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ABSTRACT Despite the benefits to the global food supply and agricultural econo-
mies, pesticides are believed to pose a threat to the health of both humans and
wildlife. Chlorpyrifos (CP), a commonly used organophosphate insecticide, has poor
target specificity and causes acute neurotoxicity in a wide range of species via the
suppression of acetylcholinesterase. This effect is exacerbated 10- to 100-fold by
chlorpyrifos oxon (CPO), a principal metabolite of CP. Since many animal-associated
symbiont microorganisms are known to hydrolyze CP into CPO, we used a Drosoph-
ila melanogaster insect model to investigate the hypothesis that indigenous and pro-
biotic bacteria could affect CP metabolism and toxicity. Antibiotic-treated and germ-
free D. melanogaster insects lived significantly longer than their conventionally
reared counterparts when exposed to 10 �M CP. Drosophila melanogaster gut-
derived Lactobacillus plantarum, but not Acetobacter indonesiensis, was shown to me-
tabolize CP. Liquid chromatography tandem-mass spectrometry confirmed that the
L. plantarum isolate preferentially metabolized CP into CPO when grown in CP-
spiked culture medium. Further experiments showed that monoassociating germfree
D. melanogaster with the L. plantarum isolate could reestablish a conventional-like
sensitivity to CP. Interestingly, supplementation with the human probiotic Lactobacil-
lus rhamnosus GG (a strain that binds but does not metabolize CP) significantly in-
creased the survival of the CP-exposed germfree D. melanogaster. This suggests
strain-specific differences in CP metabolism may exist among lactobacilli and em-
phasizes the need for further investigation. In summary, these results suggest that (i)
CPO formation by the gut microbiota can have biologically relevant consequences
for the host, and (ii) probiotic lactobacilli may be beneficial in reducing in vivo CP
toxicity.

IMPORTANCE An understudied area of research is how the microbiota (microorgan-
isms living in/on an animal) affects the metabolism and toxic outcomes of environ-
mental pollutants such as pesticides. This study focused specifically on how the micro-
bial biotransformation of chlorpyrifos (CP; a common organophosphate insecticide)
affected host exposure and toxicity parameters in a Drosophila melanogaster insect
model. Our results demonstrate that the biotransformation of CP by the gut microbi-
ota had biologically relevant and toxic consequences on host health and that certain
probiotic lactobacilli may be beneficial in reducing CP toxicity. Since inadvertent
pesticide exposure is suspected to negatively impact the health of off-target species,
these findings may provide useful information for wildlife conservation and environ-
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mental sustainability planning. Furthermore, the results highlight the need to con-
sider microbiota composition differences between beneficial and pest insects in fu-
ture insecticide designs. More broadly, this study supports the use of beneficial
microorganisms to modulate the microbiota-mediated biotransformation of xenobi-
otics.

KEYWORDS biopesticides, colony collapse disorder, detoxification, environmental
toxins, honey bees, lactobacillus, microbiota, pesticides, probiotics, xenobiotics

The agricultural industry relies on pesticides to maintain a high crop yield and
economic feasibility. Consequently, persistent pesticide usage has led to the wide-

spread contamination of the global food supply and natural environment. Synthetic
organophosphates (OPs) account for �34% of worldwide insecticide sales and exhibit
broad-spectrum activities toward a variety of insects (1). In particular, chlorpyrifos
(O,O-diethyl O-3,5,6-trichloro-2-pyridyl [CP]) is an extensively used OP (2). Though
banned from residential usage due to pervasive environmental toxicity, CP remains
widely used commercially (3). Consequently, nontarget wildlife experience CP
exposure through contaminated aquatic and terrestrial ecosystems (4–6). CP is
structurally similar to other OPs and consists of three phosphoester linkages (often
called phosphotriesters) that induce neurotoxicity through the inhibition of acetyl-
cholinesterase (AchE) (7).

The major metabolites produced during CP metabolism are chlorpyrifos oxon (CPO)
and 3,5,6-trichloro-2-pyridinol (TCP). CPO is the more toxic/potent metabolite, with a
10- to 100-fold greater inhibition of AchE than its parent compound (8). In contrast, the
less toxic metabolite, TCP, is environmentally persistent and often refractory to micro-
bial degradation (9, 10). TCP is the predominant metabolite formed in animals via
cytochrome P450-mediated hydrolysis of CP (11). Microbial hydrolases appear more
variable with regard to the end by-product formation, with a preference toward CPO
production observed in many microorganisms (12–14). Numerous studies have ex-
plored the role of microbes for environmental bioremediation of CP (15), and some
have looked at how CP alters the microbiotas (communities of microorganisms residing
on/in multicellular organisms) of insects, rodents, and human models (16–19). How-
ever, there has been substantially less investigation into how the microbiota affects
CP toxicity in vivo.

OP exposure is known to dysregulate insect immunity (a major regulator of the
microbiota) (20) and alter the microbiota composition in rodents (18, 21, 22). Honey
bees (Apis mellifera), which are integral to agricultural pollination (23), are experiencing
drastic population declines in North America, Europe, and Asia, most likely due to the
combination of habitat loss (24), infection (25), and pesticide exposure (26, 27). The
effect of environmentally relevant OP exposure on acute honey bee mortality has been
debated (28–31). However, there appears to be agreement that environmentally rele-
vant OP exposure has the potential to chronically modulate honey bee immunity (30),
impair learning (31), and reduce their life span (28, 29). There is also a major concern
and lack of knowledge regarding the potential synergistic toxicity of OPs to honey bees
in combination with other environmental toxins, such as neonicotinoid pesticides,
fungicides, and pollutants (30, 32, 33). The microbiota composition of pest insects is
variable but often dominated by Proteobacteria (34), which is in stark contrast to the
Lactobacillus-dominant microbiota of honey bees (35). Interestingly, bacterial symbi-
onts of the pest insects Bactrocera dorsalis (36) and Riptortus pedestris (37) have been
shown to confer resistance to OP-induced toxicity, though less is known about these
interactions in honey bees. Established axenic protocols can derive adult honey bees
with microbial loads of less than 50,000 CFU via sterile handling techniques after larval
emergence (38). However, the attainment of completely germfree adult honey bees is
difficult due to the intricate developmental logistics (39–41), which makes mechanistic
host-microbe associations challenging to investigate.

In this study, we used Drosophila melanogaster as a well-established insect model
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with established sensitivities to OP insecticides and a defined core microbiota domi-
nated by Lactobacillus (which is a unique trait among both hymenopterans and
dipterans) (35, 42–45). Importantly, this insect model can be derived germfree to
demonstrate causal relationships between microbes and OP-induced insect toxicity. It
was hypothesized that indigenous and probiotic lactobacilli affect CP metabolism and
toxicity.

RESULTS
Indigenous gut bacteria of D. melanogaster increase CP toxicity. To determine

how the D. melanogaster microbiota affects CP toxicity, survival with 10 �M CP
(representing a minimal lethal dosage [17]) was compared between conventional,
antibiotic (abx)-treated, and germfree wild-type (WT) Canton-S flies. abx-treated and
germfree D. melanogaster flies had significantly increased overall survivals (log rank
[Mantel-Cox], chi square � 34.2, df � 1, P � 0.0001 and chi square � 89.53, df � 1,
P � 0.0001, respectively) and fewer early-time-point deaths (Gehan-Breslow-Wilcoxon
test, chi square � 43, df � 1, P � 0.0001 and chi square � 66.19, df � 1, P � 0.0001,
respectively) (Fig. 1A) than conventionally reared D. melanogaster flies. This suggested
that the D. melanogaster microbiota could increase host toxicity to CP, likely due to
altered CP metabolism.

To evaluate the effects of the microbiota on CP toxicity during development, larval
eclosion (emergence of adult flies from pupae) was compared between conventional,
abx-treated, and germfree D. melanogaster larvae. Conventional larvae exposed to 1
�M CP exhibited a significantly reduced eclosion rate (two-way analysis of variance
[ANOVA], P � 0.0463) compared to that of vehicle controls (Fig. 1B). Alternatively,
significant differences in eclosion between vehicle- and 1 �M CP-exposed larvae that
were germfree or treated with abx were not observed. However, abx-treated larvae had
significantly reduced overall eclosion rates in both 1 �M CP-exposed and vehicle
groups (two-way ANOVA, P � 0.0001 in both cases) compared to those of convention-
ally reared vehicle-treated and germfree larvae (Fig. 1B). The reduced eclosion rates in
abx-treated larvae are believed to be attributed to antibiotic-mediated developmental
toxicity (46). These results demonstrated that CP reduced eclosion rates in conventional
but not abx-treated or germfree D. melanogaster larvae.

D. melanogaster-derived L. plantarum ISO is able to degrade CP but cannot
utilize it as a carbon source for growth in the absence of glucose. Since the D.
melanogaster microbiota was shown to increase host toxicity to CP, we sought to
evaluate whether this could be explained by microbe-mediated metabolic CP activa-

FIG 1 Indigenous gut bacteria of D. melanogaster increase CP toxicity. (A) Survival curves for newly eclosed conventionally
reared, antibiotic-treated, and germfree flies that were exposed to a lethal concentration of CP (10 �M). Data are displayed
from at least 3 independent experiments (consisting of 25 individuals each experiment). Statistical analyses shown are from
log rank (Mantel-Cox) tests. (B) First-instar conventionally reared, antibiotic-treated, and germfree larvae were seeded on
medium containing 1 �M CP (sublethal), and the percentages of larvae that subsequently eclosed were measured. Data are
means � standard deviations (two-way ANOVA) of results from 5 independent experiments (each dot represents 10 larvae).
10CP, 10 �M CP; *, P � 0.05; ****, P � 0.0001.
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tion. Two cultured bacterial isolates from Canton-S fly stocks were sequenced to
identify the predominant bacterial members in the D. melanogaster microbiota. One of
the dominant bacterium-derived sequences best matched that of Acetobacter indone-
siensis BCC15762 (accession number AB906398.1), with a maximum nucleotide align-
ment score of 2,464/2,464, an E value of 0.0, and 100% query coverage (referred to as
A. indonesiensis ISO). The sequence of the other dominant bacterial member best
matched that of Lactobacillus plantarum BC18 (accession number LC155900.1), with a
maximum nucleotide alignment score of 2,436/2,436, an E value of 0.0, and 100% query
coverage (referred to as L. plantarum ISO).

These findings are consistent with previous 16S rRNA-based microbiota study results
demonstrating that Lactobacillus and Acetobacter were the dominant genera of the D.
melanogaster microbiota (42). These isolates were subsequently tested for the ability to
metabolize CP. It was observed that L. plantarum ISO was able to metabolize CP (Fig.
2A and C), as illustrated by a significantly larger zone of clearance in the CP hydrolysis
assay compared to those of Acetobacter indonesiensis ISO and the vehicle (one-way
ANOVA, P � 0.0001 in both cases). Additionally, Escherichia coli(pET20b-Pte) (positive
control) and L. plantarum ATCC 14917 were both shown to have significantly larger
zones of clearance (one-way ANOVA, P � 0.0001 in all cases) than A. indonesiensis and
vehicle controls (Fig. 2C). These results indicated that L. plantarum ISO but not A.
indonesiensis ISO could metabolize CP.

To determine the effects of CP on bacterial growth, L. plantarum ISO cultures were
grown with 285 �M CP or vehicle, with or without dextrose as a carbon source. It was
determined that 285 �M CP significantly reduced the L. plantarum ISO maximum
growth rate in de Man, Rogosa, and Sharpe (MRS) medium during log phase compared
to that of the vehicle controls (unpaired, two-tailed t test, t � 8.562, df � 6, P � 0.0001)
(Fig. 2D). When grown in carbon-limited MRS medium, L. plantarum ISO showed no
differences in maximum growth rate during log phase between 285 �M CP- and
vehicle-treated groups (unpaired, two-tailed t test, t � 0.9852, df � 6, P � 0.3626) (Fig.
2E). These findings suggest L. plantarum ISO cannot utilize CP as a viable carbon source
for growth in the absence of glucose.

L. plantarum ISO preferentially metabolizes CP into a more toxic metabolite,
CPO. To further investigate CP metabolism by L. plantarum ISO, in vitro broth cultures
containing 285 �M CP were analyzed for metabolite formation. The amounts of CP
remaining after 24 h were significantly reduced in L. plantarum ISO and L. plantarum
ATCC 14917 broth cultures relative to that in noninoculated vehicle controls spiked
with CP (one-way ANOVA, P � 0.0005 and P � 0.0010, respectively) (Fig. 3A). The
CP/CPO ratio after 24 h was significantly increased in L. plantarum ISO relative to that
with the vehicle (Kruskal-Wallis test, P � 0.0338) (Fig. 3B). A trend toward an increased
CP/CPO ratio was found in L. plantarum ATCC 14917 (Kruskal-Wallis test, P � 0.4081)
(Fig. 3B). The TCP/CP ratios were significantly decreased in L. plantarum ISO and L.
plantarum ATCC 14917 broth cultures relative to that with the vehicle (one-way ANOVA,
P � 0.0003 and P � 0.0002, respectively) (Fig. 3C). This indicated that L. plantarum ISO
preferentially produced CPO, rather than TCP, as its metabolic end product of CP
metabolism.

To demonstrate the differential toxicity profiles of CP, CPO, and TCP in vivo,
conventional D. melanogaster flies were exposed to equimolar concentrations of each
compound and monitored thereafter for survival. Newly eclosed D. melanogaster flies
fed medium containing 10 �M CPO exhibited a significantly reduced overall survival
(log rank [Mantel-Cox] test, chi square � 36.55, df � 1, P � 0.0001) and more
early-time-point deaths (Gehan-Breslow-Wilcoxon test, chi square � 29.71, df � 1, P �

0.0001) in comparison to D. melanogaster flies fed medium containing 10 �M CP (Fig.
3D). However, D. melanogaster flies fed on medium containing 10 �M TCP showed no
signs of toxicity, with a significantly increased overall survival (log rank [Mantel-Cox]
test, chi square � 292.6, df � 1, P � 0.0001) and fewer early-time-point deaths
(Gehan-Breslow-Wilcoxon test, chi square � 237, df � 1, P � 0.0001) than D. melano-

Daisley et al. Applied and Environmental Microbiology

May 2018 Volume 84 Issue 9 e02820-17 aem.asm.org 4

https://www.ncbi.nlm.nih.gov/protein/BCC15762
https://www.ncbi.nlm.nih.gov/nuccore/AB906398.1
https://www.ncbi.nlm.nih.gov/nuccore/LC155900.1
http://aem.asm.org


gaster flies fed medium with 10 �M CP (Fig. 3D). These results suggest CPO is more
toxic to D. melanogaster than its parent compound CP, while TCP is less toxic.

Excess L. plantarum ISO increases toxicity of CP, while probiotic L. rhamnosus
GG and E. coli(pET20b-Pte) decrease toxicity to CP. Since L. plantarum ISO was
shown to metabolize CP into CPO, we sought to investigate whether increasing L.
plantarum ISO abundances in D. melanogaster could increase host toxicity to CP
exposure. Newly eclosed conventional D. melanogaster flies that were supplemented
with L. plantarum ISO and fed medium containing 10 �M CP had a significantly
decreased overall survival (log rank [Mantel-Cox] test, chi square � 10.65, df � 1, P �

0.0011) and more early-time-point deaths (Gehan-Breslow-Wilcoxon test, chi square �

4.424, df � 1, P � 0.0354) than vehicle controls fed medium containing 10 �M CP only
(Fig. 4A). The log CFU for Lactobacillus spp. was found to be significantly increased
(unpaired two-tailed t test, t � 4, df � 16, P � 0.0008) in L. plantarum ISO-

FIG 2 D. melanogaster-derived L. plantarum (L. plantarum ISO) is able to degrade CP but cannot utilize it as a carbon source
for growth in the absence of glucose. (A) Representative images showing results of the semiquantitative pesticide hydrolysis
assay after 48-h aerobic (E. coli-Pte and Ai ISO) and anaerobic (L. plantarum Lp ISO and Lp 14917) incubations. Red arrows
highlight halo formation. (B) Schematic diagram illustrating the semiquantitative pesticide hydrolysis assay. (C) Radii of halo
formations were quantified following 48-h incubations. Data are presented as means � standard deviations (one-way ANOVA)
of results from at least 3 independent experiments performed in triplicates. Representative growth curves of L. plantarum ISO
under glucose-rich (D) and glucose-limiting (E) conditions. Data are presented as means � standard errors (unpaired,
two-tailed t tests) from 3 independent experiments with triplicate technical replicates. Ai, A. indonesiensis; Lp, L. plantarum; **,
P � 0.01; ****, P � 0.0001.
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supplemented conventional D. melanogaster flies compared to that in vehicle controls
(Fig. 4B). These results suggest that supplementation with CP-metabolizing L. planta-
rum ISO increased the host toxicity to CP.

Since microbial bioactivation (CP to CPO conversion) by L. plantarum ISO increased
the toxicity of CP (Fig. 4A), we sought to investigate whether microbial detoxification
(CP to TCP conversion) by E. coli(pET20b-Pte) could reduce the toxicity of CP (Fig. 4C).
Conventional D. melanogaster adults that were presupplemented with E. coli(pET
20b-Pte) for 48 h showed a significantly increased overall survival (log rank [Mantel-
Cox], chi square � 21.63, P � 0.0001) and reduced early-time-point deaths (Gehan-
Breslow-Wilcoxon test, chi square � 16.87, P � 0.0001) when challenged with 10 �M
CP in comparison to CP-challenged vehicle controls that were presupplemented with
background E. coli(pET20b) not expressing Pte. No deaths were observed in either
group transferred to fresh food without 10 �M CP. Additionally, it was shown that the
CFU value for E. coli(pET20b) per fly was unaltered at 24 h and 48 h (one-way ANOVA,
P � 0.9377 and P � 0.1221, respectively) (Fig. 4D) but experienced a significant

FIG 3 L. plantarum ISO preferentially metabolizes CP into a more toxic metabolite, CPO. (A to C) Relative CP (A), CPO (B), and
TCP (C) remaining after exponential-phase growth of L. plantarum ISO and L. plantarum 14917 in MRS culture broth containing
285 �M CP. Data are presented as means � standard deviations (one-way ANOVA [A and C] and Kruskal-Wallis [B]) from 3
independent experiments. (D) Survival curves of newly eclosed adult flies exposed to 10 �M CP, CPO, and TCP. Data displayed
are from at least 3 independent experiments. Statistical analyses shown are from log rank (Mantel-Cox) tests. (E) Simplified
schematic of CP and predominant metabolites. Lp, L. plantarum; *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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decrease at 72 h (one-way ANOVA, P � 0.0005) (Fig. 4D) after the flies were transferred
to fresh food without CP postsupplementation. These findings suggest E. coli(pET20b)
was unable to colonize D. melanogaster long term, but persisted as a transient colonizer
for up to 48 h after supplementation.

To determine if L. plantarum ISO was sufficient to exacerbate CP toxicity, germfree
D. melanogaster flies were supplemented with L. plantarum ISO and exposed to 10 �M
CP. Newly eclosed germfree adults supplemented with L. plantarum ISO and fed
medium containing 10 �M CP had a significantly reduced overall survival (log rank
[Mantel-Cox] test, chi square � 126.9, df � 1, P � 0.0001) and more early-time-point
deaths (Gehan-Breslow-Wilcoxon test, chi square � 102.8, df � 1, P � 0.0001) than
germfree vehicle-treated flies that were fed medium containing 10 �M CP only (Fig. 4C).
Germfree D. melanogaster flies were exposed to 10 �M CP and supplemented with L.

FIG 4 Excess L. plantarum ISO increases toxicity of CP while probiotic L. rhamnosus GG and E. coli(pET20b-Pte)
decrease toxicity to CP. (A) Survival curves of newly eclosed flies exposed to 10 �M CP with or without concurrent
supplementation of L. plantarum ISO. (B) Surface-sterilized flies were homogenized and drop plated on MRS agar,
and bacterial CFU per fly were enumerated after 48-h anaerobic incubations. Data are presented as means �
standard deviations (unpaired, two-tailed t test) from at least 3 independent experiments (each dot represents 10
individuals normalized to CFU per fly). (C and D) E. coli(pET20b-Pte) or vehicle E. coli(pET20b) was supplemented
to D. melanogaster adults on normal food for 48 h, followed by the assessment of survival on 10 �M CP-spiked
medium (C) or the enumeration of gut bacterial loads following transfer to fresh food (D). (E and F) Germfree (GF)
flies were exposed to 10 �M CP with or without concurrent supplementation with L. plantarum ISO (E) or L.
rhamnosus GG (F) and subsequent survival was recorded. Data represent at least 3 independent experiments.
Statistical analyses shown for all survival curves are from log rank (Mantel-Cox) tests. ****, P � 0.0001; ***, P � 0.001;
**, P � 0.01, *, P � 0.05.
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rhamnosus GG, a probiotic lactobacillus strain shown previously to bind but not
metabolize CP (17). Probiotic-supplemented flies exhibited a significantly increased
overall survival (log rank [Mantel-Cox] test, chi square � 5.835, df � 1, P � 0.0157) and
trended toward fewer early-time-point deaths (Gehan-Breslow-Wilcoxon test, chi
square � 3.798, df � 1, P � 0.0513) than germfree vehicle-treated flies fed medium
containing 10 �M CP only (Fig. 4D). Overall, these results suggest that Lactobacillus spp.
differentially affect host CP toxicity in D. melanogaster, a phenomenon that appears to
be due to differential CP metabolic capacity.

DISCUSSION

This study demonstrated that abx-treated and germfree D. melanogaster flies were
significantly more resistant to CP-induced toxicity than conventionally reared controls.
These results suggested that certain D. melanogaster microbiota constituents promoted
CP-induced host toxicity, which is a novel finding compared to those from previous
reports of microbiota-mediated (36, 37) or probiotic-mediated (17) CP resistance. The
contribution of the microbiota to variable host pharmacokinetic responses such as the
absorption and biotransformation of xenobiotics is well documented (47). In this study,
we demonstrated that one of the dominant D. melanogaster microbiota constituents, L.
plantarum ISO, was responsible for converting CP to the more potent insecticidal
metabolite CPO (Fig. 3A to C). In contrast, the other major microbiota constituent in our
D. melanogaster stock microbiota, an A. indonesiensis isolate, could not metabolize CP.
The metabolism of CP to CPO by L. plantarum ISO appears to be a common metabolic
property in L. plantarum at the species level on the basis of the observation of similar
CP-CPO production by L. plantarum ATCC 14917. We have demonstrated that L.
plantarum ISO was necessary and sufficient to exacerbate CP-induced toxicity to D.
melanogaster by utilizing germfree L. plantarum ISO monocolonization and conven-
tional L. plantarum ISO supplementation experiments, respectively. Furthermore, sup-
plementation with E. coli(pET20b-Pte) (which preferentially metabolizes CP to TCP)
significantly improved D. melanogaster survival toward lethal CP exposure. These
observations are comparable to those from other studies demonstrating microbiota-
mediated alterations in melamine (48) and digoxin (49) toxicity in humans.

The development of CP resistance in pest insects is a common occurrence that has
largely been attributed to host-level physiological adaptations (50–52). However, many
pest organisms such as diamondback moths, alydid stinkbugs, and crucifer root mag-
gots have shown increased insecticide resistance due to microbiota symbiont-mediated
detoxification (16, 53, 54). Symbiotic-mediated pesticide resistance has yet to be
reported in honey bees, but the aforementioned observations provide strong support
for the potential to reduce off-target wildlife pesticide toxicity with microbiota-directed
approaches. Alternatively, this study provides a basis to speculate on how potential
“biopesticides,” or microorganisms that promote insecticide-induced toxicity, could be
used to preferentially target pest organisms. More generally, the data support evalu-
ating the effects of pesticides on off-target species prior to marketplace release and
how the microbiota may contribute to pesticide tolerance (55). Future insecticide
designs could benefit from understanding and targeting inherent differences in micro-
biota compositions between beneficial and pest insects, thereby minimizing off-target
pesticide toxicity and reducing futile pest extermination attempts.

Furthermore, our findings suggest that an innovative approach to combating the
causative factors of honey bee decline (e.g., pesticides and pathogens) may be to
supplement honey bees with probiotic bacteria containing pesticide-detoxifying genes,
similar to paratransgenesis (56, 57). Both honey bees and D. melanogaster flies have
simple microbiotas that are not microbially diverse (1 to 30 species) and are typically
dominated by Gram-positive Lactobacillus species (42). Lactobacillus symbionts can
differ in their genome structures and biology depending on the insect species which
they colonize (34) but generally confer their hosts with beneficial immune stimulation
(58), growth (59), and pathogen exclusion (42), thereby combating the causal factors
implicated in honey bee decline (25). Though some L. plantarum strains exert probiotic
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properties in insects, such as beneficial immune stimulation as seen with L. plantarum
Lp39 (60), our results suggest the strains tested here would be poor probiotic candi-
dates for the purposes of detoxification.

The present study has expanded on our previous work showing that L. rhamnosus
GG could mitigate CP toxicity in conventionally raised D. melanogaster (17). Specifically,
monocolonized germfree D. melanogaster experiments demonstrated that L. rhamno-
sus GG supplementation was sufficient for the mitigation of CP-induced toxicity in a
microbiota-independent manner. These findings further exemplify species-level varia-
tion in Lactobacillus-mediated CP metabolism that has been previously reported (61). In
particular, in vitro experiments have shown that Lactobacillus fermentum preferentially
metabolizes CP into TCP, while L. lactis preferentially metabolizes CP to CPO (61). Our
findings of L. plantarum ISO increasing and E. coli(pET20b-Pte) decreasing the toxicity of
CP suggest that Lactobacillus strains able to metabolize CP to TCP may be even more
effective than strains such as LGG that simply bind CP. Further research will be required
to evaluate if these findings are translatable to honey bees, but the ability to fortify
colonies with probiotic lactobacillus-containing pollen patties or honey (62) provides a
convenient method for testing these promising findings.

In summary, this study has shown that (i) CP metabolism by an L. plantarum strain
within the D. melanogaster microbiota exacerbates toxicity, and (ii) Lactobacillus spp.
can have alternate effects on CP toxicity on the basis of differential CP metabolism.
Future studies will benefit from determining the genetic or physiological basis for the
differences in CP metabolism among species of Lactobacillus. It will be particularly
interesting to determine if the functionality of an organophosphate-degrading gene(s)
can fully account for the differences seen in CP metabolism or whether there are other
unrecognized hydrolysis enzymes dispersed across the Lactobacillus genera. Moving
forward, it will be imperative that our findings in D. melanogaster are validated in honey
bees prior to implementation, to avoid potentially deleterious outcomes in commercial
apiaries. However, the extension of these findings to honey bees is promising given
that lactobacilli are affordable, convenient, and have already been shown to benefit
honey bee colony growth (63), microbiota composition (57), and antimicrobial defenses
(64). While organic farming is becoming more prevalent, it is difficult to avoid the use
of pesticides for food production alongside a growing global population. A targeted
approach to avoid collateral damage, as suggested here, may have appeal to farmers
and help prevent the demise of a key pollinator species.

MATERIALS AND METHODS
Chemicals. CP (catalog number 45395; Sigma-Aldrich), CPO (catalog number C425320; Toronto

Research Chemicals), and TCP (catalog number 33972; Sigma-Aldrich) stock solutions were prepared at
100 mg/ml in dimethyl sulfoxide (DMSO) and stored frozen at �80°C until used.

Drosophila melanogaster husbandry. Wild-type (WT) Canton-S stocks (stock number 1) were
obtained from the Bloomington Drosophila Stock Center at Indiana University. All stocks were main-
tained on medium consisting of 7.6% corn syrup (vol/vol), 7.3% cornmeal (wt/vol), 1.73% yeast (wt/vol),
1.5% agar (wt/vol), and 0.58% propionic acid (vol/vol). All D. melanogaster stocks were maintained at 25°C
under a constant 12 h light/dark cycle. The base food medium was autoclaved for all experimental
groups (conventional, abx-treated, and germfree) to account for any nutrient losses. The antibiotic food
medium contained an additional 500 �g/ml ampicillin, 50 �g/ml tetracycline, and 200 �g/ml rifamycin
prior to solidification as previously described (46). For experimental procedures, the medium was
supplemented with various concentrations of CP or vehicle (DMSO) prior to agar solidification. All
experiments were performed in wide polystyrene Drosophila vials (GEN32-121 and GEN49-101; Diamed
Lab Supplies Inc., Mississauga, ON, Canada) containing 10 ml of total medium.

Isolation of D. melanogaster gut bacteria. Flies were surface sterilized with 70% ethanol and
homogenized in sterile 0.01 M phosphate-buffered saline (PBS) using a motorized pestle. The homog-
enates were spread plated on de Man, Rogosa, and Sharpe (MRS; catalog number 288130; BD Difco),
Acetobacter growth (ACE), and brain heart infusion (BHI; catalog number B11059; BD Difco) agar plates.
The plates were incubated at 37°C and 25°C under aerobic and anaerobic conditions for 48 h. DNA was
extracted from two seemingly unique colony types with different morphologies and growth patterns
using the InstaGene Matrix protocol (catalog number 7326030; Bio-Rad). PCR was performed on
extracted DNA using the established 16S rRNA gene protocol described, which is used for the phylo-
genetic characterization of most bacterial species (65). The primers were AGAGTTTGATCCTGGCTCAG
(forward) and AAGGAGGTGATCCAGCCGCA (reverse). The PCR products were purified by 1% agarose gel
electrophoresis and subsequently extracted with a QIAquick gel extraction kit (catalog number 28704;
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Qiagen). The PCR products were sequenced using the aforementioned primers with the Applied
Biosystems 3730 Analyzer platform at the London Regional Genomics Centre (Robarts Research Institute,
London, Canada).

Bacterial strains and cultures. Lactobacillus plantarum (obtained from the American Type Culture
Collection [ATCC], number 14917) and D. melanogaster microbiota-derived Lactobacillus plantarum ISO
and Lactobacillus rhamnosus GG were routinely cultured anaerobically at 37°C using MRS broth and agar,
unless otherwise stated. Acetobacter indonesiensis derived from D. melanogaster was cultured aerobically
at 25°C using mannitol-positive ACE medium containing 3 g/liter proteose peptone no. 3 (catalog
number 211693; BD Difco), 5 g/liter yeast extract (catalog number 212750; BD Difco), and 25 g/liter
D-mannitol (catalog number M9647; Sigma-Aldrich). A pET20b plasmid (EMD Millipore) containing a gene
encoding an organophosphate-degrading phosphotriesterase (Pte) inserted between NdeI and EcoRI
restriction sites (66) was obtained from Frank M. Raushel (Texas A&M University, USA) and cloned into
chemically competent Escherichia coli BL21(DE3) as described previously (17). The subsequent culturing
of E. coli(pET20b-Pte) was performed under aerobic conditions at 37°C using LB broth or agar containing
300 �g/ml ampicillin.

Generation of axenic D. melanogaster stocks. Germfree WT Canton-S stocks were derived as
previously described (67). Briefly, 1- to 2-h embryos were collected from grape agar plates dechorionated
with 2.7% sodium hypochlorite for 2 min, washed twice with 70% ethanol, and washed twice with sterile
double-distilled water (ddH2O). Sterilized embryos were seeded in sterile food vials under laminar flow
conditions in a biological safety cabinet. The conventional Canton-S stocks used in this study were
infected with Wolbachia (a bacterial endosymbiont commonly found in association with D. melanogaster
and other arthropods); however, germfree stock lines were cured by treatment with 100 �g/ml
tetracycline delivered in their food for four generations (68). Subsequent germfree stocks were fed sterile
Drosophila medium (without the addition of antibiotics) under sterile conditions, and axenic conditions
were routinely confirmed by performing PCR on whole fly homogenates using the previously described
16S rRNA primers (65). PCRs were screened for amplicons via 1% agarose gel electrophoresis, and axenic
conditions were confirmed by the absence of any PCR product. Alternatively, adult homogenates were
plated on MRS and ACE agar to verify germfree and monoassociation conditions with specified bacteria.

Adult D. melanogaster survival assays. Twenty to twenty-five newly eclosed conventional, abx-
treated, and germfree D. melanogaster flies were anesthetized by using CO2. Anesthetized flies were
randomly assorted into the aforementioned standard vials containing experimental media. Flies were
confirmed to be alive 1 h after transfer and subsequently monitored thereafter for daily survival (17).
Experimental media contained the vehicle (DMSO) or various concentrations of CP, CPO, or TCP. For
excess microbe experiments, overnight cultures of L. plantarum ISO, L. rhamnosus GG, and E. coli(pET20b-
Pte) were centrifuged at 5,000 � g for 15 mins, washed twice with 0.01 M PBS, and resuspended in 0.01
M PBS to attain a 1010 CFU/ml bacterial suspension. The food medium was supplemented with 100 �l
(109 CFU) of L. plantarum ISO, L. rhamnosus GG, E. coli pET20b-Pte, or vehicle [PBS or E. coli(pET20b)
lacking Pte] and allowed to air dry before the flies were added. For E. coli(pET20b-Pte) experiments, the
supplementation was stopped after 48 h to determine the subsequent ability to colonize the D.
melanogaster intestinal tract. The surviving flies were transferred to fresh medium every 72 h for the
duration of each experiment.

Larval D. melanogaster eclosion assays. Eggs were collected on grape agar plates as outlined
previously (69). First, instar larvae were transferred into standard vials (10 larvae/vial) containing
experimental medium and incubated at 25°C. The larvae were monitored daily for up to 16 days for
eclosion.

Pesticide hydrolysis assay. CP-metabolizing bacteria were identified via semiquantitative culture
plate assays by using a modified protocol as previously described (17, 37). Briefly, 5 �l of overnight broth
cultures (106 CFU) of L. plantarum ISO, A. indonesiensis ISO, L. plantarum ATCC 14917, and E. coli(pET20b-
Pte) (positive control) was spot plated on brain heart infusion (catalog number B11059; DB Difco) agar
containing 2.85 mM emulsified CP (forms a precipitate). Following 48 h of incubation at 37°C under
aerobic [A. indonesiensis ISO and E. coli(pET20b-Pte)] or anaerobic (L. plantarum ISO and L. plantarum
ATCC 14917) conditions, the radii of halo formations (zones of clearance) were determined.

Pesticide tolerance assay. Overnight broth cultures of D. melanogaster-derived Lactobacillus plan-
tarum ISO (stationary phase) were subcultured (1:100 dilution) in 96-well plates (catalog number 351177;
Falcon) containing MRS broth with the addition of CP (285 �M) or vehicle (DMSO). Alternatively, MRS
broth containing minimal carbon sources (dextrose free) with the addition of CP (285 �M) or vehicle
(DMSO) was used. The plates were incubated at 37°C in a Labsystems Multiskan Ascent microplate
reader, and optical density (OD) measurements were taken every 30 min for 24 h at a wavelength of 600
nm.

Pesticide metabolism assay. Stationary-phase Lactobacillus spp. were subcultured (1:100 dilution)
in experimental media and supplemented with 285 �M CP or the vehicle (DMSO) and incubated for 24
h anaerobically at 37°C with gentle shaking (150 rpm) and protected from light. CP was then purified
from culture suspensions via two-step ethyl acetate separation. A 2:1 ratio of ethyl acetate to bacterial
culture was vortexed for 15 s, followed by organic layer extraction. Additional ethyl acetate was added
in a 1:1 ratio to the remaining solution and vortexed for 15 s. The resulting organic layer was removed
once again and added to the extracted material, followed by aspiration and evaporation under nitrogen.
The samples were reconstituted in methanol (high-pressure liquid chromatography [HPLC] grade),
filtered with a 0.22-�m-pore-size filter, and analyzed by liquid chromatography tandem-mass
spectrometry (LC-MS/MS).
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An Agilent 1290 Infinity HPLC system was coupled to a Q-Exactive Orbitrap mass spectrometer
(Thermo Fisher Scientific, Waltham, USA) with a heated electrospray ionization (HESI) source. Two
microliters of each sample and standard was injected into a ZORBAX Eclipse plus C18 2.1 mm by 50 mm
by 1.6 �m column. Mobile phase A consisted of 0.1% formic acid in water, and mobile phase B consisted
of 0.1% formic acid in acetonitrile. The initial composition of 100% mobile phase A was held constant for
1.5 min and decreased linearly to 0% over 4.5 min. Mobile phase A was held at 0% for 1.5 min then
returned to 100% over 30 s. The system was reequilibrated at 100% mobile phase A for 1 min, for a total
analysis time of 7.50 min.

The samples were analyzed using a semitargeted, scheduled polarity-switching method. This method
comprised a positive mode data-dependent acquisition (DDA) from 0 to 4.2 min, followed by a negative
mode DDA from 4.2 to 4.8 min, and then returning to positive mode between 4.75 to 7.5 min. This was
done to accommodate the known CP metabolite, TCP, which is detected in negative ionization mode. All
DDA methods were top-3: scan range, m/z 100 to 1,000; resolution, 70,000; automatic gain control (AGC),
3 � 106; and maximum injection time (IT), 250 ms. Product ion spectra were acquired with a 2.0 m/z
isolation window, a resolution of 17,500, AGC target of 1 � 105; max IT of 100 ms, normalized collision
energy (NCE) of 30, threshold intensity of 1.0 � 105, a fixed first mass m/z 75, and with dynamic exclusion
of 8 s. An inclusion list containing the m/z (� 8.56 �M) and retention times of CP, TCP, and CPO was used
so that those m/z signals would be preferentially selected for MS/MS if detected above the threshold
intensity. If the signals corresponding to those compounds were not detected, the three most intense
ions found in the full MS scan were selected for MS/MS.

Enumeration of bacterial load in D. melanogaster guts. Overnight cultures of D. melanogaster-
derived L. plantarum ISO or E. coli(pET20b-Pte) were centrifuged at 5,000 � g for 15 min and washed
twice with 0.01 M PBS, followed by resuspension in 0.01 M PBS to attain 1010 CFU/ml suspensions. Newly
eclosed adult D. melanogaster flies were transferred to standard vials containing medium supplemented
with 100 �l (109 CFU) of L. plantarum ISO, E. coli(pET20b-Pte), or the appropriate vehicle (PBS or E. coli
pET20b lacking Pte) that had air dried. The flies were incubated at 25°C for 18 h and 48 h for L. plantarum
ISO and E. coli(pET20b-Pte) experiments, respectively. The flies were subsequently surface sterilized with
70% ethanol and homogenized in sterile 0.01 M PBS using a motorized pestle. The homogenates were
serially diluted and spot plated onto MRS or LB plus 300 �g/ml ampicillin agar plates in triplicates. CFU
were enumerated following anaerobic (L. plantarum ISO) or aerobic [E. coli(pET20b-Pte)] incubation at
37°C for 48 h.

Statistical analyses. All statistics were performed using GraphPad Prism 7.0 software. Data sets with
unique values were tested for normality using the omnibus-based Shapiro-Wilk test, while data sets with
ties (two or more identical values) were tested for normality using the D’Agostino-Pearson test. Normally
distributed data were statistically compared with unpaired two-tailed t tests, one-way analysis of variance
(ANOVA), or two-way ANOVA as indicated. ANOVA tests were complemented with Tukey’s (data set with
one categorical variable) or Sidak’s (data set with two categorical variables) multiple-comparison tests
when appropriate. Nonparametric data were statistically analyzed using Kruskal-Wallis tests with Dunn’s
multiple comparisons. Mantel-Cox tests were used to analyze overall D. melanogaster survival. Gehan-
Breslow-Wilcoxon tests were used to analyze D. melanogaster survival with an emphasis on the early-
time-point events. Multiple comparisons for Mantel-Cox and Gehan-Breslow-Wilcoxon tests were per-
formed using Bonferroni’s method.

Accession number(s). The 16S rRNA gene sequences have been uploaded to the NCIB GenBank
database (accession numbers MG774414.1, MG774413.1, MG774412.1, and MG774411.1).
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