tool for top-

down proteomics due to the high resolution of CZE for separation of intact proteins and the 

high sensitivity of CZE-MS/MS for detection of intact proteins. [8–14] However, the 

performance of CZE-MS/MS based platforms are still far below that of RPLC-MS/MS 

based platforms in terms of the number of proteoform IDs. Several groups have made some 

effort to improve CZE-MS/MS for top-down proteomics.[15–19] Li et al. identified 30 large 

proteins (30–80 kDa) from P. aeruginosa PA01 cell lysate using CZE-MS/MS, indicating the 

potential of CZE-MS/MS for top-down identification of large proteins from a complex 

proteome. [15] Han et al. coupled RPLC fractionation to CZE-MS/MS for top-down 

proteomics of Pyrococcus furiosus and identified nearly 300 proteoforms corresponding to 

134 proteins, demonstrating the capability of CZE-MS/MS for large-scale top-down 

proteomics. [16] Zhao et al. combined high-resolution RPLC fractionation and CZE-MS/MS 

for large-scale top-down proteomics of yeast and observed nearly 600 proteoform and 200 

protein IDs. [18] The data represents the state of the art of CZE-MS/MS for top-down 

proteomics.

Two major issues have limited the number of proteoform IDs from complex proteomes using 

CZE-MS/MS. One issue is the low sample loading capacity of CZE. The other one is the 

low peak capacity of CZE for separation of intact proteins. The sample loading capacity and 

peak capacity of CZE was 200 nL or lower and less than 100, respectively, in the reports 

McCool et al. Page 2

Anal Chem. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mentioned in the previous paragraph. Recently, we boosted the sample loading capacity and 

peak capacity of CZE-MS/MS to 1 μL and 280, respectively, using dynamic pH junction 

based sample stacking [20–22] for analysis of complex mixtures of intact proteins. [19] 

Duplicate CZE-MS/MS analyses of an Escherichia coli (E. coli) proteome generated 586 

±38 proteoform IDs with a 1% spectrum-level false discovery rate (FDR). [19] We compared 

the identified proteoforms from the duplicate CZE-MS/MS analyses and revealed that on 

average, about 76% of the proteoform IDs were the same in each CZE-MS/MS run, 

suggesting the good reproducibility of the CZE-MS/MS system.

Based on the previous work, we report a multi-dimensional platform with high peak capacity 

for separation of intact proteins in complex proteomes, Figure 1. The proteins in an E. coli 
lysate were first fractionated with size exclusion chromatography (SEC) into five fractions 

based on their size, Figure 1A. The proteins in each SEC fraction were further fractionated 

with RPLC into 20 fractions based on their hydrophobicity, resulting in 100 RPLC fractions 

(5×20) in total, Figure 1B. The proteins in those fractions were separated by the dynamic pH 

junction based CZE based on their size-to-charge ratios, followed by electrospray ionization 

(ESI)-MS/MS analysis, Figure 1C. The proteins in each RPLC fraction were dissolved in 5 

μL of 50 mM ammonium bicarbonate (pH 8.0) for CZE-MS/MS. The background 

electrolyte (BGE) of CZE was 10% (v/v) acetic acid (pH 2.2). The electro-kinetically 

pumped sheath flow interface was employed to couple CZE to MS.[23,24] About 10% of the 

sample (500 nL) was injected into the separation capillary for CZE-MS/MS. The SEC-

RPLC-CZE platform produced orthogonal and high-capacity separation of intact proteins. 

The peak capacity of the platform was estimated to be around 4 000 based on the full width 

at half maximum (FWHM) of protein peaks. The acquired MS/MS spectra of proteins were 

subjected to a database search using TopPIC (Top-down mass spectrometry based 

Proteoform Identification and Characterization) software for identification and 

characterization of proteoforms, [25,26] Figure 1D. Experimental details are shown in the 

Supporting Information I.

We identified over 58 000 proteoform-spectrum matches (PrSMs), 5 705 proteoforms and 

850 proteins from the E. coli proteome using the SEC-RPLC-CZE-MS/MS platform with a 

1% spectrum-level FDR. We observed reasonable protein signal from 43 RPLC fractions 

using CZE-MS/MS and the proteoform/protein IDs were from those 43 CZE-MS/MS runs. 

The corresponding electropherograms are shown in Figures S1–S9 in Supporting 

Information I. The dataset represents an order of magnitude improvement in the number of 

proteoform IDs compared with previous CZE-MS/MS studies (5 700 vs. 300–600 

proteoforms).[16,18,19] The dataset also represents the largest bacterial top-down proteomics 

dataset reported to date. The details of the identified PrSMs and proteoforms are listed in 

Supporting Information II.

We attribute the dramatic improvement in the number proteoform IDs to two major reasons. 

First, the SEC-RPLC-CZE platform produced high peak capacity (~4 000) for separation of 

intact proteins. The peak capacity is at least 4 times higher than that in previous top-down 

proteomics studies using CZE-MS/MS. [16,18,19] Second, the dynamic pH junction based 

CZE-MS/MS system had high sample loading capacity. About 10% of the proteins in each 

RPLC fraction (500 nL vs. 5 μL) was injected into the capillary for CZE-MS/MS, and the 
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sample loading volume is 2–5 times higher than previous top-down proteomics studies using 

LC-CZE-MS/MS.[16,18] Both the high peak capacity and high sample loading capacity 

benefit the identification of relatively low abundant proteins and proteoforms.

We then performed various analyses of the proteoforms and proteins that were identified 

from the E. coli proteome using the SEC-RPLC-CZE-MS/MS platform. Single-shot CZE-

MS/MS produced nearly 500 proteoform IDs from two of the 43 RPLC fractions and 

yielded 200–400 proteoform IDs from most of the RPLC fractions, Figure 2A. The number 

of cumulative proteoform IDs increased steadily with the increase of the number of RPLC 

fraction or SEC fraction, indicating the efficient pre-fractionation performance of SEC and 

RPLC, Figure 2A. SEC fractions 3–5 made greater contribution to the proteoform IDs than 

SEC fraction 1 and we did not observe significant protein signal from SEC fraction 2, Figure 

2A. The majority of the identified proteoforms had mass in a range of 10–20 kDa and 52 

proteoforms with mass bigger than 30 kDa were identified, indicating the potential of the 

platform for top-down characterization of large proteins, Figure 2B. The number of 

proteoforms per gene ranged from 1 to 345, Figure S10 in Supporting Information I. The 

detected mass shifts from the identified proteoforms ranged from −600 Da to 600 Da, 

corresponding to various modifications, e.g., protein truncations, cysteine 

carbamidomethylation (57 Da), methylation (14 Da), acetylation (42 Da), and oxidation (16 

Da), Figure S11 in Supporting Information I. We also detected N-terminal methionine 

excision and signal peptide removal.

We observed good linear correlation between the number of PrSMs and the abundance 

(ppm) of 20 randomly selected proteins in a mass range of 6–20 kDa, Table S1 and Figure 

S12 in Supporting Information I. The data suggested that the number of PrSMs of proteins 

(<20 kDa) could be used to roughly estimate their abundance in cells, which is similar to the 

spectral count idea used in bottom-up proteomics.[27] Similarly, we used the number of 

PrSMs to estimate the relative abundance of various proteoforms derived from a same gene 

and we took two genes, hdeA and hdeB, as the examples. We identified 345 proteoforms (6 

634 PrSMs) and 47 proteoforms (1 084 PrSMs) for hdeA and hdeB, respectively, Figure 

S10. For hdeA, 62% of the identified proteoforms (214 out of the 345) related to various 

truncations at the termini of the protein molecules, and 131 proteoforms had no truncations. 

The data suggest that protein truncation is one major reason for the large number of 

identified proteoforms of hdeA. The 131 proteoforms of hdeA that were not truncated 

corresponded to 87% of all the PrSMs of hdeA, and the 214 truncated proteoforms only 

accounted for 13% of the total PrSMs of hdeA. For hdeB, only 10% of the proteoforms (5 

out of the 47) related to various truncations and those proteoforms only represented 1% of 

the total PrSMs. The data clearly indicate that the majority of the hdeA and hdeB protein 

molecules in the E. coli cells have no truncations. As shown in Table S2 in Supporting 

Information I, the majority of the hdeA and hdeB protein molecules in E. coli cells had the 

mass shift as 0 Da based on their PrSM data. A small percentage of the hdeB protein 

molecules had methylation (mass shift as 14 Da), dimethylation (mass shift as 28 Da), 

acetylation (mass shift as 42 Da), or combination of methylation and acetylation (mass shift 

as 56 Da), Table S2. Those PTMs of hdeB detected here agreed well with that in one E. coli 
PTM database established recently by the Smith group using bottom-up proteomics.[28] 

Similarly, we also identified some hdeA proteoforms with the same mass shifts as the hdeB 
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proteoforms, e.g., 14 Da, 28 Da, and 42 Da. However, we could not find any PTM 

information about hdeA from UniProt database (http://www.uniprot.org/uniprot/P0AES9) 

and the E. coli PTM database in reference 28. The results here highlight the capability of the 

CZE-MS/MS based top-down proteomics for accurate characterization of proteins in cells.

We further compared the identified proteins (850) with the proteins in UniProt E. coli 
database (~4 000 proteins) in terms of the gene ontology (GO) information, Figures 2C–2D 

and Figure S13 in Supporting Information I. Our SEC-RPLC-CZE-MS/MS platform had no 

obvious bias in protein ID with respect to the biological process and molecular function 

distributions. About 36% of the identified proteins were membrane proteins and this 

percentage was only slightly lower than that in the UniProt database (43%). The data 

indicated that our platform was efficient for identification of membrane proteins. The 

percentage of proteins that located in the intracellular part, cytosol or ribosomal subunit was 

higher in the identified protein pool than that in the UniProt database.

We also compared our work with recent deep top-down proteomics studies that employed 

RPLC as the final dimension for separation of intact proteins prior to MS and MS/MS 

analysis. In our work, 5 705 proteoform and 850 protein IDs were observed from the 43 

CZE-MS/MS runs, corresponding to roughly 4 680 minutes of instrument time. Tran et al. 
combined solution isoelectric focusing (sIEF), gel elution liquid fraction entrapment 

electrophoresis (GELFrEE), and RPLC-MS/MS for top-down analysis of a human cell line, 

resulting in over 3 000 proteoform IDs from 1 063 proteins with 3 825 minutes of instrument 

time.[4] Anderson et al. identified 3 238 proteoforms and 684 proteins from human 

colorectal cancer cells using GELFrEE prefractionation followed by RPLC-MS/MS.[7] 

Overall, the data acquisition took roughly 4 960 minutes. Catherman et al. combined 

subcellular fractionation, sIEF, GELFrEE, and RPLC-MS/MS for deep top-down proteomics 

of the transformed human cell line H1299 proteome.[5] Over 5 000 proteoforms and 1 220 

proteins were identified, representing the largest top-down proteomic dataset of the human 

proteome reported to date. Hundreds of RPLC-MS/MS runs (~90 min per run) were 

performed in that study. In summary, our SEC-RPLC-CZE-MS/MS platform is comparable 

with the state-of-the-art RPLC-MS/MS based systems for deep top-down proteomics in 

terms of the number of proteoform IDs and the total instrument time.

It is noteworthy that the total CZE-MS/MS analysis time can be easily reduced via boosting 

the electric field across the separation capillary. In this work, 20 kV was applied across the 

capillary for separation, and increasing the voltage to 30 kV will improve the throughput by 

1.5 fold theoretically. In addition, in this work, we did not fully use the instrument time for 

proteoform IDs, and there was significant dead time in each CZE-MS/MS run. For instance, 

all of the identified PrSMs concentrated in a 10-min window for the RPLC fraction 15, and 

the dead time of this CZE-MS/MS run was 110 min, Figure S14A in Supporting Information 

I. As another example, the identified PrSMs spread over an 80-min window for the RPLC 

fraction 19, and about 40 PrSMs/min was approached across a 35-min window, Figure 

S14B. The dead time of that CZE-MS/MS run was still 40 min. We believe the sequential 

sample injection method that has been tested for high-throughput bottom-up proteomics 

using CZE-MS/MS recently will allow us to reduce the dead time in each CZE-MS/MS run. 

McCool et al. Page 5

Anal Chem. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.uniprot.org/uniprot/P0AES9


[29–31] Those improvements will be very helpful to increase the throughput of our SEC-

RPLC-CZE-MS/MS platform for deep top-down proteomics.

We speculate that the number of proteoform and protein IDs from the SEC-RPLC-CZE-

MS/MS platform can be significantly boosted via several improvements. First, the SEC 

separation can be further improved via simply increasing the length of the SEC column and 

employing the serial SEC method developed recently by the Ge group.[6] Second, the RPLC 

separation can be improved via investigating different RP beads and employing longer 

columns.[32,33] Third, the performance of CZE can be improved with longer separation 

capillaries (i.e., 1.5 meters) and higher separation voltage (i.e., 60 kV). Fourth, the 

improvement in mass resolution and scan speed of mass spectrometers definitely will benefit 

large-scale top-down proteomics of complex proteomes. In addition, combination of 

different protein fragmentation techniques, e.g., high energy collision dissociation (HCD),
[34] electron transfer dissociation (ETD),[35–37] and ultraviolet photodissociation (UVPD),
[38,39] will be invaluable for boosting the scale of top-down proteomics and improving the 

quality of proteoform characterization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The multi-dimensional platform with high peak capacity for separation of intact proteins in 

complex proteomes. (A) Chromatogram of an E. coli lysate after SEC separation. (B) 

Chromatogram of an SEC fraction of the E. coli lysate after RPLC separation. (C) Total ion 

current (TIC) electropherogram of an RPLC fraction of the E. coli lysate after CZE-MS/MS 

analysis. (D) Fragmentation pattern of one identified proteoform from gene hdeB after 

database search with TopPIC (Top-down mass spectrometry based Proteoform Identification 

and Characterization) software. AU=absorbance units, mAU=milli- absorbance units, 

NL=normalized level.
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Figure 2. 
Summary of the identified proteins and proteoforms. (A) The number of proteoform IDs in 

each RPLC fraction (the red colored bars); the cumulative proteoform IDs vs. the number of 

RPLC fractions (the black line with squares). The SEC fraction to which the RPLC fractions 

belong was labelled on the top of the figure. (B) Distribution of the mass of the identified 

proteoforms. (C) Distribution of the biological process of identified proteins in this work and 

the proteins in the UniProt E. coli database. (D) Distribution of the molecular function of 

identified proteins in this work and the proteins in the UniProt E.coli database. The 

“Retrieve/ID mapping” tool in the UniProt website was used to obtain the gene ontology 

(GO) information of proteins.
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