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Abstract

In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in 
vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to 

study the impact of a distinct cell type in health and disease as well as performing therapeutic drug 

screens on a human genetic background. In particular, clinical trials for Alzheimer’s disease (AD) 

have been often failing. Two of the potential reasons are first, the species gap involved in 

proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying 

patient stratification, meaning subgrouping patients based on the disease severity due to the lack of 

phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our 

understanding of disease subtypes in AD. They allow researchers conducting in depth 

characterization of neural cells from both familial and sporadic AD patients as well as preclinical 

screens on human cells.

In this review, we briefly outline the status quo of iPS cell research in neurological diseases along 

with the general advantages and pitfalls of these models. We summarize how genome-editing 

techniques such as CRISPR/Cas will allow researchers to reduce the problem of genomic 

variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then 

focus on current techniques for the differentiation of iPS cells into neural cell types that are 

relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture 

systems will be important for understanding AD phenotypes in a complex cellular milieu, and how 

both two- and three-dimensional iPS cell models can provide platforms for drug discovery and 

translational studies into the treatment of AD.
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1. Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder associated with 

severe memory impairments and has become the 6th leading cause of death in the United 

States (www.alz.org). The first case of AD was published in 1907 by Dr. Aloysius “Alois” 

Alzheimer, who described a 51-year-old woman with serious memory loss. Post-mortem 

analysis of her brain showed severe brain atrophy and neuronal loss, as well as the presence 

of dense extracellular deposits and intracellular aggregates within neurons (Alzheimer, 1911; 

Graeber, et al., 1997). These features were eventually identified as amyloid plaques and 

neurofibrillary tangles, respectively (Glenner and Wong, 1984; Grundke-Iqbal, et al., 1986; 

Kosik, et al., 1986), and the condition became known as Alzheimer’s Disease (Kraepelin, 

1910).

Amyloid plaques are extracellular accumulations of β-amyloid (Aβ) peptides that are 

derived from the proteolytic processing of the β-amyloid precursor protein (APP) 

(Goldgaber, et al., 1987; Kang, et al., 1987; Robakis, et al., 1987; Tanzi, et al., 1987). The γ-

secretase complex cleaves APP at different positions, generating different size 

amyloidogenic peptides Aβ43, Aβ42, Aβ40, Aβ38, and Aβ37 (De Strooper, 2010). Of these, 

Aβ40 is the most abundant in both healthy and AD brain tissue, whereas the Aβ42 variant has 

been shown to be likely the most deleterious (Jarrett, et al., 1993; Portelius, et al., 2010). 

Much of our understanding of the mechanisms underlying AD pathology comes from a 

small population of individuals with early-onset familial AD (fAD). These cases harbor 

causal mutations involving primarily the Aβ processing enzymes, presenilin 1 and 2 

(PSEN1, PSEN2), which are part of the γ-secretase complex (Levy-Lahad, et al., 1995; 

Levy-Lahad, et al., 1995; Rogaev, et al., 1995; Schellenberg, et al., 1993), or mutations 

within or duplications of the APP gene itself (Goate, et al., 1991; Goate, 2006; St George-

Hyslop, et al., 1987).

The second defining characteristic of AD is the presence of neurofibrillary tangles (NFTs) 

comprised of intracellular accumulations of the microtubule-associated protein tau in 

affected neurons (Ballatore, et al., 2007). The extent of tau pathology in human AD has been 

shown to correlate well to disease severity (Braak and Braak, 1991). Mutations in the gene 

encoding tau (MAPT) have been found to be causal for fronto-temporal dementia, although 

MAPT mutations have not been described in AD (Hutton, et al., 1998; Spillantini, et al., 

1998). Overexpression of tau protein in mouse models has been shown to disrupt 

intracellular trafficking (Zhang, et al., 2006), to induce axonal degeneration (Spittaels, et al., 

1999), and the humanized tau overexpression leads to neurofibrillary tangles formation in 
vivo (for review, see (Götz, et al., 2007)). A number of promising drugs have reached late-

stage (Phase III) clinical testing, however then failed to prevent cognitive decline (Doody, et 

al., 2013; Doody, et al., 2014; Salloway, et al., 2014). The reasons are likely twofold: first, 

the lack of human data for the successful stratification (separating patient population) 

according to disease phenotypes and/or genetic risk profiles (Blennow, 2010; Wolozin, 

2012), and second, the species gap. Risk factors present in humans may not be adequately 

modeled in rodents. For example, while variants in the APOE gene are the strongest genetic 

risk factors for sporadic AD identified to date (Bertram, et al., 2008; Corder, et al., 1993; 

Farrer, et al., 1997), the rodent genome has only one version of this gene.
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A number of elegant mouse models have allowed the study of AD phenotypes in vivo in the 

brain, and have resulted in the basis of our current mechanistic understanding of the disease. 

However, a common drawback to these models is that they typically only capture specific 

aspects of AD phenotypes such as Aβ or NFTs, but rarely the entire disease spectrum 

(Webster, et al., 2014). Moreover, most mouse models focus only on the causative mutations 

in familial AD (fAD), such as those in the genes encoding presenilin 1 and 2 (PSEN1, 
PSEN2) and the amyloid-precursor protein (APP). These cases represent an extremely small 

percentage of the overall human AD burden; though models of fAD are invaluable, the 

majority of AD cases are sporadic (sAD). The genetic underpinnings of sAD may result 

from a combinatorial or additive effect of single nucleotide polymorphisms (SNPs) 

identified in genome-wide association studies (GWAS) (Lambert, et al., 2013), while disease 

penetrance may depend on a host of non-genetic risk factors, such as age, head trauma, 

diabetes, lifetime stress, and environmental toxins, amongst others. Studying the distinct 

impact of AD-associated SNPs in mouse models is challenging, as these variants are often 

found in non-coding regions of the human genome. Using even the latest and most rapid 

genome editing techniques to insert multiple SNPs in homologous mouse genome regions 

would be onerous, expensive, and could be considered a highrisk undertaking. It is often not 

known whether a single SNP is disease causing, or whether it’s a combination of several 

SNPs particularly as a number of different SNPs are commonly ascribed to a single locus.

2. Human induced pluripotent stem (iPS) cells

We will summarize the history, generation, and differentiation of human iPS cells only 

briefly, as many excellent reviews have covered these topics (Bouwman and de Laat, 2015; 

Parent and Anderson, 2015; Telias and Ben-Yosef, 2014). One fundamental question in the 

regeneration field is to find cells that maintain the capability to differentiate into the three 

germ layers: endoderm, mesoderm, and ectoderm. Embryonic stem (ES) cells have this 

“pluripotency” capability (Evans and Kaufman, 1981; Martin, 1981; Thomson, et al., 1998). 

However, ethical issues tempered the initial excitement for human ES cells and therefore 

alternative strategies were needed (Hotta, 2008; Kamm, 2005). An important step was the 

discovery that the content of an oocyte’s cytoplasm contained factors crucial for 

reprogramming somatic cells to an embryonic-like stage (Cowan, et al., 2005; Tada, et al., 

2001; Wilmut, et al., 1997). Takahashi et al. screened 24 of these factors and demonstrated 

that Oct3/4, Sox2, c-Myc, and Klf4 induced pluripotent stem cells from adult mouse 

fibroblasts (Takahashi and Yamanaka, 2006). A year later, the same group showed that they 

could reprogram human fibroblasts with these four “Yamanaka factors” into human 

pluripotent stem cells (Takahashi, et al., 2007). Other groups have generated similarly 

pluripotent cells from other peripheral cells, such as blood cells (Okita, et al., 2013) or urine-

derived epithelial cells (Zhou, et al., 2012).To distinguish these pluripotent stem cells from 

ES cells, the cells were named “induced pluripotent stem” (iPS) cells. Currently, much 

debate exists over the best method for reprogramming somatic cells into iPS cells, as well as 

how to assess the “stemness” of an iPS cell as compared to an ES cell line (Bock, et al., 

2011; Hanna, et al., 2010; Lister, et al., 2011). It is important to keep in mind that exogenous 

factors, genetic background, and epigenetic of tissue origin of cells influences naïve 

pluripotency (Hanna, et al., 2010). Therefore certain differences on the epigenetic landscape 
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are expected to exist between ES and iPS cells (Bock, et al., 2011; Lister, et al., 2011). 

Nevertheless, the advent of iPS cells allows to generate any cell type of interest from a 

patient’s own somatic cells and to develop patient-specific drug treatments. Moreover, these 

techniques offer a nearly unlimited supply of human cells that can be deposited in 

repositories and shared between laboratories.

3. Advantages to modeling neurological disease with iPS cells

The study of human brain disease is hampered by obtaining live material. The ability to 

generate neural cultures from post-mortem human brains depends greatly on the quality of 

the post-mortem brain tissue (Verwer, et al., 2002). Prolonged agonal states such as hypoxia, 

coma, or ischemic brain damage could add confounding variables to these studies 

(Monoranu, et al., 2009). This is not to mention the sheer difficulty of gaining access to 

reliable sources of human brain tissue. The generation of human iPS cells is one way to 

surmount these limitations. Protocols have been developed to differentiate iPS cells in vitro 
into distinct cell types allowing researchers to examine disease onset and progression 

directly in a human culture model (see Fig. 1) (Liu et al., 2012; Sandoe and Eggan, 2013). A 

number of studies have shown successful reprogramming of iPS cells from fibroblasts 

derived from individuals with various neurological diseases such as amyotrophic lateral 

sclerosis (Dimos, et al., 2008), familial dysautonomia (Lee, et al., 2009), Parkinson’s disease 

(Park, et al., 2008; Soldner, et al., 2009), Rett syndrome (Marchetto, et al., 2010), 

schizophrenia (Brennand, et al., 2011), spinal muscular atrophy (Ebert, et al., 2009; Yoshida, 

et al., 2015), ADA-SCID, Gaucher disease type III, Duchenne muscular dystrophy, Becker 

muscular dystrophy, Down syndrome, Juvenile diabetes mellitus, Huntington disease 

(Consortium, 2012; Zhang, et al., 2010), and Lesch-Nyhan syndrome (Mattis, et al., 2015; 

Park, et al., 2008) and AD (Choi, et al., 2014; Hossini, et al., 2015; Iovino, et al., 2015; 

Israel, et al., 2012; Koch, et al., 2012; Kondo, et al., 2013; Muratore, et al., 2014; Wren, et 

al., 2015; Yagi, et al., 2011; Table 1).

4. Drawbacks of iPS cells in neurological disease modeling

The explosion in human iPS cell use has underscored the need to establish standardized 

protocols, as cell handling and other factors can influence phenotypes (Boulting, et al., 

2011). For example, variable X-inactivation in cells from female donors can have an impact 

upon both differentiation and phenotype (Boulting, et al., 2011). Also, there is still debate 

regarding to what extent DNA methylation profiles, and other epigenetic attributes, might be 

maintained in iPS cells after reprogramming (Kim, et al., 2010; Koche, et al., 2011; Nazor, 

et al., 2012; Ohi, et al., 2011). To determine the magnitude and nature of variability amongst 

human iPS cells, (Bock, et al., 2011) performed a human genome-wide reference mapping 

of the DNA methylation across 20 ES and 12 iPS cell lines. They established two scorecards 

for evaluating the quality and utility of human pluripotent cell lines; this kind of tool is 

crucial to the standardization of iPS protocols and is needed to obtain comparable and 

reproducible results.

Genetic diversity within and between populations, as well as disease onset and progression, 

can impact the experimental read-out from iPS cells (Rouhani, et al., 2014; Soldner and 
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Jaenisch, 2012). For example, common DNA variants may alter expression levels and 

pattern of many human genes (Majewski and Pastinen, 2011). Some groups have sought to 

overcome this diversity by focusing either on few phenotypes in a large collection of lines 

(Bock, et al., 2011; Rouhani, et al., 2014; Yoshimizu, et al., 2015), or by investigating robust 

phenotypes in a smaller cohort (Chung, et al., 2013; Israel, et al., 2012). Each iPS cell study 

is challenged by the question of to what extent the observed phenotypes are related to the 

disease being modeled. For example, is the phenotype influenced by protective or 

exacerbating factors in the individual’s genotype? Recent advances in genome editing 

techniques, particularly the use of Cas9 nuclease-based strategies, have made the generation 

of isogenic iPS cell practicable (F. Zhang et al., 2014; Y. Zhang et al., 2014; D. Zhang et al., 

2014) and this technology can address the variability inherent in the human genome to some 

extent.

5. Creating isogenic iPS cell lines as a strategy to overcome variability in 

human genomes

The advent of homology-directed repair techniques for genome editing proved a major 

advance in our ability to manipulate the human genome. Currently, three systems have been 

established to perform DNA repairdirected genome editing: Zinc-Finger-Nucleases (ZFN), 

transcription activator-like effector nucleases (TALENs), and the clustered regularly 

interspaced short palindromic repeats (CRISPR) system that uses the Cas9 nuclease. All 

these nucleases induce guided DNA breaks. The repair of these breaks then either leads to 

insertion or deletion (indel) mutations, or the break can be repaired by homologous 

recombination with a donor vector carrying the desired mutation (Byrne, et al., 2014). For a 

detailed review of the function of each of the nucleases, please refer to the reviews from 

(Hsu, et al., 2014; Sander and Joung, 2014) as well as to descriptions of experimental 

strategies and protocols for human pluripotent cells in particular (Byrne, et al., 2014; Chiba 

and Hockemeyer, 2015; Zhu, et al., 2014).

The first generation of enzyme-directed genome editing used ZFNs. A number of important 

papers used the first generation ZFNs to generate isogenic iPS cells (Carroll, 2011; Urnov, et 

al., 2010)) by knocking down genes such as PITX3 (Hockemeyer, et al., 2009) or PIG-A 
(Zou, et al., 2009), or correcting disease-related mutations in genes such as α1-anti-trypsin 

(Yusa, et al., 2011), α-synuclein (SCNA;(Ryan, et al., 2013; Soldner, et al., 2011), and tau 

(MAPT(Fong, et al., 2013). However, the success of this technique is limited due to the 

challenging design of a robust engineered zinc finger nuclease (Hsu, et al., 2014; Ma, et al., 

2015; Sander and Joung, 2014). The development of the second generation TALEN 

technique overcame some of the limitations of the ZFNs by being less context-dependent 

and easier to design (Joung and Sander, 2013; Miller, et al., 2011; Sander and Joung, 2014), 

while the efficiency is similar between the two paradigms (Hockemeyer, et al., 2011). 

Human iPS models established with TALEN technology include manipulations in the 

APOB, SORT1, AKT2, PLIN1 (Ding, et al., 2013), PSEN1 (Woodruff, et al., 2013), and 

DISC1 (Wen, et al., 2014). The third generation of genome editing tools is comprised of the 

CRISPR/Cas9 systems, which are based on the use of the RNA-guided Cas9 nuclease 

(Jinek, et al., 2012; Mali, et al., 2013; Ran, et al., 2013). One major advantage of the 

Mungenast et al. Page 5

Mol Cell Neurosci. Author manuscript; available in PMC 2018 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CRISPR system is that the Cas9 component is fixed, and the targeting sequence is supplied 

via a single-guide RNA (sgRNA); thus, targeting sequences can be easily exchanged or 

multiplexed by testing multiple sgRNAs (Ding, et al., 2013). Several groups generated iPS 

cells that stably or inducible express the Cas9 protein. This system allows for rapid cell-

based screens to test the consequences of multiple gene knockdowns using sgRNA libraries 

(Shalem, et al., 2014; Wang, et al., 2014; Zhu, et al., 2014). Algorithms have been developed 

that predict off target effects of CRISPR-mediated genome editing, which, combined with 

falling costs for deep sequencing, allow researchers to minimize off-target effects (Hsu et al., 

2013; Tsai et al., 2015; Slaymaker et al., 2015).

The advantage of isogenic lines is that only the disease-associated difference is studied, as 

the genetic background of the lines should be identical. While this is ideal for the study of 

disease causative mutations, other genetic variants, such as a haplotype of SNPs, are more 

difficult to model because they may only be relevant to disease risk in combination. 

Therefore, it seems advisable to both correct the mutation of interest in a patient-derived cell 

line, while in parallel introducing it in a control line. Techniques using mutated Cas9 linked 

to transcriptional activators or repressors also allow us to examine the consequences of 

enhanced or suppressed expression of specific genes without alterations to the genome itself 

(Qi, et al., 2013). Therefore, genome editing will be an important strategy to minimize the 

effect of background variations in human iPS cell-derived lines.

6. iPS cells as a model for understanding AD onset and disease 

progression

In the following chapter, we will focus on studies that use iPS cells to model AD-like 

phenotypes (summarized in Table 1). The two hallmark characteristics of AD in the human 

brain are first, accumulation of β-amyloid (Aβ) peptides into extracellular aggregates (Aβ 
plaques), and second, the intracellular accumulation of phosphorylated species of the 

microtubule-associated protein tau into neurofibrillary tangles (NFTs). Both parameters can 

be measured in vitro: alterations in the presence of Aβ peptides can be measured from 

culture medium or cell lysates, and the ratios between different species of Aβ peptides, such 

as the amount of Aβ40 versus Aβ42, are often reported. To examine tauopathy in AD cellular 

models, the abundance of different species of phosphorylated tau (pTau) is normalized 

against total tau levels. Other AD-like phenotypes that can be measured in cultured cells will 

also be discussed, including endosome cycling and DNA damage.

6.1. Phenotypic characterization of iPS cell AD models

Several groups have succeeded in creating functional neurons from fAD and sAD iPS cells: 

In 2011, Yagi et al. used fibroblasts of fAD patients with mutations in either presenilin 

isoform PSEN1 (A246E) or PSEN2 (N141I; Yagi, et al., 2011). Using retrovirus carrying a 

five-factor reprogramming mix of OCT4, SOX2, KLF4, LIN28 and NANOG, they created 

iPS cells that were then differentiated mainly into neuronal cells. After two-week culturing, 

they observed an elevated ratio of Aβ42 to Aβ40 for the fAD lines compared to controls. The 

authors did not find any level of tauopathy, and speculated that the two-week maturation 

time may have been too short. Treatment of the cultures with the y-secretase inhibitors 
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Compound E and Compound W reduced both Aβ40 and Aβ42 levels, while only the highest 

dose of Compound W appeared to impact the Aβ42/40 ratio. This study was the first to 

establish a model of fAD phenotypes in iPS cell-derived neural cultures. However the 

drawbacks of this work might be the relatively short time of neuron maturation as well as the 

potential high variability between clones of the same genotype.

In 2012, Israel et al. provided a thorough evaluation of AD-like phenotypes in multiple iPS 

cell-derived neurons from both fAD and sAD individuals (Israel, et al., 2012). They used 

retrovirus carrying the four Yamanaka factors OCT4, SOX2, KLF4, and c-MYC to create 

iPS cells lines from healthy, non-demented individuals, two sporadic AD patients, and two 

familial patients, who carried APP duplications. Neural progenitor cells were purified using 

fluorescence activated cell sorting and differentiated into heterogeneous neuronal cultures. 

They observed increased secreted Aβ40 in neurons created from one sAD and the two fAD 

lines. Importantly, the Aβ levels did not differ in fibroblasts from the same individuals, 

supporting the idea that only distinct iPS-derived cells can model disease-specific 

phenotypes. No changes were observed in the Aβ42/40 or Aβ38/40 ratios between cell lines, 

although the authors noted that detection of the less abundant Aβ42 and Aβ38 species were 

often below the detection range of the assay due to the small number of neurons. In a similar 

pattern, one sAD and both fAD lines showed increased phospho-tau and activation of the tau 

kinase GSK3β. Treatment of the neuronal cultures with γ- and β-secretase inhibitors 

reduced Aβ40 in one sAD and one fAD line, while only β-secretase inhibitors lowered the 

levels of active GSK-3β, and phospho-tau. Another AD phenotype that can be characterized 

in iPS cell-derived cultures is the presence of abnormal endosomes. Large, RAB5-positive 

early endosomes have been observed in AD mouse models and in the brains of sAD and 

fAD patients (Cataldo, et al., 2001; Cataldo, et al., 2000). These endosomes may contain 

aberrantly phosphorylated Aβ (Lee, et al., 2003). Impaired endocytic and mitochondrial 

trafficking has also been observed in iPS cell models of frontotemporal dementia (FTD) 

using cells from patients carrying mutations in the MAPT gene (Iovino, et al., 2015; Wren, 

et al., 2015). Israel et al. examined early endosome morphology in iPS-derived neurons 

seeded onto a layer of commercially-available human astrocytes, and found that the number 

of medium to large RAB5+ endosomes was increased in neurons derived from one sAD and 

one fAD compared to the two controls, when they examined early endosome morphology in 

iPS-derived neurons seeded onto a layer of commercially-available human astrocytes. 

Finally, they measured synapse formation and function. No differences were apparent in 

synapse number (synapsin immunoreactivity) or function (voltage clamp recordings) 

between the AD and control lines.

In 2013, Kondo et al. used episomal vectors to generate iPS cells from dermal fibroblasts 

from both sAD patients and fAD patients carrying the APP-V717L or the APP-E693Δ fAD 

mutations (Kondo, et al., 2013). The E693Δ mutation leads to early-onset AD, but without 

amyloid deposition. Differentiated E693Δ neurons showed decreased Aβ40 and Aβ42 

compared to controls, while neurons from the V717L line have increased extracellular Aβ 
and an increased Aβ42/40 ratio. No significant Aβ secretion was detectable in the medium of 

the sAD lines. The authors then established astrocyte-rich cultures using protocols modified 

from Su-Chun Zhang’s work (Krencik and Zhang, 2011). Astrocytes from the E693Δ line 

and one of the sAD lines accumulated Aβ oligomers intracellular. They performed gene 
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expression profiling of the astrocyte/neuronal co-cultures from E693Δ and control cells and 

observed that oxidative stress-related categories were upregulated in the AD lines, 

suggesting ER and Golgi perturbation. The levels of these genes were reduced following 

treatment with DHA, known to alleviate oxidative stress, as well as the production of ROS, 

in E693Δ cells, without altering the levels of Aβ.

Fong et al (2013) used zinc-finger nucleases (ZFNs) to correct a A152T mutation in the 

MAPT gene (tau), as well as to create an isogenic line homozygous for the mutation, in iPS 

cells (Fong, et al., 2013). Following neuronal differentiation, the heterozygous mutant tau 

neurons showed short, misshapen neurites with punctate tau and significant phospho-tau 

immunoreactivity. These phenotypes were absent in the corrected lines, and were 

significantly exacerbated in the homozygous mutant lines, which showed high degrees of 

phospho-tau (AT8) and blebbing of the neurites. While they found a low percentage of 

dopaminergic cells (DA) in the mutant lines, the corrected isogenic lines had 4 to 8-fold 

increased number of DA neurons.

In addition to lines derived from AD patients, several groups have overexpressed fAD 

mutant versions of PSEN1 or APP in healthy iPS or ES cell lines (Choi, et al., 2014; Koch, 

et al., 2012). For example, neurons created from a human ES cell line were transduced, as 

neuroepithelial-like stem cells, with lentivirus carrying cDNAs for PSEN1wt, PSEN1D385n, 

or PSEN1L166P under control of the EF1alpha promoter (Koch, et al., 2012). By four weeks 

of neuronal differentiation, most of the β-III tubulin-positive cells were highly 

immunoreactive for APP. Interestingly, the inclusion of Exon 15 of APP, a splice variant 

associated with neurons, was present in neurons after 4 weeks compared to undifferentiated 

cells. Extracellular Aβ level was reduced in these neuronal cultures following treatment with 

the γ-secretase inhibitor DAPT. In addition, NSAIDS, such as ibuprofen, slightly lowered 

Aβ levels only in the PS1wt, but not the PS1D385N, overexpressing neurons. One early 

screening effort used commercially available iPS cell-derived neurons (iCell Neurons) to 

screen a library of several hundred compounds for their ability to ameliorate toxicity from 

exogenously applied Aβ (Xu, et al., 2013).

To date, most studies model AD in patient-derived iPS cells utilize cell lines with defined 

fAD mutations in PSEN1 and APP. While some studies include cells from sAD patients, the 

lack of a defined mutation means that isogenic lines cannot be made, and often information 

is lacking as to the severity or course of disease progression. Two studies in which sAD lines 

were included observed disease phenotypes similar to fAD cells in only one of two sAD 

samples (Israel, et al., 2012; Kondo, et al., 2013). Few studies include sAD lines, and this is 

a concern, as sporadic late-onset AD represents the vast majority of AD cases. And while 

60–80% of sAD may in fact have genetic underpinnings (Gatz, et al., 2006), one’s APOE 
genotype remains the only robust factor affecting sAD risk. These issues add to the call for 

development of AD biomarkers that can predict disease risk and age of onset. Much work 

has begun in this direction, and large-scale human genome-wide association studies (GWAS) 

combined with mouse and human epigenetic and transcriptome profiling, have derived lists 

of genes in which variants are consistently associated with an increased risk of AD 

(Bertram, et al., 2007). These genes tend to be implicated in vesicle trafficking/endocytosis, 

immune function, and cholesterol metabolism (for review see Olgiati, et al., 2011)). One 
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recent study (Young, et al., 2015) focused upon iPS cells derived from individuals with sAD-

associated variants in the SORL1 gene, which encodes a protein involved in endocytic 

trafficking, and whose loss of expression has been observed in sAD brains. The authors 

found that the induction of SORL1 expression by brain-derived neurotrophic factor (BDNF) 

treatment, as well as the effect of SORL1 expression upon Aβ secretion, was affected by 

SORL1 genotype in differentiated human neurons. While these studies were hampered by 

significant variability, which was combated by the inclusion of a relatively large number of 

cell lines, it was the first to describe a phenotype in human iPS cell-derived neurons 

resulting from sAD-associated genetic variants. With the increased feasibility of genome 

editing in iPS cells, particularly to create point mutations, we anticipate that the near future 

will see many more reports elucidating the roles of sAD risk variants in iPS cell-derived 

neural cell models.

6.2. AD phenotypes in Down syndrome iPS cells

Down Syndrome (DS) patients show a high incidence of early-onset AD-like dementia (40–

60%). The underlying reasons for this are not clear, but are presumably related to the 

triplication of the APP gene, as well as the tau kinase Dyrk1a gene (Woods, et al., 2001) on 

chromosome 21 (Beyreuther, et al., 1993; Burger and Vogel, 1973; Lemere, et al., 1996; 

Rumble, et al., 1989). Therefore, neural cell models from DS individuals may improve both 

our understanding of AD-like pathology, as well as providing hope for therapies for DS 

(2013). To date, no genome editing protocols have been reported that allow for the 

correction or induction of trisomy in iPS cell models. However, the rare occurrence of 

monozygotic twins discordant for trisomy 21 (Hibaoui, et al., 2014), as well as creation of 

iPS cell lines from individuals with mosaic DS (Murray, et al., 2015; Weick, et al., 2013), 

and the spontaneous reversion to disomy 21 in a DS iPS cell line (Maclean, et al., 2012), 

provide us with isogenic lines with which to study this disorder. An early paper (2008) 

demonstrated AD-like deficits in endocytic function in fibroblasts from DS individuals 

(Cataldo, et al., 2008). In 2012, the Livesey group created iPS cells from one DS patient and 

one control and examined them for AD-like pathology (Shi, et al., 2012). Interestingly, the 

DS line secreted far higher levels of both Aβ40 and Aβ42 as fibroblasts, than did control 

cells. Following two months in neuronal culture, aggregates of Aβ42 were detected in the DS 

cultures using live staining with the thioflavin T analog, BTA1 and immunocytochemistry 

against Aβ42. A twenty-one day treatment with DAPT nearly abolished both species of Aβ 
production in the DS neurons. Tau pathology was also evident in neurons differentiated from 

DS iPS cells, detectable as an abnormal distribution of phospho-tau within the neurons as 

well as secreted tau in the medium of DS cultures only. Synapse formation did not appear to 

differ between neurons from DS and control individuals.

Chang et al (2015) created neurons from both hES cell and iPS cell lines (Chang, et al., 

2015). Similar to Shi et al, the authors found increased immunoreactivity for Aβ and 

phosphorylated tau. Treatment with n-butylidenephthalide (Bdph), an activator of Wnt 

signaling, delivered via coated nanoparticles, ameliorated AD-like phenotypes in these 

cultures. Recently, accelerated aging phenotypes were reported in neurons derived from DS 

iPS cells compared to isogenic controls (Murray, et al., 2015). Unlike previous models, these 

cells exhibited differences in proliferation and differentiation. Consistent with earlier 
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reports, the DS iPS cell-derived neurons had increased Aβ immunoreactivity in fixed 

cultures, but did not appear to differ electrophysiologically from controls. The DS neurons 

also exhibit mitochondrial dysfunction and increased DNA damage compared to the 

controls. This last phenotype is particularly interesting, and the failure of neurons to 

maintain their genomic integrity appears to be a hallmark both of normal aging and of 

neurodegenerative disease (Dobbin, et al., 2013; Goto, 1997; Hasty, et al., 2003; Kim, et al., 

2008; Lovell and Markesbery, 2007; Lu, et al., 2004; Sahin and DePinho, 2010; Wang, et al., 

2013). In conclusion, iPS cell-derived neurons from DS individuals may be useful for 

modeling phenotypes that are similar between AD and aging in DS, as these cells appear to 

exhibit both amyloid and tau pathology as well as phenotypes such as endosome dysfunction 

and DNA damage.

7. Disadvantages in modeling AD with iPS cells

7.1. Aging in iPS cells

Work by several groups has suggested that reprogramming of the iPS cells “re-set” the 

epigenome, and that other phenotypes associated with cellular aging, such as mitochondrial 

function and telomere length, are returned to a “juvenile-like” state (Mahmoudi and Brunet, 

2012; Miller and Studer, 2014). This raises the question: can we model phenotypes 

associated with aging in human neural cells (Isobe, et al., 2014)? Transplantation studies of 

human neuronal progenitor cells (NPCs) into the rodent brain have suggested that the human 

neural cells mature on a human, rather than a rodent, timeline (Espuny-Camacho, et al., 

2013). However, simply allowing iPS cells-derived neural cells to age in vitro is 

impracticable and expensive. Therefore, several groups have begun to explore the possibility 

of accelerated aging in these model systems. One approach is to derive iPS cells from 

individual with Hutchinson-Gilford Progeria syndrome (HGPS), which maintain a truncated 

product of the mutated LMNA gene, progerin, which triggers fast aging (Blondel, et al., 

2014; Liu, et al., 2011). Liu et al found that the deleterious progerin protein was absent in 

HGPS patient-derived cells in the iPS cell stage (Liu, et al., 2011). However, upon 

differentiation to smooth muscle cells, the disease phenotype of progerin accumulation, as 

well as its ageing-associated cellular defects, were recapitulated. In place of using patient 

cells, progerin can also simply be overexpressed in iPS cells to induce age-related 

phenotypes such as DNA damage and mitochondrial dysfunction (Miller, et al., 2013). 

Increases in DNA damage have also been observed in iPS cells derived from individuals 

with Werner Syndrome, an accelerated aging disorder arising from mutations in the WRN 
gene, which encodes a DNA helicase (Shimamoto, et al., 2015).

Instead of progerin overexpression, other “stimulating” factors might be used, which activate 

aging pathways. An interesting example has been shown for cardiomyocytes from 

differentiated iPS cells of patients with arrhythmogenic right ventricular dysplasia. These 

cells were exposed to a three-factor cocktail, which activates PPARa and leads to increased 

fatty acid oxidation instead of glycolysis (Wen, et al., 2015). In this way, the authors 

recapitulate the adult cardiomyocyte-like metabolism in these cells, which could be pushed 

to the desired disease pathologies by further treatment with PPARγ activators. Although 

these techniques appear to induce aging phenotypes in iPS cell derivatives, we first have to 
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understand the underlying association of aging with AD to incorporate systematic 

approaches to age neurons.

7.2. Neuronal maturation

In all iPS cell approaches, it is necessary to confirm the maturity and the functionality of the 

derived neurons. While some studies in neurodegenerative disorders use nestin and Pax6-

positive NPCs as a kind of proxy to neurons (Hossini, et al., 2015), others have gone to 

lengths to demonstrate the degree to which iPS cell-derived neurons model in vivo human 

neurons (Israel, et al., 2012). The most common methods to confirm neuronal differentiation 

and matureness are a combination of immunocytochemistry and electrophysiology (Israel, et 

al., 2012; Nieweg, et al., 2015): Mature neurons should show the ability to fire action 

potentials when depolarized under current clamp, as well as demonstrating spontaneous 

excitatory and inhibitory postsynaptic currents under single-cell patch-clamp. 

Immunocytochemistry for synaptic vesicle proteins, such as VGLUT1, VAMP2, 

synaptobrevin, and synapsin, are indicative for mature functional synapses (Marchetto, et al., 

2010; Nieweg, et al., 2015). One early screening effort emphasized the need to create mature 

neuronal cultures for reliable drug assays (Yahata, et al., 2011). Thus, one major challenge to 

researchers is to provide neuronal cultures that are both mature enough to be representative 

of adult brain neurons, while being abundant enough for multiple types of assays. 

Occasionally the presence of disease mutations may hamper efforts to create human neural 

cell models of disease. For example, neurons created from patient-derived iPS cells carrying 

FTD mutations in MAPT have been shown to mature more quickly than control lines, while 

at the same time displaying disease phenotypes such as hyperphosphorylated Tau (Iovino, et 

al., 2015). In contrast, another group using iPS cell-derived neurons carrying the same 

MAPT mutation (N279K) reported that these cells had deficits in neuronal maturation 

compared to control lines (Wren, et al., 2015). The issue of altered proliferation and/or 

differentiation of neural progenitor cells and neurons seems particularly troublesome in 

work with Down syndrome lines (Hibaoui, et al., 2014; Murray, et al., 2015).

7.3. Culture heterogeneity and disease phenotypes

Another important aspect is that in several studies it is not obvious to what extent the 

reported neuronal cultures contain other cell types, nor whether heterogeneous cultures may 

encourage neuronal differentiation (Sandoe and Eggan, 2013; Shi, et al., 2012; Shi, et al., 

2012). While pure cultures of neurons can form synapses and display connectivity, they may 

not mature fully in the absence of astrocytes or glial-conditioned medium (Pfrieger, 2009; 

Pfrieger and Barres, 1997; Ullian, et al., 2004). Along these lines, some groups have found 

that the addition of astrocytes to iPS cell-derived neuronal cultures enhances the ability to 

obtain mature neurons (Odawara, et al., 2014; Zhang, et al., 2013); this is an area of active 

debate and constant methodological improvement. Overall, it is necessary to fully 

characterize the cell type matureness as well as the heterogeneity of neural cultures derived 

from iPS cells. In this regard, the advent of three-dimensional neural cultures derived from 

human iPS cells may be particularly beneficial as discussed later.

Finally, a major challenge is to generate a distinct cell type to study its involvement in a 

disease phenotype. It is hypothesized that only a certain subset of cells fails in many 
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neurological diseases, for example, a subpopulation of dopaminergic cells in Parkinson’s 

disease (Sandoe and Eggan, 2013). Moreover, the phenotypes displayed by cells bearing 

physiological mutations, such as familial AD mutations, may often be less robust than those 

obtained via the experimental overexpression of mutant proteins. One study compared the 

effect of compound treatment on neural cells from fAD patients to either heterologous cell 

lines overexpressing fAD APP, or human control ES-derived neural cells overexpressing 

mutant APP. They observed that concentrations of indomethacin that reduced Aβ42/40 

robustly in the heterologous cells, and more modestly in the APP-overexpressing human 

cells, had no effect on the human neural cells carrying endogenous fAD mutations (Mertens, 

et al., 2013). Most researchers who use patient-derived iPS cells carrying familial mutations 

will be familiar with this issue of comparatively mild disease phenotypes, at least compared 

to models of gene overexpression or knockdown. Fortunately, the use of isogenic lines with 

corrected disease alleles may, by reducing variability between lines, allow for the reliable 

measurement of even modest phenotypes. The increased use of three-dimensional tissue 

culture systems (see Section 8), may also facilitate disease phenotypes by concentrating 

protein aggregates and other cellular products in a tissue-like environment that can still be 

imaged or assayed with ease.

In addition to the issue of variability between iPS cell-derived lines in assays of disease 

phenotypes, we are faced with the growing awareness that other cell types must be created to 

model AD in these systems. For example, in the last decade, it has become obvious that glia 

cells have an important impact in disease onset and progression. Thus, our basic science 

interests demand that we increase the complexity of our cellular models to adequately 

represent the disease, while at the same time we are tasked with the production of simplified 

systems that are amenable to applications such as drug screening.

8. Differentiation of iPS cells to study cell type-specific impact toward 

neurological diseases

Generation of iPS cells typically serves as a starting point to differentiate them into various 

brain-specific cell types such as neurons or glial cells. Each cell lineage develops, when a 

combination of exogenous morphogens are applied at distinct time points during 

development of the iPS cells (Liu and Zhang, 2011). An alternative strategy is the 

overexpression of cell type-specific transcription factors (B. Zhang et al., 2013; Y. Zhang et 

al., 2013). In the following, we focus on examples of the successful generation of neuronal 

and glial cell types from human iPS cells.

8.1. Differentiation to distinct neuronal cell types

The initial iPS cell study by Takahashi et al. demonstrated the successful generation of 

neuronal cells from iPS cells (Takahashi, et al., 2007). It is now common to perform 

neuronal differentiation (Denham and Dottori, 2011), and even to differentiate into specific 

neuronal subtypes, such as forebrain glutamatergic neurons (Zeng, et al., 2010), cortical 

neurons (Nieweg, et al., 2015; Shi, et al., 2012), GABAergic interneurons (Liu, et al., 2013; 

Nieweg, et al., 2015), motor neurons (Ebert, et al., 2009), and hypothalamic-like neurons 

(Wang, et al., 2015). Indeed, there are too many neuronal differentiation techniques in the 
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literature to adequately review here (some recent reviews include (Broccoli, et al., 2015; 

Broccoli, et al., 2014; Chinchalongporn, et al., 2015; Lai, et al., 2015)). The generation of 

inhibitory neurons is of particular interest for AD research, since both inhibitory and 

excitatory neurons are affected (Hazra, et al., 2013; Krantic, et al., 2012), and inhibitory 

interneurons, such as parvalbuminergic cells, play crucial roles in orchestrating large 

networks crucial to memory formation (Bartos, et al., 2007; Mann and Paulsen, 2007). The 

development of protocols for the differentiation of multiple neural subtypes is a lively area 

of research.

8.2. Differentiation to glia

In the brain, glial cells can be divided in three major cell classes: astrocytes, microglia, and 

oligodendrocytes. Each of them has been proposed to have an important impact in AD’s 

onset and progression; even so it is still debatable, whether they are causative for the disease 

or just represent a secondary by-standing effect. Overall human AD and mouse gene 

expression studies show that with AD progression, immune response and inflammatory 

genes are up- and genes involved in neuronal functions are down-regulated (Blalock, et al., 

2011; Blalock, et al., 2004; Gjoneska, et al., 2015). Interestingly, GWAS describe several 

AD-risk increasing genetic variants, which are linked to genes with identified roles in glial 

cells, such as APOE, PICALM, TREM2, CR1, CD33 and CLU (Ando, et al., 2013; 

Antunez, et al., 2011; Bertram, et al., 2008; Bradshaw, et al., 2013; Calero, et al., 2000; 

Corneveaux, et al., 2010; Crehan, et al., 2013; Deng, et al., 2012; Guerreiro, et al., 2013; 

Harold, et al., 2009; Hollingworth, et al., 2011; Jonsson, et al., 2013; Lambert, et al., 2009; 

Lambert, et al., 2010; Wunderlich, et al., 2013; Zhang, et al., 2010). Apolipoprotein APOE 
was originally identified in the liver that mediates the transport and delivery of cholesterol 

and other lipids through cell surface ApoE receptors (Mahley, 1988; Mahley and Rall, 

2000). The human APOE gene exists as three alleles. While these three variants have a 

frequency in the population of 8.4% (ε2), 77.9% (ε3), and 13.7% (ε4), the frequency of the 

APOE ε4 variant (APOE4) is increased to at least 40% in sporadic AD patients (Farrer, et 

al., 1997) making it as one of the greatest risk factors for sAD (Kanekiyo, et al., 2014; 

Lambert, et al., 2013). Individuals with one APOE4 allele are three to four times as likely to 

develop AD than those without APOE4 alleles, an odds ratio that is by far the highest out of 

any AD risk gene (Bertram and Tanzi, 2008; Corder, et al., 1993). In both humans and in 

animal models, the APOE4 allele is associated with increased levels of amyloid beta (Aβ), 

as well as amyloid plaque deposition (Castellano, et al., 2011; Fryer, et al., 2005; Kim, et al., 

2009; Youmans, et al., 2012). The least common variant, APOE2, differs from the APOE4 
variant at just two amino acid positions but appears to be protective against the development 

of AD (Bu, 2009; Corder, et al., 1993; Liu, et al., 2013). While the contribution of the 

APOE4 allele to AD risk is well known, the reasons why this variant may trigger AD are not 

at all understood. The study of these APOE variants has been particularly difficult in rodent 

models, which endogenously express only one version of the Apoe gene. Thus, the 

emergence of iPS cell lines with different APOE isotypes will greatly advance our 

understanding of this AD risk factor by either collecting individuals of particular genotypes, 

or by using genome editing to “switch” between the protective and the disease-causing 

APOE form within the same genotype.
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Taken together, two important themes emerge from these observations: 1) neurodegeneration 

in AD most likely involves an interaction of neuronal and glial pathologies; and 2) 

understanding the functions of genes implicated in AD, from GWAS or expression studies, 

will require a thorough characterization of their functions in a cell type-specific manner. 

Since human and mouse glia are surprisingly divergent (Oberheim, et al., 2006; Oberheim, 

et al., 2009), which places emphasis on the need for models of human glia for the study of 

neurodegenerative disease.

8.2.1. Astrocytes—Astrocytes are a diverse cell class, which can differ both functionally 

and morphologically between brain regions (Bribian, et al., 2015; Ma, et al., 1999; Tabata, 

2015) as well as displaying significant species divergence (Oberheim, et al., 2006; 

Oberheim, et al., 2009). Astrocytes are intimately involved in synaptogenesis and synapse 

maintenance (Haydon and Nedergaard, 2015; Pascual, et al., 2005; Perea, et al., 2009), 

maintain brain homeostasis, store and distribute energy substrates, and play a major role in 

the clearance of metabolites and toxins from the brain parenchyma (Jessen, et al., 2015; Xie, 

et al., 2013). Inflammatory astrogliosis precede or accompany neurodegeneration in many 

animal models and human postmortem AD brains, as evidenced by increased 

immunoreactivity for glial fibrillary acidic protein (GFAP) as well as by the loss of 

important astrocytic proteins such as glutamine synthase and GLT-1 (Dabir, et al., 2006; 

Fischer, et al., 2005; Li, et al., 1997; Masliah, et al., 2000; Robinson, 2001; Tilleux and 

Hermans, 2007). Moreover, astrocytes in the brain are the primary producer of the ApoE 

protein under physiological conditions, although cell profiling studies have implicated 

microglia as another prominent ApoE source (F. Zhang et al., 2014; Y. Zhang et al., 2014; D. 

Zhang et al., 2014).

While differentiation from iPS cells focused initially on creating functional human neurons, 

several groups have now also developed protocols to differentiate astrocytes from iPS cells. 

In spontaneously differentiating cultures, astrocytes will appear roughly 100 days from the 

time that neural progenitor cells are placed in differentiation media (Shi et al., 2012a, 2012b, 

2012c). To obtain faster cultures with a higher purity of astrocytes, techniques have been 

developed to obtain astrocytes from gliospheres (Krencik, et al., 2011) or by directed 

differentiation via defined factors (Chen, et al., 2014). Astrocyte-like cells can also be 

obtained via direct reprogramming of fibroblast cells (Caiazzo, et al., 2015). The admirable 

plasticity of these glial cells, however, which make them such an important and adaptable 

cell in the brain, has historically led to issues of how representative primary cultured 

astrocytes are compared to the in vivo situation (Foo, et al., 2011; Hertz, et al., 1998; Sun, et 

al., 2013). Given the different protocols in development to create iPS cell-derived human 

astroglia, the issue of variability between different groups and different cell lines is likely to 

require a concerted effort by the entire neural iPS cell community to address this issue.

8.2.2. Microglia—Microglia are complex and dynamic cells responding to their 

environment by releasing chemical transmitters as well as phagocytize cell debris, synapses, 

or whole cells. Both pro-inflammatory and neuroprotective roles for microglia have been 

demonstrated in AD. Local resident microglia become activated and rapidly react to amyloid 

plaque formation by extending processes, migrating toward plaques, and aggregate around 

Mungenast et al. Page 14

Mol Cell Neurosci. Author manuscript; available in PMC 2018 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



them (Bolmont, et al., 2008; Lue, et al., 2001). Also, microglia are demonstrated to undergo 

apoptosis in AD brain (Lassmann, et al., 1995; Sugaya, et al., 1997; Yang, et al., 1998) and 

show dystrophic morphology and fragmentation, which could be the reason of the 

senescence of these cells (Streit, et al., 2009; Streit and Xue, 2010).

The differentiation of microglia from iPS cells appears possible, though perhaps more 

challenging than other neural cell types, given the unique origin of microglia (Ginhoux, et 

al., 2010). To date, however, while publications exist for creating mouse microglia (Beutner 

et al., 2010; Beutner et al., 2013; Selvaraj et al., 2012; Tsuchiya et al., 2005), resources 

describing human iPS cell-derived microglia are rare. We found one patent related to the 

“Method for obtaining human microglial precursor cells from pluripotent stem cells” (EP 

2424976 A1) from the group of Harald Neumann (Neumann, 2012), who also have derived 

microglial cells from mouse ES cells (Beutner, et al., 2010; Beutner, et al., 2013). Another 

strategy was introduced by the Filgueira group, who generated microglia from human 

peripheral blood monocytes using a mixture of recombinant cytokines such as M-CSF, GM-

SF, NGFβ, and CCL2 (Etemad, et al., 2012). A report that focuses on the analysis of FTD 

phenotypes in iPS cell-derive neurons mentions the creation of Iba1-positive cells from 

embryoid bodies, but does not further characterize these cells (Almeida et al., 2012). Some 

groups have found that, in the process of making embryoid bodies and three-dimensional 

cultures, that they are able to isolate Cd11b+/CD45+ monocyte-like cells (Schwartz, et al., 

2015). However, whether these microglial precursors are representing the same 

characteristic as the microglia in vivo is a matter of debate, and our understanding of 

microglia and their roles in Alzheimer’s disease remains woefully incomplete. To date, we 

could not find any work in the literature that focused upon creating microglia from human 

ES or iPS cells. The production of microglia from human iPS cells is highly desirable, given 

our increasing awareness of the role of inflammation in neurodegenerative disease, and we 

look forward to seeing new protocols in the literature soon.

8.2.3. Oligodendrocytes—Oligodendrocytes form myelin layers around neuronal axons 

in order to allow high nerve conductance (Bercury and Macklin, 2015). White matter lesions 

and myelin abnormalities have been described in human AD brain and mouse models 

(Bartzokis, 2011; Desai, et al., 2010; Desai, et al., 2009; Englund, et al., 1988; Kobayashi, et 

al., 2002; Roth, et al., 2005). The potential that iPS cell-derived oligodendrocyte precursor 

cells and mature oligodendrocytes have for both the study and treatment of demyelinating 

disorders has made this an active field, with a number of groups developing protocols. These 

studies have generated oligodendrocytes and oligodendrocytes precursors from human iPS 

cells either as a component of heterogeneous cultures (Hu, et al., 2009; Kim, et al., 2012; 

Swistowski, et al., 2010) or as the result of concerted efforts to generate these particular cell 

types (Douvaras, et al., 2014; Jang, et al., 2011; Ogawa, et al., 2011; Pouya, et al., 2011; 

Wang, et al., 2013). Oligodendrocytes derived from human iPS cells have been shown to 

myelinate neuronal processes in vitro (S. Wang et al., 2013; X.Y. Wang et al., 2013) and in 
vivo (Douvaras et al., 2014; Major et al., 2011; Pouya et al., 2011; S. Wang et al., 2013; X.Y. 

Wang et al., 2013), and thus hold great promise for studying the impact of myelin 

abnormalities in AD and other demyelinating disorders.
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8.3. Future challenges for cell type differentiation

For each cell type differentiation, it will be crucial to eliminate remaining pluripotent iPS as 

well as progenitor cells. There are several options such as fluorescent-activated cell sorting 

(Sergent-Tanguy, et al., 2003) or magnetic separation, however they are very invasive and 

could potentially change the epigenetic landscape. It would be from advantage to have a 

marker of successful differentiation. (Kim, et al., 2011) showed that the microRNA-371-3 

cluster could serve as a discrimination factor for neuronal differentiation.

One major challenge will be to define what is a cell type and which cell type is impacted in a 

disease phenotype. To define a cell type is challenging by itself (DeFelipe, et al., 2013; 

Fishell and Heintz, 2013; Grange, et al., 2014) but solving this question will be crucial for 

future studies in iPS cells. This requires that we understand the genetic identity of a cell 

type, so that we can investigate strategies to specifically promote this cell type to 

differentiate from iPS cells. Once we know the genetic identity of a natural cell, we can 

correlate this identity to our engineered cell in vitro. Strategies like this are already proposed 

within the retina (Siegert, et al., 2012).

9. Modeling neurological disease in three-dimensional culture systems

In the previous section, we briefly alluded to the impact of distinct cell types in AD and 

what are the current efforts in the field to generate these different neural lineages from iPS 

cells. Although the analysis of a pure cell type population can give valuable insides into the 

biology of the cell, it is often the interaction between different cell types that are most 

important to a true model of neural systems: for example neurons exhibit increased synapse 

formation when they are co-cultured with astrocytes (Pfrieger and Barres, 1997), and 

astrocytes may look and behave differently in two-dimensional culture than they do in the 

brain (Cahoy, et al., 2008; Puschmann, et al., 2013). The latter one is a concern for all cell 

types, since neurons and glia both utilize subcellular specializations, or 

compartmentalization, to function properly in vivo (Khakh and McCarthy, 2015; Tonnesen, 

et al., 2014). In a monolayer in a culture dish, however, some of this compartmentalization 

may be lost. One example is the observation of calcium microdomains in astrocytes in vivo 
and in slice preparations, in which specific subregions of the astrocytic arbor exhibit 

restricted calcium oscillations that may reflect activity to immediately adjacent neurons 

(Bernardinelli, et al., 2014; Di Castro, et al., 2011; Shigetomi, et al., 2013). Another concern 

is that phenotypes of aberrant extracellular protein aggregation are lost in two-dimensional 

cultures simply due to the lack of interstitial compartment, and metabolites of interest may 

diffuse to the media. To overcome this, recent studies have embedded human ES or iPS cell-

derived cells in scaffolding such as hydrogel or Matrigel, to create three dimensional culture 

systems (Pasca, et al., 2015; Schwartz, et al., 2015; Smith, et al., 2015). These kinds of 

culture systems, when created with human cells overexpressing fAD proteins or treated with 

Aβ oligomers, can recapitulate AD-like phenotypes such as extracellular Aβ plaque-like 

deposits (Choi et al., 2014; Kim et al., 2015) and cytoskeletal abnormalities (F. Zhang et al., 

2014; Y. Zhang et al., 2014; D. Zhang et al., 2014).

To address issues that might arise from overly simplistic culture model systems, a number of 

groups have taken advantage of tissue engineering approaches that can generate either 
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scaffolded or self-organizing neural cytosystems, such as “organoids”. In 2008, the Sasai 

laboratory demonstrated that mouse and human ES cells could form self-organized apico-

basally polarized cortical tissue (Eiraku and Sasai, 2012; Eiraku, et al., 2008). However this 

technique lacks the later stage of cortical development namely discrete cortical layer 

formation with the typically inside-out organization, as well as the presence of outer radial 

glia. (Lancaster, et al., 2013) improved the protocol and could model human brain 

development in 3D organoid structure. They observed cortical-like neuronal generation and 

organization and found astrocytes and oligodendrocytes after more than 100 days in vitro. To 

date, AD-like phenotypes have not been reported in self-organizing three-dimensional 

cultures or organoids from patient-derived cells. However, the three-dimensional cultures 

reported by Choi et al., which overexpressed mutant APP, also showed an increase in 

phospho-Tau levels, suggesting that it may be possible to recapitulate many AD phenotypes 

within one model system, which would be a strong advantage in comparison to AD mouse 

models (Choi, et al., 2014; Kim, et al., 2015). Three-dimensional neural culture systems 

have yet to recapitulate complex in vivo brain systems that include elements such as the 

blood-brain-barrier, vascularization, or immune response, which all have an important 

impact during disease and treatment. Therefore, multiple research groups are focusing on 

creating vascularization, shown in liver tissue (Masumoto, et al., 2014; Samuel, et al., 2013; 

Takebe, et al., 2013) or blood-brain-barrier structures from iPS cells (Lippmann, et al., 2014; 

Lippmann, et al., 2013; Lippmann, et al., 2012; Minami, et al., 2015).

10. Conclusion

In this review, we have outlined recent strategies to investigate AD pathology using human 

iPS cells and to find new therapeutic targets preventing disease onset and progression. The 

approval rate for AD medications is a scant 4% of all treatments that enter onto Phase I trials 

(McBride, 2012) with projections of 13.8 million people with AD and $1.2 trillion spent on 

AD-related care in the year 2050 (Association, 2013; Hebert, et al., 2013). These numbers 

clearly show that new model systems are needed to better translate observations from rodent 

models into clinical studies. Human iPS cells will be an important step forward in this 

direction; they have the potential to recapitulate phenotypes from various neurological 

diseases in a cell type-specific manner. Creating isogenic iPS cells lines overcomes problems 

of variability in human genomes and genome-editing technology has become much easier to 

implement. We have outlined how iPS cells can model disease etiology, progression, and 

phenotypes in human AD. Several groups have, to date, succeeded in recapitulating multiple 

AD-like phenotypes in human iPS cells. Thus, the stage appears to be set for the widespread 

use of iPS cells in preclinical drug trials for AD therapies (reviewed in (Khurana, et al., 

2015)). To benefit most from these cellular models, it will be absolutely crucial that all 

experiments are performed in a controlled and standardized manner that will allow 

reproducibility between different research groups.

Several areas of iPS cell research remain topics of much debate or even controversy. For 

example, there is debate over exactly how similar iPS and ES cells are, and how well iPS 

cells can functionally replace ES cells in translational research (Bock et al., 2011; Chin et 

al., 2009; Doi et al., 2009; Hu et al., 2010; Narsinh et al., 2011a, 2011b). In addition to the 

ethical and legal issues that have arisen regarding the creation of ES cells, which hinder the 
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production of new lines, a clear advantage of iPS cells is that the donor is often an adult, 

sometimes elderly, and thus can provide a health history relevant to the disorder of interest. 

This is not possible with ES cells. This said, the ability to access patient history in the use of 

iPS cell research is highly variable between research groups and subject to a great deal of 

regulation to ensure patient privacy (King and Perrin, 2014; Lomax, et al., 2015; Lomax and 

Peckman, 2012; Lomax, et al., 2013). As more and more iPS cell lines are characterized and 

this information added to public databases, we expect that even researchers without direct 

access to patient information will benefit from these models. The development of libraries of 

disease-associated iPS cell lines, of both genders, will allow high-throughput drug discovery 

and validation, and should make the rocky path from bench to clinic shorter and straighter.

In this review, we also put a strong focus on the impact of different cell types. It will be 

crucial to investigate the impact of drugs across different cell types. The use of three-

dimensional scaffolding combined with differentiated cells (Choi, et al., 2014), or the 

creation of self-organizing neural tissue structures in vitro (Eiraku and Sasai, 2012; Eiraku, 

et al., 2008; Kadoshima, et al., 2013; Lancaster, et al., 2013; Lancaster and Knoblich, 2014), 

hold great promise for modeling the intricate micro- and macro-environment of the brain. In 

the future, it may be possible to screen drugs in these cytosystems, which have the benefit of 

containing multiple neural cell types in a physiological microenvironment and, with the 

development of vascularization technique, may include blood-brain barrier penetration in the 

assay at an early stage of drug discovery.
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Figure 1. Using human patient derived induced pluripotent stem (iPS) cells to model Alzheimer’s 
disease (AD) pathology
This model figure illustrates the logical path of experiments using iPS cells to study AD 

phenotypes and screen for novel therapeutics. Somatic cells (blood, skin, etc.) are 

reprogrammed in vitro into iPS cell colonies. At this point, or later, genome-editing 

techniques can be used to create isogenic lines containing specific mutations or transgenes. 

Techniques exist to differentiate the iPS cells into neural cells that include neurons, 

microglia, astrocytes and oligodendrocytes, as well as neural progenitor cells (not pictured). 

From the iPS cell stage, self-organizing tissue cytosystems, or organoids, can also be created 

in three-dimensional culture. Neural cells differentiated from iPS lines with sporadic or 

familial AD (sAD or fAD) backgrounds can display a number of AD-like phenotypes that 

can be assayed in vitro. These include amyloid β peptide production and, in the case of 

three-dimensional culture, amyloid plaques, tau pathology, synaptic dysfunction, immune 

activation, genomic instability, and aberrant endosome trafficking. High-throughput screens 

can be designed to examine the impact of small molecule or other treatments upon these and 

other AD-like phenotypes directly in human neural cells. The development of novel 

treatments for the AD patient and the success of these treatments in the clinic completes the 

cycle.
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