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Abstract: Motion artifacts are now recognized as a major methodological challenge for studies of func-
tional connectivity. As in-scanner motion is frequently correlated with variables of interest such as age,
clinical status, cognitive ability, and symptom severity, in-scanner motion has the potential to introduce
systematic bias. In this article, we describe how motion-related artifacts influence measures of functional
connectivity and discuss the relative strengths and weaknesses of commonly used denoising strategies.
Furthermore, we illustrate how motion can bias inference, using a study of brain development as an
example. Finally, we highlight directions of ongoing and future research, and provide recommendations
for investigators in the field. Hum Brain Mapp 00:000–000, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Since the advent of medical imaging, it has been recog-
nized that motion artifacts have the potential to degrade
image quality. In the context of task-based functional MRI,

motion has been known to impact measures of activation
for over two decades [Friston et al., 1996]. More recently,
there has been an acceleration of research regarding
covariance in fMRI time series—broadly called “functional
connectivity” MRI (fc-MRI [Biswal et al., 1995]). fc-MRI is
a powerful and versatile tool that is capable of delineating
functional brain network organization across the lifespan,
in both health and disease [Craddock et al., 2013; Fox and
Raichle, 2007; Van Dijk et al., 2010]. However, despite evi-
dence from task fMRI and other imaging modalities, for
the first 20 years of its use, investigators largely ignored
the implications of in-scanner motion for fc-MRI.

In three reports published near-simultaneously in 2012,
independent groups demonstrated that motion artifacts
can have a marked impact on fc-MRI [Power et al., 2012a;
Satterthwaite et al., 2012; Van Dijk et al., 2012]. Indeed, it
was quickly recognized that in-scanner motion had the
potential to alter inference in studies of lifespan
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development, individual differences, and clinical groups.
This prompted substantial re-evaluation of a broad array
of published research, and has spurred a proliferation of
techniques to mitigate the impact of motion artifacts on
functional connectivity. While the diversity of new techni-
ques has been welcome, it nonetheless has led to signifi-
cant confusion among investigators, and controversy
during peer review.

In this article, we seek to provide an accessible overview
of this rapidly evolving subfield. First, we begin by delin-
eating several basic properties of motion artifacts in fc-
MRI. Second, we describe common strategies for minimiz-
ing motion artifacts as during pre-processing. In particular,
we describe the relative benefits and drawbacks of using
global signal regression (GSR), an approach that has gen-
erated substantial debate in the field. Third, we summarize
recent data regarding the relative strengths and weak-
nesses of several approaches as defined by comparison to
a set of intuitive benchmarks. Fourth, we use a study of
brain development as an example of how motion artifacts
may systematically bias inference. We close by examining
limitations of current approaches and future directions for
additional research, and by providing recommendations
for investigators.

CHARACTERISTICS OF MOTION ARTIFACTS

IN FC-MRI

Understanding the characteristics of motion artifacts is
a prerequisite for identifying potentially artifactual
results and for the development of effective denoising
approaches. Accordingly, here we summarize the spatial
and temporal properties of motion artifacts. We begin
by providing a brief orientation to the ways in which
in-scanner motion is commonly measured in fc-MRI
studies.

Measurement of In-Scanner Motion

In-scanner motion is typically estimated from the func-
tional time series itself. During preprocessing, each vol-
ume of the time series is usually rigidly realigned to a
reference volume; this produces a set of 6 realignment
parameters (RPs; 3 translations, 3 rotations) describing
how much a given volume within the time series must be
moved. These realignment parameters can be summarized
as the frame displacement (FD), which is computed in rela-
tive terms versus the prior volume, thus providing a con-
cise index of volume-to-volume motion [Power et al.,
2012a]. Motion across an entire scanning sequence for a
given subject can be summarized as mean FD.

FD has been calculated in several different ways. Over-
all, measures tend to be highly correlated, but may scale
differently (Fig. 1). For example, FD as calculated by
Power et al. [2012a] is approximately twice the magnitude
the FD provided by Jenkinson et al. [2002]. Work by Yan

et al. [2013a] has shown that the matrix root mean squared
formulation derived by Jenkinson et al. aligns best with
voxel-specific measures of displacement. Below, unless
noted otherwise, the FD measures reported and displayed
in figures are calculated using FD as implemented in FSL
[Jenkinson et al., 2002].

Importantly, all such measures are based on volume-
based realignment procedures, and thus are limited in
temporal resolution, which is equivalent to the repetition
time of the image. These methods therefore do not effec-
tively capture within-volume motion. Furthermore,
realignment estimates may be inaccurate in images that
are substantially corrupted by motion-related artifacts. Per-
haps most importantly, FD measures are difficult to com-
pare across studies with different acquisition sequences.
With the advent of multiband imaging, repetition times
are often only 20% of previous sequences. However, scan-
ning faster does not obviate concerns about motion arti-
facts, and also makes FD more difficult to compare across
studies. For example, a mean FD of 0.2 mm denotes much
higher motion in a multiband sequence with a repetition
time of 600 ms compared to a standard sequence with a
repetition time of 3,000 ms. Converting FD into a stan-
dardized measure such as millimeters of RMS displace-
ment per minute would alleviate such scaling by the
acquisition TR and aid in comparisons of motion across
studies [Reuter et al., 2015].

Figure 1.

Commonly used measures of frame displacement (FD) are highly

correlated but not identical. While FD as calculated according

to Power et al. [2012a] is correlated at a level of r 5 0.99 with

the average root mean squared displacement calculated by Jen-

kinson et al. [2002], the scaling varies by an approximately 2:1

ratio. Data from the sample of 393 youth described in Ciric

et al. [2017].
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Spatial Distribution of Motion and Motion

Artifacts

To understand the spatial distribution of motion, at least
three studies have used voxel-specific measures of FD,
which can be computed directly from the image header
[Satterthwaite et al., 2013; Spis�ak et al., 2014; Yan et al.,
2013a]. As expected given the biomechanical constraints of
the neck, motion is minimal near the atlas vertebrae
(where the skull attaches to the neck) and increases with
the distance from the atlas (Fig. 2A) [Satterthwaite et al.,
2013]. Furthermore, the high motion in frontal cortex is
most likely due to the preponderance of y-axis rotation,
associated with a nodding movement. Nonetheless, the

motion as described by voxel-specific measures is quite
correlated with global (whole-brain) measures of FD (r 5
0.89; Fig. 2B) [Satterthwaite et al., 2013].

Several groups have attempted to leverage spatial het-
erogeneity of motion in the denoising process, yet these
attempts have not been shown to outperform other com-
monly used pipelines (see below). This lack of improve-
ment is most likely due to the fact that motion is highly
correlated across voxels, and results in a drop in signal
intensity across the entire brain parenchyma (Fig. 3A) [Sat-
terthwaite et al., 2013]. In contrast to signal decrements
observed in the brain parenchyma, areas at the edge of the
brain demonstrate large increases in signal, most likely
due to partial volume effects. Similar partial volume

Figure 2.

Spatial variation of motion artifacts. (A) Motion is minimal in the center of the brain, and is max-

imal in frontal cortex. (B) Voxel-specific measures of motion are highly correlated with mean FD.

Reprinted with permission from Satterthwaite et al. [2013].

Figure 3.

Spatial distribution and time course of motion artifacts. (A)

Motion reduces BOLD signal (blue, negative % signal change)

throughout the brain parenchyma, but increases signal around

the rim of brain (red, positive percent signal change). (B) Motion

produces a large reduction in global BOLD signal that is maximal

in the volume following subject movement. The magnitude of

signal reduction increases as motion amplitude increases (red,

>0.3 mm displacements; green, >0.5 mm, blue >0.7 mm).

Results are from a fixed impulse response analysis of the global

signal time series. Reprinted with permission from Satterthwaite

et al. [2013].
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effects occur at tissue class boundaries. Furthermore,
Scheinost et al. [2014] demonstrated that due to these
global effects, motion produces increased image smooth-
ness, and accounting for differences in smoothness is a
potentially effective postprocessing strategy (see below).

Temporal Properties of Motion Artifacts

With the goals of improving denoising, several studies
have examined the temporal characteristics of signal arti-
facts that result from motion. Our group demonstrated
that motion results in a substantial drop in signal immedi-
ately following the movement event, which scales with the
magnitude of motion (Fig. 3B) [Satterthwaite et al., 2013].
These signal changes are temporally circumscribed, and
maximal at the volume being acquired immediately after
an observed movement. As described below, censoring
techniques target such consistent large-amplitude artifacts
for removal.

In addition to such temporally circumscribed artifacts,
longer duration artifacts (up to 8–10 s) also occur idiosyn-
cratically in individual time series [Power et al., 2012a,
2013]. While at present the origin of these sporadic longer
duration artifacts remains unknown, some speculate that
they are due to motion-related changes in CO2 that accom-
pany yawning or deep breathing [Power et al., 2012a,
2013]. Also, it may be possible that large disruptions in
signal induced by motion may only equilibrate over such
longer durations. Finally, interactions between the specific
direction of motion and the image phase encoding plane
may also produce temporally variable results.

These data build upon prior studies that that lend
insight into the properties of motion related artifacts based
on the MRI physics of image acquisition. Crucially, many
of these effects introduce a nonlinear relationship between
the signal intensity at a particular voxel and head motion.
This is important because nonlinearities are difficult to
remove using movement of estimates based upon rigid
body (affine) models. Examples of nonlinear effects
include spin excitation history effects, which can persist
for some time after movement [Friston et al, 1996]. Other
important (nonlinear) effects include interpolation artifacts
during image reconstruction and interactions between the
magnetic field and head position, which introduce distor-
tions in EPI time series [Andersson et al., 2001; Grootoonk
et al., 2000]. As we discuss later, these nonlinear effects
motivate the use of nonlinear motion parameters in con-
found regression.

Signal Frequency of Motion Artifacts

Convergent data have demonstrated that most func-
tional connectivity signal is driven by low-amplitude fluc-
tuations [Cordes et al., 2001]. Accordingly, it is common to
use the amplitude of low-frequency fluctuations (ALFF)
[Yang et al., 2007] or fractional amplitude of low-

frequency fluctuations (fALFF) [Zou et al., 2008] as a proxy
of connectivity. To retain only frequencies in the low-
amplitude range, it is a common but somewhat controver-
sial practice [Carp, 2011], to apply a band-pass filter that
retains signals in the 0.01–0.1 Hz range [Weissenbacher
et al., 2009]. However, based on evidence suggesting that
higher frequency signals also carry connectivity informa-
tion [Fornito et al., 2011; Niazy et al., 2011], increasingly
only a high-pass filter is applied. Understanding which
signal frequencies are most impacted by motion artifacts
could help investigators decide whether or not to apply
temporal filtering, as the temporal filter could be tailored
to remove frequency bands that are most contaminated by
artifacts.

Relatively little work has focused on spectral properties
of motion artifacts. In one earlier study, we found that
motion increased the magnitude spectra across all frequen-
cies, but this effect was greater at higher frequencies [Sat-
terthwaite et al., 2013]. These results accord well with
those from a smaller independent study of adults by
Hlinka et al. [2010], who found that motion artifacts were
more prevalent at high frequencies. Discrepancies in
results from both an earlier study from our group [Sat-
terthwaite et al., 2012] and work by Yan et al. [2013] are
likely due to the use of standardization procedures (such
as z-scoring) of statistical maps in these earlier papers.

Following effective confound regression (with a 36-
parameter model and spike regression, see below), we
have found that the effect of motion is attenuated in low
frequencies but not higher frequencies (Fig. 4) [Sat-
terthwaite et al., 2013]. However, this analysis was limited
in that it only considered average effects across 160 nodes

Figure 4.

Motion increases signal magnitude at higher frequencies. When

an effective confound regression model is used (36 parameter-

s 1 spike regression), demographically matched high- and

low-motion groups diverge only at frequencies above 0.08 Hz.

Starred gray bar indicates a significant difference between magni-

tude of high- and low-motion groups at each frequency.

Reprinted with permission from Satterthwaite et al. [2013].
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covering the brain. In contrast, Kim et al. [2014] examined
1000 participants scanned as part of the Genome Super-
struct Project, and delineated the impact of motion on vox-
elwise power-spectrum maps. When the data were
processed without GSR, they found that motion was asso-
ciated with greater amplitude in both high- and low-
frequency bands, but that artifacts were particularly prom-
inent in frontoparietal and default mode networks. Once
GSR was used, they found elevated high-frequency fluctu-
ations with motion, but in fact found reduced signal
amplitude in lower frequency bands in select DMN and
frontoparietal network regions. Taken together, available
data suggests that the impact of motion is consistent at
higher frequencies, but varies at lower frequencies on a
regional basis in part due to the preprocessing applied.

Distance Dependence of Motion Artifacts

One important fact recognized by two of the initial
reports on motion artifacts in fc-MRI was that the impact
of motion on functional connectivity depended strongly on
the Euclidean distance between regions [Power et al.,
2012a; Satterthwaite et al., 2012]. Specifically, when data
were processed using GSR, motion increased the apparent
strength of short-range connections, but weakened the
apparent strength of long-range connections. This was of
particular concern for studies of development in youth, as
prior work had reported that long-distance connections
strengthened with age [Dosenbach et al., 2010; Fair et al.,
2007].

Subsequent work demonstrated that this distance depen-
dence was strongly modulated by preprocessing strategy,

especially the inclusion of GSR. As shown in Figure 5A
[Satterthwaite et al., 2013], in data processed without GSR,
motion is associated with stronger connectivity of both
short- and long-range connections. While some distance
dependence is present, it is relatively minor, with motion
producing somewhat less of an increase in connectivity in
long-range connections than short-range connections. In
contrast, in data processed with GSR (Fig. 5B), the effect of
motion on connectivity is weaker, but there is marked dis-
tance dependence [Satterthwaite et al., 2013]. When GSR is
used, motion is associated with stronger connectivity for
short-range connections, but is conversely associated with
weaker connectivity for long-range connections. This dem-
onstrates a critical tradeoff in the choice of processing
pipeline: while GSR results in reduced impact of motion
on connectivity, it tends to exacerbate distance depen-
dence. Subsequent analyses by Power et al. [2012a] and
Satterthwaite et al. [2013a] suggest that this effect relates
to the fact that the motion-induced increase in correlation
between distant regions is also shared with the global sig-
nal and can therefore be removed by GSR. In contrast,
regionally localized motion artifacts will increase local
(short-range) connectivity but cannot be readily removed
by GSR.

PROCESSING APPROACHES TO MITIGATE

MOTION ARTIFACTS

Having described certain properties of motion artifacts,
we next review common postprocessing strategies to limit
their impact on functional connectivity data. In particular,
we focus on confound regression approaches, censoring

Figure 5.

Global signal regression affects distance dependence of motion

artifacts. (A) Plot of the correlation between mean FD and pair-

wise connectivity across subjects in a network of 160 ROIs

(12,720 unique connections) versus internode Euclidean dis-

tance, when the global signal is not included in confound regres-

sion. Motion tends to increase connectivity between regions;

this effect is maximal at short ranges but is present across the

range of inter-region distance. (B) Plot of the correlation

between mean FD and pairwise connectivity in a network of

160 ROIs versus internode distance when the global signal is

included in confound regression. In this model, motion increases

connectivity between adjacent nodes, but diminishes connectivity

between more distant nodes. However, when GSR is included in

confound regression, on average the effect of motion on con-

nectivity is diminished (i.e., centered around zero). Reprinted

with permission from Satterthwaite et al. [2013].
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methods, and spatial and temporal filtering. It should be
noted that this review is not comprehensive: readers
should reference original research regarding several novel
but less-commonly used techniques, and a thorough recent
review [Caballero-Gaudes and Reynolds, 2016]. We begin
with confound regression, which remains the single most
common strategy for removing motion artifacts in func-
tional connectivity data. Many confound regression
approaches used can be loosely grouped by what signals
are regressed from the data: realignment parameters (RPs),
tissue-specific signals, the global signal, signals derived
from principal components analysis (PCA), and signals
isolated using independent components analysis. For each,
the most common implementation is to regress one or
more of these confounding signals from the functional
time series data using linear regression, and then use the
residual time series for subsequent analyses. Notably,
these techniques are not mutually exclusive, and in fact
are often applied in combination with each other and with
other de-noising.

Confound Regression: Realignment Parameters

At present, RPs remain the single most common con-
found regression technique used in fc-MRI denoising. As
noted above, 6RPs are derived from the rigid-body regis-
tration of the functional time series during realignment,
including three translations and three rotations. These 6
RPs are commonly used as nuisance regressors in both
task-based and fc-MRI analyses. To account for time lags
in motion effects, the first temporal derivative of these 6
RPs is often also included (12RP model). Furthermore,
over 20 years ago, Friston et al. [1996] proposed using a
second-order polynomial expansion of the RPs. In practice,
quadratic terms are often calculated for both the original
RPs and their temporal derivatives, thus yielding 24
parameters in total (24RP model).

Tissue-Specific Signals

Beyond RPs, it has been common practice to regress out
time series from white matter (WM) and cerebrospinal
fluid (CSF) voxels, which are impacted both by motion
and by physiological signals of no interest such as respira-
tion. Regression of mean gray matter (GM) signal is less
common, but due to its near-unity correlation with the
global signal (r> 0.97), it can be considered essentially
equivalent to GSR. The specific method used in the con-
struction of WM masks is important, as superficial white
matter signals are highly correlated with the global signal
due to partial-volume effects (r> 0.9); thus investigators
who do not erode WM masks may be applying GSR inad-
vertently [Power et al., 2016]. One alternative to using the
mean WM signal is ANATICOR [Jo et al., 2010], which
was designed to account for spatial heterogeneity in arti-
facts. The approach uses a local WM regressor for each

GM voxel, based on the average signal within an eroded
WM mask within a 15 mm radius. In theory, this tech-
nique allows confound regression to model local distur-
bances due to scanner artifacts or motion.

Global Signal Regression

Although currently most common in studies of fc-MRI,
global signal regression (GSR) was in fact previously used
in PET [Friston et al., 1990] and task fMRI research
[Aguirre et al., 1998], and in part led to the use of general
linear models for time series analyses. GSR was intro-
duced to account for large, nonphysiological shifts in the
fMRI signal [Fox et al., 2005], and rapidly became a stan-
dard part of preprocessing pipelines. It should be noted
that GSR is distinct from fMRI preprocessing steps such as
grand mean scaling (which is typically applied) and
volume-based intensity normalization (which is not com-
monly used). Use of GSR is one of the most contentious
debates in neuroimaging, and is the topic of many dedi-
cated articles [Chai et al., 2012; Fox et al., 2009; Gotts et al.,
2013; Murphy et al., 2009; Saad et al., 2012; Weissenbacher
et al., 2009]; a full account is beyond the scope of this arti-
cle, and the debate is expertly summarized in a recent arti-
cle by Murphy and Fox [2017]. However, accumulating
evidence demonstrates that GSR is a simple and highly
effective denoising technique that limits the influence of
motion artifacts in studies of functional connectivity.
GSR’s effectiveness is thought to be largely due to the fact
that in-scanner motion causes distributed drops in signal
across the brain (Fig. 3A) [Satterthwaite et al., 2013]. The
potential utility of GSR for denoising is underscored by
persuasive recent data from Power et al. [2016], who
examined over 1000 scans from 8 scanning sites, and dem-
onstrated that artifacts due to head motion, respiration,
and scanner artifacts are captured by the global signal
across datasets. Furthermore, as described below, recent
data from benchmarking studies suggests that adding GSR
to denoising pipelines mitigates the impact of motion arti-
facts [Burgess et al., 2016; Ciric et al., 2016].

PCA-Based Confound Regression: CompCor

In addition to the use of global or local confound regres-
sors derived from specific tissue classes, many studies
have used principal components analysis (PCA)-based
approaches to identify and remove confounding signals.
While PCA could be applied to the complete whole-brain
voxelwise time series, the two most common PCA
approaches attempt to isolate parts of the image that are
thought to be more strongly impacted by motion and
other noise. Behzadi et al. [2007] introduced two variants
of this method as part of the popular CompCor technique
[Behzadi et al., 2007]: anatomic CompCor (aCompCor) and
temporal CompCor (tCompCor). In aCompCor, a PCA is
performed on voxelwise CSF signals and eroded WM,
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whereas in tCompCor, high-noise regions are identified by
their temporal standard deviation. In Behzadi et al. [2007],
the number of principal components included was deter-
mined using Monte-Carlo simulations (yielding a mean of
4–6 regressors per subject). Building on this work,
Muschelli et al. [2014] proposed a variant of aCompCor
where components explaining the top 50% of signal vari-
ance were retained (for WM and CSF separately); this
approach performed better than using a fixed set of 5
regressors across both WM and CSF.

Independent Component Analysis

ICA is a blind source separation technique that seeks to
detect mixed signals derived from nearly independent
sources. ICA is among the most commonly used techni-
ques for defining intrinsic connectivity networks at the
group level, typically by concatenation of subject time
series [Beckmann et al., 2005; van de Ven et al., 2004]. At
the group level, ICA yields spatial maps of functional net-
works that are present across individuals. However, ICA
can also be used for subject-level denoising, where the
time series of noise components are regressed from the
data [Bhaganagarapu et al., 2013; Kochiyama et al., 2005;
Tohka et al., 2008]. When ICA is applied to data from indi-
viduals, the number, spatial distribution, and temporal
characteristics of ICA components vary substantially.
Owing to the lack of correspondence of components across
individuals, several techniques have been developed to
identify and remove noise components from single-subject
data, which can broadly be grouped as classifiers that
require labeled components and automated algorithms.

While many ICA-based denoising techniques have been
described, at present, only two have been directly evalu-
ated for the control of motion artifacts in studies of func-
tional connectivity. In a pair of papers, Salimi-Khorshidi
et al. [2014] and Griffanti et al. [2014] introduced and vali-
dated ICA-FIX, which is the standard denoising technique
for the Human Connectome Project [Smith et al., 2013].
This approach uses a multilevel machine learning classifier
to identify noise components with high accuracy. How-
ever, this classifier requires labeled training data, ideally
from the same scanner and acquisition protocol; use of
detailed published procedures for manually identifying
noise components aid in this time-consuming process
[Griffanti et al., 2016]. In contrast, ICA-AROMA identifies
noise components using a predefined set of features that
are extracted automatically from the image [Pruim et al.,
2015a, 2015b].

Temporal Censoring

All the techniques surveyed thus far (RPs, WM signals,
GSR, PCA, and ICA) are variants of confound regression,
and differ mainly in their approaches to identifying noise
signals. In addition to regression of nuisance time series, a

number of temporal censoring methods are commonly
used to reduce the impact of motion artifacts, where
motion-corrupted volumes are identified and either
excised or interpolated. These approaches include scrub-
bing [Power et al., 2012a, 2012b, 2013], spike regression
[Satterthwaite et al., 2013], and despiking techniques [Jo
et al., 2013; Patel et al., 2014]. While these techniques have
many similarities, approaches differ in the way motion-
corrupted data is identified, what threshold for removal is
used, how many volumes are removed, and whether inter-
polated data is retained in the final time series. One poten-
tial solution to the problem of thresholding spike
regression is the use of a variance-weighting approach
that deweights time points along a continuum on the basis
of signal quality and the presence of detected artifact [Die-
drichsen and Schadmehr, 2005]. Although not yet applied
to rsfc-MRI data, such an approach could integrate the vir-
tues of a temporal censoring approach but without the
need to select an arbitrary threshold for designating the
presence of a spike.

Scrubbing and spike regression are highly similar as
implemented in most recent approaches: while scrubbing
literally excises motion-corrupted time series, spike regres-
sion removes the influence of that volume in the confound
regression step by adding a binary regressor indexing each
time point where motion occurs. Scrubbing interpolates
flagged volumes temporarily before filtering and subse-
quent removal, ultimately concatenating noncorrupted time
series [Power et al., 2012a, 2012b, 2013]. In contrast, spike
regression interpolates corrupted volumes [Satterthwaite
et al., 2013]. In both approaches, motion-corrupted data are
typically identified using an FD threshold, a signal change
threshold, or a combination of the two. Signal change has
been most commonly calculated using the DVARS metric
introduced by Power et al. [2012b], which indexes the RMS
intensity difference across volumes. As typically used, FD-
and DVARS-based criteria flag entire volumes for removal
as part of spike regression or scrubbing. Over time, the
threshold for the scrubbing applied has become more strin-
gent [Power et al., 2012a, 2012b, 2013].

Similarly, there has been substantial variability in the
amount of adjacent data removed in spike regression and
scrubbing. To eliminate longer duration artifacts associated
with motion, the most commonly implemented version of
scrubbing removes one volume before and two after a
motion event [Power et al., 2012a, 2012b, 2013]. In contrast,
our group typically removes only a single corrupted vol-
ume as part of spike regression, allowing retention of
more data [Satterthwaite et al., 2013]. This is motivated by
data from Satterthwaite et al. [2013a], where we found
that including spike regressors to cover a larger temporal
window did not provide additional denoising benefit (Fig.
6). Furthermore, we found that identifying motion spikes
using a dual-criterion FD 1 DVARS approach did not pro-
vide additional benefit beyond a single-criterion (FD-only)
approach. However, these results do not fully accord with
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data from Power et al. [2013], suggesting that optimal cen-
soring parameters may potentially vary by dataset.

In contrast to scrubbing and spike regression, which
remove or adjust all voxels in particular volumes, despik-
ing techniques have been implemented to be spatially
adaptive, so that motion-induced signal changes can be
selectively removed from voxels affected by artifact. Des-
piking techniques identify signal spikes in voxel-level time
series using measures such as the local median absolute
deviation (as implemented in AFNI) [Cox, 1996]. One
promising approach uses wavelet decompositions to iden-
tify and then remove spikes in the data [Patel et al., 2014].
This approach has been shown to be superior to standard
despiking methods, but does require parameter tuning
[Patel and Bullmore, 2016]. It should be noted that all tem-
poral censoring operations have the potential to alter both
the signal dynamics and the autocorrelation structure of
the time series data.

Temporal and Spatial Filtering

In contrast to the proliferation of confound regression
and censoring approaches, temporal and spatial filtering
approaches have received less attention. As noted above,
prior work has demonstrated that motion tends to result
in increased signal amplitude at higher frequencies [Sat-
terthwaite et al., 2013]. However, such effects are clearly
dependent on the confound regression strategy used: data
processed using pipelines with lower order confound
regression or with pipelines that do not include GSR show
less-frequency-band selectivity, with motion being associ-
ated with higher signal amplitude across a wide range of

frequencies [Kim et al., 2014; Satterthwaite et al., 2013].
Thus, one strategy for mitigating the impact of motion is
to use a low-pass filter that removes higher frequencies
that are more susceptible to motion. However, this strat-
egy remains controversial as any connectivity information
present at higher frequencies will be lost [Niazy et al.,
2011]. Indeed, a recent paper by Vergara et al. [2016] sug-
gests that multivariate classification performance may be
improved when higher frequencies are retained (up to
0.24 Hz), although it is unknown if such effects are driven
in part by the subtle influences of data quality. Further-
more, it is not known how generalizable such frequency-
specific effects are across different acquisition protocols
that vary in their repetition time: data from both Sat-
terthwaite et al. and Kim et al. used single-band echopla-
nar imaging, rather than new multiband sequences that
provide a great increase in temporal resolution. One pitfall
that should be uniformly avoided is performing confound
regression on band-pass filtered time series with regres-
sors that have not been filtered in the same manner, which
can reintroduce artifactual signals in the very frequency
bands that were removed by the band-pass filter [Hall-
quist et al., 2013].

To our knowledge, only one study has examined the
impact of spatial filtering on motion artifacts. Scheinost
et al. [2014] demonstrated that higher motion data has
greater smoothness, and that smoothing each dataset to a
uniform degree of smoothness can reduce the effect of
motion artifacts on functional connectivity. In this approach,
higher motion data, which starts out with greater smooth-
ness due to the presence of artifacts, receives less additional
smoothing than lower motion data.

Figure 6.

Confound regression of motion spikes. Spike regression was

evaluated using a single-criterion identification method (FD, mea-

sured as mean relative RMS displacement in FSL; grey diamonds)

and a dual-criteria method (FD 1 DVARS; black circles). These

two methods were tested over a range of windows (xb, yf

denotes x TRs before spike, y TRs after spike). The single-

criterion approach without an expanded temporal window

(0b,0f) produced the least number of significantly different con-

nections between high- and low-motion groups (A) and the low-

est mean absolute correlation between FD (mean relative

displacement) and functional connectivity (B). Reprinted with

permission from Satterthwaite et al. [2013].
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Putting It All Together: Common Combinatorial

Approaches

The techniques described above need not be applied in
a mutually exclusive fashion. For example, the pipeline
most commonly used in our group uses expansions of the
global, white matter, and CSF signals in addition to the
realignment parameters (36 parameter model; called “36P”
below) and spike regression [Satterthwaite et al., 2013]. In
contrast, the minimal preprocessing pipeline used by the
HCP does not use GSR, but includes 24 realignment
parameters and ICA-FIX [Smith et al., 2013]. However,
recent work by Burgess et al. [2016] suggests that a GSR
analog (mean grey ordinate time series) can improve
denoising when added to ICA-FIX. Given the many techni-
ques available and their myriad combinations, the choice
of a denoising strategy has understandably led to confu-
sion among investigators, reviewers, and the field at large.
In the next section, we summarize a recent effort from our
group to evaluate denoising pipelines according to several
intuitive benchmarks.

COMPARING CONFOUND REGRESSION

METHODS

Benchmarks of Denoising Success

Before comparing denoising pipelines, one must first
define success. Several different outcome measures have
been used in existing denoising studies. First, the single
most intuitive benchmark is the residual relationship with
motion, which can be quantified as the correlation between
functional connectivity and in-scanner motion after denois-
ing (or “QC–FC” correlation). This correlation is generally
taken across subjects. In other words, if subjects who
move more show more (or less) functional connectivity, it
is assumed that a portion of functional connectivity can be
attributed to movement. Second, prior work has shown
that the use of certain denoising pipelines (especially ones
that use GSR) can help mitigate QC–FC correlations but
simultaneously result in distance-dependent motion artifacts.
Distance dependence is thus a useful secondary bench-
mark, and can be quantified as the correlation between
internode Euclidean distance and the effect of motion on
connectivity (i.e., the slope of the QC–FC correlation over
distance). Third, to ensure that denoising does not remove
a substantial amount of signal along with motion-related
noise [Bright and Murphy, 2015], it is useful to evaluate
network identifiability. Network identifiability can be sum-
marized as network modularity quality (Q) [Newman,
2006], which quantifies the degree to which structured
subnetworks are present; prior studies have also used
overlap with a priori templates [Pruim et al., 2015a, 2015b].

In addition to these three measures, other benchmarks
have been proposed and may be of substantial utility. Test–
retest reliability is a particularly appealing measure. At pre-
sent, there is relatively limited data on test–retest reliability

of different denoising pipelines [Yan et al., 2013a, 2013b] as
large-scale within-subject designs with repeated measure-
ment remain uncommon. Moving forward, this will cer-
tainly change as investigators begin to capitalize upon the
enormous resources provided by the Consortium of Reli-
ability and Reproducibility (CORR) [Zuo et al., 2014], which
includes 5,093 scans across 1,629 participants. However, it
should be cautioned that test–retest reliability should not be
evaluated in isolation: because in-scanner motion itself is
relatively consistent within individuals across scanning ses-
sions, there is the potential for residual motion effects to
artifactually enhance test–retest reliability. An additional
benchmark that may be appealing is discriminability, which
summarizes the degree to which a given pipeline enhances
sensitivity to group or individual differences. Relatively lit-
tle prior work has used this outcome measure, which has
intuitive appeal (see Vergara et al. [2016] for one example).
However, as for test–retest reliability, discriminability
should explicitly be evaluated in the context of other bench-
marks, as group or individual differences could be inflated
by the differential presence of residual noise across individ-
uals or groups, as certain groups (such as children, older
adults, and many patient groups) are more likely to move
during the scan.

It must be emphasized that the research hypothesis
should dictate the choice of benchmark used. For example,
in developmental and psychiatric neuroimaging, it is often
a primary concern that motion will confound individual or
group differences, leading to type I error. For these stud-
ies, it is reasonable to prioritize a QC–FC benchmark. In
contrast, for studies of network topology that are not
focused on individual differences, minimizing distance
dependence may be a reasonable priority. Thus, the proc-
essing pipeline should be chosen in accordance with the
goals, and no single pipeline will be appropriate for all
studies.

In this section, we summarize recent work evaluating
the performance of 14 commonly used pipelines (Fig. 7) in
a sample of 393 youth aged 8–22 who underwent neuroim-
aging as part of the Philadelphia Neurodevelopmental
Cohort (PNC) [Calkins et al., 2015; Satterthwaite et al.,
2014, 2015]. Note that pipelines that require substantial
training (i.e., ICA-FIX) or parameter tuning (i.e., wavelet
despiking) were not evaluated. For each of these 14 pipe-
lines, we examined the residual relationship with motion,
distance dependence, and network identifiability in two
different node systems (for full details, see Ciric et al.
[2017]). As described below, denoising pipelines have clear
tradeoffs when multiple benchmarks are evaluated jointly.

Denoising Pipelines Have Differential Efficacy in

Limiting Associations of Connectivity and Motion

A primary benchmark is the residual relationship
between motion (estimated prior to preprocessing) and
connectivity after preprocessing, which can be quantified
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as the percentage of edges exhibiting a significant QC–FC
relationship. As shown in Figure 8, no pipeline completely
abolished the relationship between head movement and
connectivity. However, different approaches exhibited
widely varying degrees of efficacy, with high convergence
among the two node systems evaluated. The top four con-
found regression strategies all included 36 confound
parameters, which comprised an expansion of GSR, tissue-
specific regressors (WM and CSF), and realignment param-
eters (36P model). Beyond this 36-parameter model, all
censoring techniques provided some additional benefit,
reducing the number of edges that were significantly
related to motion to <7% (and <1% in some cases).

In contrast, many commonly used pipelines performed
much less well, as demonstrated by a majority of edges
that had a significant relationship with motion even after
denoising. For example, 89% of edges were impacted by
motion after employing a simple confound model using 6
RPs; the performance of the commonly used 24P model
comprised an expansion of the RP parameters was simi-
larly dismal (88% edges). There was no great benefit for
use of the local WM regressor included in ANATICOR
(77% edges), which in fact performed substantially worse
than a model that included the mean WM signal (39%
edges). Furthermore, different CompCor approaches using
PCA demonstrated markedly divergent performance. Spe-
cifically, PCA of WM and CSF in aCompCor clearly out-
performed PCA performed within voxels identified by
their temporal characteristics (tCompCor; 13% vs 70%
edges). Similar to findings reported by Burgess, who

found that addition of a GSR-analog improved perfor-
mance of ICA-FIX, we found that adding GSR to ICA-
AROMA reduced the residual relationship with motion
(28% significant edges without GSR, 13% with GSR).
Somewhat to our surprise, the classic 9-parameter denois-
ing model that includes 6RPs, WM, CSF, and GSR per-
formed relatively well (13%).

Notably, the top-performing pipelines all included GSR.
The effectiveness of GSR is most likely due to the nature
of motion artifact itself: in-scanner head motion tends to
induce widespread reductions in signal intensity across
the entire brain parenchyma (see “Spatial distribution of
motion artifacts,” above). Recent data from Power et al.
[2016] demonstrate that such artifacts are highly reproduc-
ible across datasets, and are effectively modeled by GSR.
Beyond GSR, a second strategy that clearly minimizes
QC–FC relationships is temporal censoring. All three cen-
soring variants we evaluated (including scrubbing, spike
regression, and despiking) aided in denoising, above and
beyond GSR.

Global Signal Regression Aids Denoising But

Results in Distance Dependence

While the relationship between motion and connectivity
is a reasonable primary benchmark for denoising pipe-
lines, it should not be considered in isolation. Another
benchmark that has received considerable attention is the
distance dependence of motion artifacts. Two of the initial
studies of motion artifacts demonstrated that in-scanner

Figure 7.

Schematic of the 14 denoising models evaluated. For each of the 14 models indexed at left, the

table details which processing procedures and confound regressors were included in the model.

Denoising models were selected from the functional connectivity literature and represented a

range of commonly used strategies. Reprinted with permission from Ciric et al. [2017].
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motion resulted in higher connectivity for short-range con-
nections, and diminished connectivity for long-range con-
nections [Power et al., 2012a; Satterthwaite et al., 2012].
However, both of these initial reports included GSR in
preprocessing; subsequent work showed that this distance
dependence varied by preprocessing pipeline. Thus, dis-
tance dependence is a valuable measure to consider along-
side QC–FC relationships. In particular, one prior paper
focused on this outcome measure, and suggested using a
local WM regressor to minimize distance dependence [Jo
et al., 2013]. While this approach did result in minimal

distance dependence, this was a consequence of lack of
efficacy across all distances (i.e., 77% of edges showing a
significant relationship with motion).

We found that both GSR and censoring appeared effec-
tive in minimizing QC–FC relationships, but they exhib-
ited divergent relationships with distance dependence
(Fig. 9). While temporal censoring techniques consistently
minimized distance dependence, GSR was associated with
increased distance dependence. In fact, models that
include GSR (9-parameter, 36-parameter) had among the
greatest distance dependence. However, it is important to

Figure 8.

Number of edges significantly related to motion after denoising.

Successful denoising strategies reduced the relationship between

connectivity and motion. The number of edges (network connec-

tions) for which this relationship persists provides evidence of a

pipeline’s efficacy. (A) The percentage of edges significantly related

to motion (FDR Q< 0.05) in a 264-node network [Power et al.,

2011]. Fewer significant edges is indicative of better performance.

(B) The percentage of edges significantly related to motion

(Q< 0.05) in a second, 333-node network [Gordon et al., 2014].

(C) Renderings of significant edges with QC-FC correlations of at

least 0.2 for each denoising strategy, ranked according to efficacy.

Strategies that include regression of the mean global signal are

framed in blue and consistently ranked as the best performers.

Reprinted with permission from Ciric et al. [2017].
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underscore that the distance dependence associated with
GSR is not the result of worsening associations with
motion in certain connections. Instead, GSR denoises with
differential efficacy, with better performance for long-
distance connections than for short-range connections.
This is most likely because GSR effectively captures global
artifacts which impact signal in distant brain regions. In

contrast, GSR is less effective at removing regionally spe-
cific artifact, which can specifically impact short-range cor-
rections. The resulting distance dependence that occurs
with GSR can be mitigated by the addition of temporal
censoring, with scrubbing demonstrating the greatest effi-
cacy compared to spike regression or despiking (perhaps
due to removing more volumes).

Figure 9.

Distance dependence of motion artifacts after denoising. The

magnitude of motion artifacts varies with the Euclidean distance

separating a pair of nodes, with closer nodes generally exhibiting

greater impact of motion on connectivity. (A) The residual dis-

tance dependence of motion artifacts in a 264-node network

[Power et al., 2011] following confound regression. (B) The

residual distance dependence of motion artifacts in a second,

333-node network [Gordon et al., 2014]. (C) Density plots indi-

cating the relationship between the Euclidean distance separating

each pair of nodes (x axis) and the QC–FC correlation of the

edge connecting those nodes (y axis). The overall trend lines for

each denoising strategy, from which distance dependence is

computed, are indicated in red. For each plot, the ordinate is

rescaled to the data; thus, the ordinate does not reflect the

width of the distribution of QC–FC correlations. The best-

performing models either excised high-motion volumes (36-

parameter 1 scrubbing) or used more localized regressors (ICA-

AROMA and wmLocal). In general, approaches that made use of

GSR without censoring resulted in substantial distance depen-

dence. This effect was driven by differential efficacy of denoising,

with effective denoising for long-range connections but not

short-range connections. Reprinted with permission from Ciric

et al. [2017].
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The model that resulted in nearly zero distance depen-
dence was ICA-AROMA. However, it should be noted
that data processed using ICA-AROMA included substan-
tially greater residual relationships with motion than mod-
els that included GSR and censoring (i.e., 28% compared
to <1%). Furthermore, when GSR was added to ICA-
AROMA, there were less edges related to motion but at a
cost of an increased distance dependence, which surpassed
that seen with the 36-parameter 1 scrubbing pipeline.

Effective Denoising Enhances Network

Identifiability

In any denoising process, it is important to evaluate the
robustness of residual signal, not just the presence of residual
noise. For example, a nonspecific denoising pipeline could
potentially minimize the relationship between motion and
connectivity, but also remove valuable signal simultaneously.
Accordingly, a third benchmark to consider is network identifi-
ability. In Ciric et al. [2017], we operationalized this idea by
calculating the modularity quality of the network, which
quantifies the presence of structured subnetworks in the data.
As displayed in Figure 10, the 4 models that exhibited the
strongest residual relationship with motion (6RPs, 24RP,
wmLocal, and tCompCor) also were impaired in their ability
to reveal functional modules. This suggests that the presence
of motion artifacts reduce network identifiability, most likely
by blurring signal across functional communities.

Similarly, many of the models that yielded the best
results in terms of minimizing the residual relationship
with motion artifacts (i.e., QC–FC, as above) also per-
formed well in terms of network identifiability. For exam-
ple, models that combined higher order confound

regression (36P) and temporal censoring tended to have
high network identifiability. Among temporal censoring
techniques, spike regression and despiking performed bet-
ter than scrubbing. Together, these results go some dis-
tance to allay the concern that these models are overly
aggressive and risk removing too much signal along with
motion-related noise.

Finally, both the 9P model and ICA-AROMA performed
quite well in terms of network identifiability. In fact, the
network modularity for the 9P model was numerically
higher than both 36P 1 despike and 36P 1 spike regression.
However, the difference was quite negligible, and any small
marginal benefit in terms of network identifiability should
be considered in the context of substantially inferior denois-
ing efficacy. Overall, these results emphasize that there is
not a clear tradeoff between denoising efficacy and network
identifiably. Rather, models that fail to provide effective
denoising tend to have poor network identifiability, and
pipelines that successfully mitigate the influence of motion
artifacts also allow preserved signal related to subnetwork
structure. While speculative, we expect that there is likely
to be an “inverted-U” shaped relationship between denois-
ing aggressiveness and network identifiability. However,
the present data suggest current models only sample the
“ascending limb” of this curve, and current techniques are
not so aggressive that subnetwork topology is removed.

CONTROLLING FOR MOTION IN GROUP

LEVEL ANALYSES

When faced with potentially confounding residual
effects of motion on connectivity, investigators have

Figure 10.

Identifiability of network structure after denoising. Although

denoising approaches remove motion artifacts from BOLD time

series, it is possible that they also remove signal of interest. We

quantified the retention of signal of interest using the modularity

quality of the denoised connectome. (A) The modularity quality

in a 264-node network [Power et al., 2011] following confound

regression. (B) The modularity quality in a second, 333-node

network [Gordon et al., 2014]. ICA-, GSR-, and tissue class-

based models performed relatively well, while models that

allowed substantial noise to be retained (tCompCor, 6P, wmLo-

cal, 24P; see Fig. 8) were less able to identify network substruc-

ture. Reprinted with permission from Ciric et al. [2017].
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frequently included motion as a covariate in group-level
analysis. However, by definition, this approach will
impede detection of connectivity features that are related
to both the subject-level variable of interest (e.g., age, dis-
ease status) and motion. Thus, inclusion of this as a model
covariate is likely to reduce power, and potentially “over-
control” for artifacts. This possibility is supported by data
showing connectivity differences in individuals who have
a propensity for higher motion, even on independent scans
where motion was matched to a comparator group [Zeng
et al., 2014].

Given this effect, it is preferable to control for motion
artifacts during subject-level processing. However, in large
datasets with substantial statistical power, there may be a
significant residual relationship with motion even when
an effective processing pipeline was used. Thus, it is
essential to include sensitivity analyses where motion is
included as a group-level covariate, and also report associ-
ations with both the subject variable of interest (age, clini-
cal group, and so forth) and also the imaging measures of
interest. It should be noted that a linear FD covariate will
not control for nonlinear effects of motion or interactive
effects with other subject-level variables (e.g., group by
motion interactions) unless they are specifically modeled
[Power et al., 2013]. Indeed, as illustrated by the example
in the next section, combining a less-effective preprocess-
ing pipeline and a single linear group-level covariate may

not provide adequate protection against the confounding
effects of motion. One potential alternative to co-varying
for motion is to instead correct for changes in global con-
nectivity (GCOR) [Saad et al., 2013]; a highly similar
approach is to co-vary for the mean of the connectivity
matrix in group-level regression (mean regress) [Yan et al.,
2013a, 2013c]. However, given the strong relationship
between motion and mean connectivity, many of the same
caveats described above regarding inclusion of mean FD
as a covariate may be relevant for GCOR and mean
regress strategies as well.

THE CONFOUNDING IMPACT OF MOTION

ARTIFACTS ON INFERENCE

Given the clear heterogeneity in the efficacy of com-
monly used denoising pipelines, it is not surprising that
preprocessing choices can have a substantial impact on the
conclusions of a study. This is particularly problematic
when motion is strongly associated with the subject-level
variable of interest, such as age, sex, group status, or dis-
ease severity. As described below, recent studies have
emphasized the degree to which motion can confound
such inference.

The potential confounding effects of motion have been
investigated most thoroughly in studies of brain

Figure 11.

Inadequate denoising inflates apparent associations with develop-

ment in youth. (A) Using a sample of 780 youth imaged as part

of the PNC, the chart displays the number of statistically signifi-

cant connections (FDR Q< 0.05) within a network of 34,716

unique edges [Power et al., 2011]. Age effects were evaluated

across four different analysis procedures, varying factors of

subject-level confound regression and group-level covariation of

motion. Standard confound regression included 9 parameters (6

realignment parameters 1 global, WM, CSF time courses);

improved confound regression included 36 parameters (i.e.,

standard parameters 1 their temporal derivatives, quadratic

terms, and quadratic of derivative) and spike regression. Age

effects were investigated at the group level either without a

motion covariate or with motion (mean relative displacement)

added as a covariate. Sex was included as a covariate in all mod-

els. (B) Graphical representation of the 42 connections that dis-

played significant age effects following improved preprocessing

and group-level analysis with a motion covariate. Owing to the

large number of FDR-corrected significant connections, only

connections that surpassed a Bonferroni-corrected statistical

threshold (corrected P< 0.05, uncorrected P< 1.4 3 1026) are

displayed. Reprinted with permission from Satterthwaite et al.

[2013].
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development, where motion has a strongly negative associ-
ation with age (i.e., younger kids move more). Indeed, two
of the initial three reports regarding motion artifacts in
functional connectivity highlighted the degree to which
motion could inflate apparent developmental effects
[Power et al., 2012a; Satterthwaite et al., 2012]. For exam-
ple, in Satterthwaite et al. [2014], we evaluated apparent
age-related changes in connectivity, comparing a
“standard” denoising pipeline (Fox et al. [2005]; the 9-
paramter model, which includes 6RPs, WM, CSF, and
GSR) and an “improved” pipeline (36-parameter model 1 -
spike regression) [Satterthwaite et al., 2013]. Furthermore,
for each model, we examined age effects with and without
the inclusion of mean FD as a group-level model covariate.
In this sample, age has a small but highly significant corre-
lation (r 5 20.19, P< 0.001) with motion, even after strin-
gent exclusion criteria are applied (i.e., a mean FD of
0.2 mm). As shown in Figure 11, this collinearity between
age and motion can markedly inflate apparent develop-
mental associations with connectivity. While denoising
with the 9P model and no FD covariate resulted in
approximately 15% of edges having a significant (FDR
Q< 0.05) association with age, use of the 36P 1 spike
regression model and a group-level FD covariate reduced
this to <5% of edges. Critically, simply adding a group-
level FD covariate to the 9P model did not yield equiva-
lent results; the 9P 1 covariate model had more significant
associations with age than a 36P 1 spike regression model,
even without a group-level FD covariate. Furthermore,
subsequent work has shown that the 9P model in fact out-
performs many other commonly used pipelines, sugges-
ting that age effects would be much more inflated if
models such as tCompCor, wmLocal (ANATICOR), or 24P
were used.

Other studies have demonstrated that the potential con-
founding effects of motion are not specific to studies of
development. For example, in a recent paper using data
from the Human Connectome Project, Siegel et al. [2016]
demonstrated that observed associations between func-
tional connectivity and various cognitive measures includ-
ing fluid intelligence were inflated through their shared
association with motion. Associations between connectivity
and IQ were highly significant when using the default
HCP pipeline, and markedly reduced when denoising
strategies including GSR and censoring were applied.

CONCLUSIONS

While there has been rapid progress in understanding
the impact of in-scanner motion on studies of functional
connectivity, it should be emphasized that most current
studies of motion artifacts and denoising (and all reviewed
here) have primarily considered postprocessing strategies to
mitigate the influence of artifact in data that has already
been acquired. However, improvements in data acquisition
have the potential to measure motion more accurately,

reduce the presence of motion artifacts, and also aid in
denoising. Moving forward, measuring motion from optical
technologies may greatly improve the temporal resolution
and accuracy of movement qualification. In terms of image
acquisition, one promising approach is the use of dual
[Bright and Murphy, 2013] or multiecho acquisitions
[Kundu et al., 2013, 2015]. These techniques allow a better
separation of signal and noise in the time series. Similarly,
it should be emphasized that almost all data reviewed here
were acquired using standard BOLD sequences that did not
utilize multiband acquisition techniques. While certain stud-
ies (such as Burgess et al. [2016]) suggest that similar effects
are likely to occur with multiband data, this clearly merits
further verification.

Additionally, while existing research suggests that motion
impacts all commonly used measures of functional connec-
tivity [Satterthwaite et al., 2012; Yan et al., 2013b], it remains
poorly described whether certain outcome measures are
more resistant to such artifact. For example, it is not known
whether network edges defined using a Pearson’s correlation
(the most common method) are more or less impacted by
motion than alternative approaches such as coherence [Gu
et al., 2015], mutual information [Zhou et al., 2009], or other
measures of functional connectivity. Robust techniques that
deweight motion-related time series outliers could potentially
be quite advantageous, but have not been rigorously investi-
gated. Similarly, it remains unknown how recently devel-
oped network-level representations such as sparse
connectivity patterns [Eavani et al., 2014] compare to stan-
dard procedures such as ICA.

Additionally, further research is needed to understand
how generalizable denoising results are across acquisition
sequences and scanning platforms. While one recent
large-scale study regarding the impact of motion artifacts
on the global signal suggests that associations are likely
to be highly similar across acquisitions and sites [Power
et al., 2016], replication of benchmarking results in multi-
ple datasets would help ensure generalizability and
increase investigator confidence in choosing a denoising
pipeline. However, preliminary results from a large-scale
study that includes 13 datasets and 64 processing pipe-
lines suggest substantial convergence with several of the
results reported here, including the benefit of GSR (Vogel-
stein and Milham, Personal Communication; see https://
github.com/neurodata/discriminability/blob/master/Draft/
discriminability.pdf).

These caveats notwithstanding, recent work emphasize
the marked performance heterogeneity of commonly used
pipelines. Notably, both GSR and temporal censoring tech-
niques seem to be effective methods for minimizing the
residual relationship between functional connectivity and
motion artifacts. When GSR is used, investigators should
be aware of worsening the distance dependence of motion
artifacts. However, it should be emphasized that this is
due to differential denoising efficacy, and GSR does not
induce motion artifacts. In contrast, temporal censoring
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mitigates such distance dependence, thus enhancing the
benefits of pairing censoring with GSR. Furthermore, avail-
able data suggest that the theoretical tradeoff between
denoising and signal preservation is not particularly prob-
lematic for most commonly used pipelines. Indeed, motion
artifacts tend to obscure network topology, and pipelines
that allow artifacts to be retained thus tend to have low
network identifiability. Conversely, pipelines that combine
GSR and censoring both minimize the relationship
between motion and connectivity, and simultaneously
allow better detection of functional subnetworks.

In considering available strategies, investigators should
be aware of their relative strengths and weaknesses.
Clearly, the relative merit of each approach will vary by
research question and study design. For example, in stud-
ies of network organization, minimizing distance depen-
dence and maximizing network identifiability may be of
most interest. In these cases, ICA-AROMA appears to be
an excellent choice, as it has high network identifiability
and low distance dependence. In contrast, for studies of
group or individual differences, minimizing QC–FC rela-
tionships is likely to be of paramount importance so as to
limit the possibility of Type I error driven by motion arti-
facts. As illustrated above, this is a particularly relevant
concern for studies of brain development, where motion is
systematically related to age. For such studies, models that
include both GSR and censoring are a good choice.

Last, it cannot be overemphasized that use of a given
confound regression pipeline does not alter the need for
investigators to investigate and transparently report rele-
vant data regarding associations with motion. Simple and
intuitive plots are available for subject-level exploration
[Power, 2016]; while QC–FC plots are undeniably useful,
group-level statistics should not be a replacement for care-
ful examination of subject-level data. Furthermore, all
papers should clearly report the relationship between
motion and both key subject variables and functional con-
nectivity measures. Providing this information is a neces-
sary prerequisite for confidence that reported findings are
not driven by motion artifacts; group-level sensitivity anal-
yses incorporating motion as a covariate are also helpful.
Moving forward, there is no doubt that additional gains
will accrue in this rapidly moving subfield. However, in
the meantime, such transparency remains critical.
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