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ABSTRACT The stratified water column of the Black Sea serves as a model ecosystem
for studying the interactions of microorganisms with major biogeochemical cycles. Here,
we provide detailed analysis of isoprenoid quinones to study microbial redox processes
in the ocean. In a continuum from the photic zone through the chemocline into deep
anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geo-
chemical parameters indicate niche segregation between redox processes and corre-
sponding shifts in microbial community composition. Quinones specific for oxygenic
photosynthesis and aerobic respiration dominate oxic waters, while quinones associated
with thaumarchaeal ammonia oxidation and bacterial methanotrophy, respectively,
dominate a narrow interval in suboxic waters. Quinone distributions indicate highest
metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a ma-
jor process in its photic layer. In the dark anoxic layer, quinone profiles indicate the oc-
currence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal
methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidenti-
fied intra-aerobic anaerobes, occur in this zone. The respiration modes found in the an-
oxic zone continue into shallow subsurface sediments, but quinone abundances rapidly
decrease within the upper 50 cm below the sea floor, reflecting the transition to lower
energy availability. In the deep subseafloor sediments, quinone distributions and geo-
chemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bac-
terial fermentative metabolisms. We observed that sedimentary quinone distributions
track lithology, which supports prior hypotheses that deep biosphere community com-
position and metabolisms are determined by environmental conditions during sediment
deposition.

IMPORTANCE Microorganisms play crucial roles in global biogeochemical cycles, yet we
have only a fragmentary understanding of the diversity of microorganisms and their me-
tabolisms, as the majority remains uncultured. Thus, culture-independent approaches are
critical for determining microbial diversity and active metabolic processes. In order to re-
solve the stratification of microbial communities in the Black Sea, we comprehensively
analyzed redox process-specific isoprenoid quinone biomarkers in a unique continuous
record from the photic zone through the chemocline into anoxic subsurface sediments.
We describe an unprecedented quinone diversity that allowed us to detect distinct bio-
geochemical processes, including oxygenic photosynthesis, archaeal ammonia oxidation,
aerobic methanotrophy, and anoxygenic photosynthesis in defined geochemical zones.
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Microbially mediated redox reactions ultimately drive the global cycling of carbon,
nitrogen, sulfur, and other active elements (1–3). On a cellular level, nonfermen-

tative organisms utilize these redox reactions to maintain electron transport and proton
gradients across the cytoplasmic membrane, which enables the generation of ATP and
forms the basis of the cellular economy (4–6). Essential components of the electron
transport chain are quinones, i.e., isoprenoid lipids that shuttle electrons and protons
between membrane-bound protein complexes (5, 7). Isoprenoid quinones are com-
monly classified based on the structure of a polar cyclic headgroup and can be further
distinguished by the length and degree of saturation of the head-to-tail-linked iso-
prenoid side chain (8, 9). The synthesis of structurally distinct quinones by eukaryotes
and prokaryotes is determined both by phylogeny and, due to their distinct redox
potentials (see Table S1 in the supplemental material), also by the specific requirements
of the electron transport pathway (8, 10, 11).

The major classes of quinones in bacteria are polyunsaturated ubiquinones (UQs)
and menaquinones (MKs), which operate in aerobic and anaerobic metabolisms, re-
spectively. UQs are additionally involved in electron transport in the mitochondria and
other organelles of eukaryotes (10). UQs typically contain six (UQ6:6) to 10 (UQ10:10),
rarely up to 14, isoprenoid units, usually with one double bond per isoprenoid unit,
here termed fully unsaturated (quinone nomenclature Qm:n indicates headgroup type
Q, number of isoprenoid units in the side chain m, and number of double bonds n).
Quinones that are specific for oxygenic photosynthetic eukaryotes and bacteria are
vitamin K1 (also known as phylloquinone or MK4:1) and plastoquinones (predominantly
PQ9:9), which occur in photosystems I and II, respectively (10, 12, 13). In contrast to
bacteria and eukaryotes, polyunsaturated quinones have been observed exclusively in
only two archaeal lineages, the Thermoplasmatales and the Halobacteriales (14–16), the
latter having acquired quinone biosynthesis genes from bacteria via lateral transfer (17).
Most archaea produce saturated or partially unsaturated MKs with four to eight
isoprenoid units (16), while specialized compounds are synthesized by some lineages,
such as sulfur-containing quinones in Sulfolobales (16, 18, 19). The only organisms that
have been suggested to not produce quinones are some fermentative bacteria and
some representatives of the Crenarchaeota and Euryarchaeota, including methanogens (10,
16). However, methanogenic Euryarchaeota of the order Methanosarcinales are known to
replace quinones with the functional analog methanophenazine (MP) (16, 20).

Given the large structural diversity (Fig. 1) and the detailed knowledge of their
phylogenetic distribution, isoprenoid quinones offer a high potential as chemotaxo-
nomic biomarkers (9, 16, 21–23). Besides the use of quinones to characterize microbial
community structure, there is growing evidence that quinone abundance could be
developed into a measure of metabolic activity. For example, chemostat experiments
have demonstrated that the relative abundance of menaquinones increases with
growth rates in the thaumarchaeon Nitrosopumilus maritimus (24). Further, quinones
could be used as process biomarkers, as archaea and bacteria synthesize quinone types
that reflect the biogeochemical conditions in their habitat (9, 16, 25) and remodel their
quinone inventory when switching metabolic pathways on both the single-cell and
community levels (11, 15, 23, 26, 27). Specifically, transitions from oxic to anoxic
conditions and vice versa have been shown to induce rapid changes in quinone
composition both in cultures (11, 15, 26) and incubation experiments with marine
surface sediments (23). However, apart from thaumarchaeal quinones (16), quinone
profiling has so far not been used to study microbial redox processes in the marine
water column.

To demonstrate the utility of environmental quinone profiling, we studied a se-
quence of water column and sediment samples in the southern Black Sea (Fig. 2). Here,
aerobic respiration depletes oxygen in the upper 60 to 120 m of the water column,
while a shallow halocline leads to permanent water column stratification and thus
prevents oxygenation of deeper waters (28). This oxic-anoxic interface is associated
with a multilayered, temporally and spatially variable chemocline (29–31). Within the
chemocline, microbes mediate a cascade of redox processes that can be traced by the
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sequence of nitrogen, sulfur, and metal species (32, 33) and associated microbial
biomarkers (34–37). Quantitatively important processes include ammonium and nitrite
cycling by nitrifying archaea and bacteria as well as anaerobic ammonia-oxidizing
bacteria (29, 38, 39), sulfide, and thiosulfate oxidation, e.g., by phototrophic green sulfur
bacteria (40, 41) and Shewanella spp. (30, 42, 43), aerobic methane oxidation by Alpha-
and Gammaproteobacteria (35), as well as bacterial Fe and Mn cycling (36, 44). In the
anoxic zone, sulfate reduction and anaerobic oxidation of methane (AOM) are major
microbial metabolisms (34, 35, 45, 46) that extend into the sediment (47).

While the depth distribution of the major sedimentary geochemical zones varies
spatially, microbial processes form a continuum from the water column to the sediment
of the Black Sea (47, 48). Sulfate reduction is the major carbon-remineralizing process
in the surface sediments (49) due to the lack of other electron acceptors, such as nitrate,
Fe3�, and Mn4� (50, 51). The sulfate reduction zone extends up to 4 m into the
sediment and partially overlaps the underlying methanogenic zone (47, 49, 52). AOM
occurs both within the surface sediment (46, 53) and within the comparatively broad
sulfate methane transition zone (49).

Past studies of the Black Sea employed a variety of biomarker and activity assays to
study either distinct processes (e.g., methanotrophy, nitrification, and anoxygenic
photosynthesis) (29, 35, 40, 54) or subhabitats within the wider ecosystem (e.g., water
column and surface sediment) (34, 36, 55). Here, we use isoprenoid quinone profiling,
extending our earlier work on thaumarchaeal quinones in the Black Sea chemocline
(16), to provide a detailed analysis of the stratification of microbial metabolisms in a
continuum from the photic zone through the chemocline into the sedimentary deep
biosphere.

RESULTS
Water column and sediment chemistry. Geochemical data revealed a strong

vertical stratification of the Black Sea water column (Fig. 3). The salinity increased from
17.7 at the surface to 22.3 in deep waters. The steepest increase occurred in a discrete
zone between 80 and 150 m below sea level (mbsl). Similarly, temperature increased
with depth from 8.5 to 9°C. A fluorescence minimum was detected at 70 mbsl.
Dissolved oxygen concentrations decreased in a narrow depth interval between 70 and
150 mbsl from �250 �mol kg�1 to below detection. Hydrogen sulfide (HS�) was first
detected at 100 m and slightly increased in concentration to 11.5 �mol liter�1 at ca.
1,100 mbsl. Both dissolved phosphate (PO4

3�) and ammonium (NH4
�) were only

detectable below 120 mbsl. PO4
3� showed a distinct peak at 130 m followed by an

increase from 300 mbsl into deeper waters, while NH4
� concentrations continuously

increased toward the seafloor. Total Fe concentrations were relatively high in the
uppermost water sample (0.31 �mol liter�1 at 17 mbsl), decreased rapidly below this
depth, showed a distinct peak at 111 mbsl (1.35 �mol liter�1), and were generally high
in the deeper waters. Although our analysis on water column samples could not
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distinguish between different valence states of iron, previous studies demonstrated
that Fe3� and Fe2� are predominant in the oxic and anoxic zones, respectively (56, 57).

Based on the geochemistry, we defined the zonation of the water column at site
GeoB15105 as an oxic zone from 0 to 70 mbsl, suboxic zone (chemocline; cooccurrence
of HS� and O2) from 70 to 150 mbsl, and anoxic zone from 150 mbsl to the seafloor
(�1,200 m).

The pore water profiles of dissolved PO4
3� and NH4

� followed similar trends, with
increasing concentrations within the first 250 cm below seafloor (cmbsf). Whereas
NH4

� concentrations stayed fairly constant below 200 cmbsf, PO4
3� slightly decreased

toward the deepest investigated sample (815 cmbsf). Dissolved Fe2� concentrations
were below detection from 0 to 600 cmbsf and strongly increased from 600 to 800
cmbsf. Dissolved sulfate (SO4

2�) concentrations decreased rapidly within the upper 90
cmbsf but remained above the detection limit down to 400 cmbsf. HS� concentrations
showed a maximum at approximately 100 cmbsf. Below 400 cmbsf, HS� concentrations
were close to zero. Methane concentrations were low (�75 �M) in the top 30 cm of the
sediment but increased to almost 15.4 mM at 623 cmbsf. The �13CCH4 significantly
decreased from �53‰ to �88.5‰ within the top 127 cmbsf. Below this depth, values
increased to �69‰ at 815 cmbsf. Based on these results, the sulfate-methane transi-
tion zone (SMTZ) was assumed to cover the depth range from 80 to 400 cmbsf, with the
core of the SMTZ at around 100 cmbsf.

Sediment lithology. The 8-m-long sediment core contains two major sedimentary
units that have been recognized throughout the Black Sea basin (58–60). Unit I
comprises laminated coccolith ooze (�1 to 3 wt% total organic carbon [TOC]) (Fig. 3E)
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deposited during the last 3 ka, while Unit II consists of organic-lean lacustrine deposits
(Unit II, �0.5 to 1 wt% TOC) overlain by an organic-rich sapropel (�4 wt% TOC)
deposited from 7.5 to 3 ka before present (58, 59, 61), coeval to the development of
water column anoxia in the Black Sea (60, 62).

Detection of conventional and novel quinones. Quinones detected in Black Sea
suspended particulate matter and sediment samples comprised 43 different com-
pounds, including vitamin K1, PQ9:9, chlorobiumquinone (ChQ7:7), polyunsaturated UQs,
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and MKs with variable chain lengths and degrees of unsaturation, fully saturated and
monounsaturated MK6, as well as the functional quinone analogs MP5:3 and MP5:4 (see
Fig. S1 in the supplemental material). ChQ7:7 was identified by accurate molecular mass
and isotope pattern match of its proposed elemental formula in full scan mode, MS2

fragment spectra (Fig. S2), and comparison of retention time and fragmentation pattern
with ChQ7:7 in extracts of an enrichment culture of the green sulfur bacterium Chlo-
robium phaeobacteroides BS1. We tentatively identified several novel UQ and MK
isomers based on accurate molecular mass in full scan (MS1) mode and characteristic
fragmentation in MS2 mode (Fig. S1). These isomers do not represent variable double-
bond positions, since they were only detected for fully unsaturated (i.e., one unsatu-
ration per isoprene unit) quinones. The quinones PQ9:9 and UQ7:7 to UQ10:10 each
showed one early [Qm:n(a)] and one late [Qm:n(b)] eluting isomer with highly similar MS2

fragmentation. Based on comparison with the retention time of the commercially
available UQ10:10 (all-trans) standard, the early eluting UQ isomers (a-series) in our
samples represent trans-isomers. Thus, the late eluting isomers (b-series) potentially
represent compounds with one or more double bonds in cis-configuration. Up to four
MK isomers with highly similar MS2 fragmentations were detected, labeled consecu-
tively a to d [MKm:n(a-d)] from early to late eluting. MK and methyl-MK cis- and
trans-isomers have previously been detected in the bacterium Mycobacterium phlei (63)
and the archaeon Thermoplasma acidophilum (15). Thus, it is possible that the different
isomers represent cis and trans isomers. However, with the analytical methods used in
this study, configurational isomerism cannot be resolved.

Distribution of quinones in the Black Sea water column. Total quinone concen-
trations in the water column ranged between 0.21 and 9.4 ng liter�1 (Fig. 4). The
highest concentrations in the water column were measured at 40 mbsl within the oxic
zone and at 300 mbsl within the anoxic part of the water column. From the oxic zone
to the chemocline, quinone concentrations decreased 7-fold. The lowest concentra-
tions occurred in the deepest water column sample at 1,200 mbsl.

Concentration profiles and relative abundances of individual quinones were
strongly linked to the geochemical zonation of the Black Sea water column. The photic
zone, represented by the 40-mbsl sample, was characterized by high relative abun-
dances and concentration maxima of vitamin K1, PQ9:9(a), and UQs but low relative and
absolute abundances of MKs (Fig. 4 and Fig. S3). The upper chemocline (90 and 120
mbsl) samples were dominated by saturated MKs (MK6:0 and MK6:1; 70% of total
quinones) with minor contributions of UQs and methylene-ubiquinone (MQ8:7; struc-
tural identification shown in Fig. S2). The lower contribution of MK6:0 and MK6:1 to total
quinones compared to previously reported values by Elling et al. (16) results from the
detection of MQ8:7, which was not included in the earlier study. Polyunsaturated MKs
first occurred in the photic anoxic zone (150 m), and ChQ7:7 was only observed in this
zone (Fig. 4 and Fig. S3). The deep (aphotic) anoxic zone was characterized by high
relative abundances of polyunsaturated MKs (up to �50%) and UQs and minor con-
tributions of MQ8:7 and PQs (Fig. 4). While relative abundances of quinones were
relatively uniform in the deep anoxic zone, most individual compounds showed distinct
concentration profiles with either shallow maxima at 300 mbsl (e.g., UQ8:8, UQ10:10,
MK6:6, and MQ8:7), deep maxima at 700 to 900 mbsl [e.g., UQ9:9 and MK10:10(b)], or at
both depths [e.g., UQ9:9(a), MK7:6, and MPs; Fig. S3]. MPs were absent from the oxic part
of the water column and the chemocline but were detected in the anoxic part of the
water column, except at 1,200 mbsl (Fig. S3). Most notably, UQ isomers were detected
only in the anoxic zone, and the concentration profiles of different MK and UQ isomers
were highly divergent (Fig. S4).

To further constrain the sources of quinones, we compared their depth profiles with
selected apolar microbial lipid biomarkers, such as cholesterol, as a general eukaryotic
biomarker, alkenones for haptophyte algae, and isorenieratene (structural identification
using high-performance liquid chromatography-mass spectrometry [HPLC-MS] as
shown in Fig. S2) for anaerobic photosynthetic bacteria. Alkenones and cholesterol
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showed the highest abundances in the photic zone and followed the trend of vitamin
K1, PQ9:9(a), and most UQs, while isorenieratene was only detected in the photic anoxic
zone where ChQ7:7 occurred (Fig. S3 and S5).

Distribution of quinones in the sediment. In the sediments, total quinone con-
centrations were highly variable and ranged from 2 to 1,000 ng g�1 sediment dry
weight (sed. dw.) (Fig. 4). Highest concentrations were observed in the surface sedi-
ment and the sapropel layer (S1). Below the sapropel in lithological Unit II, concentra-
tions were lowest and showed little variability.

Relative abundances of quinones differed between Unit I and Unit II sediments but
were relatively uniform within each unit. Unit I sediments were dominated by UQs and
PQs with minor amounts of polyunsaturated MKs, MK6:0, MK6:1, and MQ8:7 (Fig. 4). Unit
II sediments were characterized by higher relative abundances of UQs, ChQ7:7, poly-
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unsaturated MKs, MK6:0, and MK6:1 and lowered abundances of PQs. Absolute abun-
dances of many quinones were dependent on the sedimentary unit, as were TOC and
total quinones, showing a strong decrease in the upper 50 cmbsf, peaking at 398 cmbsf
[e.g., vitamin K1, PQ9:9(a), MK7:7(b)] or above [e.g., MK7:7(a), MK6:0, and MK6:1], and low
abundances in Unit II (Fig. S7). In contrast, concentrations of MQ8:7, ChQ7:7, and MPs
gradually decreased with sediment depth irrespective of changes in lithological units.
Multiple MK and UQ isomers were found only in the sediments and not in the water
column [e.g., MK7:7(a) and UQ7:7(b)], and the relative abundances of isomers were
different in the two sedimentary units and the water column. Additionally, concentra-
tion profiles of these isomers often diverged.

Like those of quinones, concentrations of apolar lipid biomarkers decreased strongly
within the first 50 cmbsf (Fig. S5). In deeper sediments, concentrations varied distinctly,
with alkenones showing no peak in the sapropel, cholesterol peaking only in the
sapropel, and isorenieratene showing peaks at 113 cmbsf and in the sapropel at 398
cmbsf.

DISCUSSION
Potential of quinones for tracking biogeochemical stratification in the Black

Sea water column. In the Black Sea water column, different quinones peaked at
distinct, geochemically defined zones, indicating that quinones were produced in situ
and rapidly turned over. This view agrees with earlier observations indicating high rates
and efficiency of biomass turnover in the Black Sea, particularly in the oxic and suboxic
zones (64). We used respiratory quinone profiling to examine the stratification of
microbial communities and associated metabolic processes in the water column and
the sediment. Metabolic stratification is indicated by the distinct clustering of quinone
types, geochemical parameters, and sample depths in nonmetric multidimensional
scaling (NMDS) analysis (see Fig. S8 in the supplemental material) as well as divergent
quinone diversity indices (see the supplemental material). The biogeochemical zona-
tion and the potential sources of quinones in the southern Black Sea are summarized
in Table 1 and Fig. 5. Microbial communities and metabolisms in the water column
were separated into (i) the oxic (photic) zone supporting oxygenic photosynthesis, (ii)
the suboxic zone dominated by thaumarchaeal ammonia oxidation, (iii) the anoxic
photic zone inhabited by sulfur-oxidizing photosynthetic bacteria, and (iv) the dark
anoxic zone, which supports a variety of bacterial and archaeal metabolisms, such as
methane oxidation, anaerobic ammonium oxidation (anammox), and sulfate reduction.

Oxic water column (0 to 90 mbsl): oxygenic photosynthesis and bacterial
heterotrophy. The major quinone types in the oxic water column are associated with
aerobic autotrophy and heterotrophy (UQs) as well as oxygenic photosynthesis [UQs,
vitamin K1, and PQ9:9(a)] (9). Sources for UQ9:9, UQ10:10, vitamin K1, and PQ9:9(a) are both
cyanobacteria and eukaryotic algae (8, 10, 12, 13), substantiated by their covariation
with cholesterol and alkenones, while UQs with side chain lengths of 7 to 10 are
additionally produced by alpha-, beta-, and gammaproteobacteria (9, 10). Only the
trans-isomers (a-series) were detected in the oxic zone, indicating that aerobic organ-
isms predominantly synthesize UQs with this specific stereochemical configuration.

The detection of MK6:0 and MK6:1 indicates the occurrence of Thaumarchaeota at 40
mbsl (16), although the concentrations of these quinones and the contribution to the
overall quinone pool were comparatively low (Fig. 4). Accordingly, low thaumarchaeal
biomass in the oxic zone was previously implicated by low concentrations of intact
polar glycerol dibiphytanyl glycerol tetraethers observed previously (16), typical mem-
brane lipids of planktonic Thaumarchaeota (83, 84).

Suboxic zone (90 and 120 mbsl): archaeal ammonia oxidation, bacterial sulfur,
methane, and nitrite oxidation. The quinone composition in the suboxic zone of the
water column is substantially different from that observed in the oxic zone. The depth
profiles of the thaumarchaeal quinones MK6:0 and MK6:1 showed a distinct concentra-
tion maximum at 120 mbsl (Fig. 5 and Fig. S3), indicating maximum thaumarchaeal
abundance in the chemocline, where both ammonia and oxygen are almost depleted
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(16), which is in agreement with previous observations based on the abundances of
thaumarchaeal 16S rRNA and ammonia-monooxygenase subunit A gene biomarkers
(29, 38). The predominance of thaumarchaeal quinones (�70% of total quinones) (Fig.
4) and the decrease in dissolved ammonium concentration (Fig. 3) indicate that
archaeal ammonia oxidation is the major respiratory process in this zone. Conversely,
thaumarchaeal lipids have been found to comprise less than 10% of the combined
bacterial and archaeal membrane lipids in this zone (16, 37), suggesting that microbial
biomass in the chemocline is dominated by bacteria, whereas respiration is dominated
by ammonia-oxidizing Thaumarchaeota. The high ratio of quinones relative to lipids
(biomass) in Thaumarchaeota indicates high metabolic activity, as suggested by labo-
ratory experiments (24), but may also reflect the low energy yield of ammonia oxidation
that requires nitrifiers to oxidize 25 to 100 mol ammonia for each mole of CO2 fixed (67).

The absence of quinones involved in photosynthesis indicates that photosynthetic
cyanobacteria and eukaryotic algae either do not inhabit the suboxic zone or are
metabolically not active. The UQs detected in the suboxic zone therefore likely origi-
nate from aerobic ammonia-, iron-, and sulfur-oxidizing alpha-, beta-, and gammapro-
teobacteria as well as aerobic nitrite- and methane-oxidizing alpha- and gammapro-
teobacteria (Table 1) (9, 85). The occurrence of these bacteria and biogeochemical
processes in the Black Sea chemocline has also been attested by previous geochemical
as well as gene and lipid biomarker surveys (34, 35, 86, 87). High relative abundances
of a quinone specific for type I methanotrophs, MQ8:7 (85), corroborate the importance

TABLE 1 Source organisms of quinones and associated biogeochemical processes in the stratified water column of the southern Black
Sea

Zone and quinone type (Putative) source organism Biogeochemical process

Oxic (0–90 m)
Vitamin K1, PQ9:9, UQ7:7, UQ9:9,

UQ10:10

Cyanobacteria, eukaryotic algae (9, 10) Oxygenic photosynthesis

UQ7:7, UQ8:8, UQ9:9, UQ10:10 Diverse Proteobacteria (9, 10, 66) Bacterial autotrophy and
heterotrophy

Suboxic (90–120 m)
MK6:0, MK6:1 Thaumarchaeota (16) Ammonia oxidation
UQ7:7, UQ8:8, UQ10:10 Alphaproteobacteria (9, 66) (e.g., Nitrobacter [68], type II

methanotrophs [85])
Nitrite, iron, and aerobic

methane oxidation
UQ8:8 Betaproteobacteria (e.g., Nitrosomonas [69], Thiobacillus [70]) Ammonia, iron, and sulfur

oxidation
UQ8:8, UQ9:9 Gammaproteobacteria (9, 66) (e.g., Marinobacter [71],

Thiomicrospira [74], Nitrosococcus)
Ammonia, sulfur, iron, and

nitrite oxidation
MQ8:7, UQ8:8 Gammaproteobacteria (9, 66) (e.g., type I methanotrophs [85]) Aerobic methane oxidation

Photic anoxic (120–150 m)
ChQ, MK7:7 Green sulfur bacteria (e.g., Chlorobiaceae [73]) Anoxygenic photosynthesis

Dark anoxic (150–1,200 m)
MK6:6 Deltaproteobacteria (9, 66) (e.g., Desulfomonas [75, 76],

Desulfovibrio [75, 76])
Sulfate reduction

MK6:6 Epsilonproteobacteria (9, 66, 79) (e.g., Sulfurimonas, Sulfurovum
[92])

Sulfur oxidation

MK6:6 Planctomycetes (9, 78, 80, 97) Anaerobic ammonium oxidation
MK7:7 Deltaproteobacteria (9, 66) (e.g., Desulfobacter [76],

Desulfococcus [76], Desulfosarcina [76])
Sulfate reduction

MK8:8 Deltaproteobacteria (9, 66) (e.g., Desulfuromonas [75]) Sulfate reduction
MK7:7 Firmicutes (8) (e.g., Desulfotomaculum [75]) Sulfate reduction (e.g.)
MK8:8, MK8:7, MK8:6, MK9:9, MK9:8,

MK9:7, MK10:9, MK10:10, MK11:11

Actinobacteria (8, 9, 81, 160) Nitrate reduction (e.g.)

MP5:4, MP5:3 Methanosarcinales (16, 20), potentially including ANME (117) Methanogenesis, anaerobic
oxidation of methane

Regular UQs Unknown anaerobic source or fossil detritus
UQ isomers Unknown anaerobic source
Vitamin K1, PQ9:9 Unknown anaerobic source or fossil detritus
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of aerobic methanotrophy mediated by gammaproteobacteria in the Black Sea che-
mocline.

Photic anoxic zone (120 to 150 mbsl): bacterial anoxygenic photosynthesis.
Penetration of H2S-containing waters into the photic zone (Fig. 3) enables bacterial
anoxygenic photosynthesis. Indeed, the carotenoid isorenieratene (88) and ChQ7:7,
which are both diagnostic for anaerobic phototrophic green sulfur bacteria of the
family Chlorobiaceae (72, 89), showed distinct concentration maxima in anoxic, sulfidic
waters at 150 mbsl (Fig. 5 and Fig. S3). This habitat depth is close to the maximum
depth for anaerobic phototrophic growth calculated from the optical transparency of
seawater (90). MK7:7, which is a major quinone in the chlorosomes of Chlorobiaceae (72,
91), is the only MK that significantly increased in concentration at this depth (Fig. S3,
b-isomer), suggesting a major contribution of these organisms to microbial activity in
the deep chemocline. The abundance of a single Chlorobium species at depths of up to
145 mbsl has been reported to be a widespread feature of the Black Sea and attributed
to extremely low-light adaptation of this particular phylotype (40, 41, 73). The peak of
ChQ7:7, the distinctive covariation with isorenieratene, as well as MK7:7 indicate the high
relative abundance of extremely low-light-adapted Chlorobiaceae in the Black Sea
chemocline and validate the use of ChQ7:7 as a biomarker for anoxygenic photosyn-
thetic Chlorobiaceae.

Anoxic zone (150 to 1,200 mbsl): sulfate and nitrate reduction, anammox, and
sulfur oxidation. Within the anoxic zone, quinone diversity indices are highest (Fig. S6)
and abundances peak at concentrations more than 3-fold higher than those in the oxic
and other layers (Fig. 4), indicating the highest microbial respiratory capacity. The first
appearance of polyunsaturated MKs in the anoxic zone (including the photic, deep
chemocline at 150 mbsl; Fig. 4 and Fig. S3) reflects a shift from aerobic and microaero-
bic archaeal and bacterial respiration to mainly bacterial, MK-dependent, anaerobic
respiration. Likely sources of polyunsaturated MKs in the anoxic zone are diverse
sulfate-reducing deltaproteobacteria, such as Desulfobacter, Desulfococcus, and Desul-
fosarcina spp., which produce predominantly MK7:7 (76). Furthermore, Desulfovibrio and
Desulfuromonas synthesize MK6:6 and MK8:8, respectively, as major quinones (8). Sulfur-
oxidizing Epsilonproteobacteria previously detected in the Black Sea (36), e.g., Sulfuri-
monas and Sulfurovum, might represent additional sources of MK6:6 (92). Potential
sources for MK7:7 and MK9:9 are sulfate-reducing Firmicutes related to the genus
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Desulfotomaculum (8). Several of these bacterial clades have been suggested to be
responsible to a large extent for dark carbon fixation below the chemocline (93). The
occurrence of quinones associated with sulfate-reducing bacteria in the anoxic zone is
consistent with the abundance of bacterial ether lipids reported previously for this zone
(37), which are almost exclusively associated with anaerobic bacteria (94) and partic-
ularly sulfate reducers (95, 96). An activity and abundance maximum of sulfate reducers
and sulfur oxidizers in the upper anoxic zone is consistent with the observations that
these bacteria first appear beneath the chemocline (34, 36, 77, 87) and that sulfur
oxidation and sulfate reduction rates are highest in the upper anoxic zone of the Black
Sea (30, 45).

Bacteria of the phylum Planctomycetes might represent an additional source of MK6:6

(9, 78, 97). Bacteria affiliated with a deeply branching monophyletic lineage of this
phylum perform the reduction of NO2

� to N2 by NH4
�, i.e., anaerobic ammonium

oxidation (anammox). Based on the analysis of 16S rRNA gene markers and the
anammox-specific ladderane lipids, anammox bacteria have been shown to be present
mainly within the suboxic zone of the Black Sea (34, 39). Moreover, previous studies
proposed the cooccurrence and coupling of bacterial anammox and archaeal ammonia
oxidation within the chemocline of the central Black Sea (29, 38). In contrast, the
quinone profiles at our study site in the southern Black Sea suggest a vertical separation
of the depth habitats of ammonia-oxidizing Thaumarchaeota and anammox bacteria by
up to 200 m (Fig. 5), with Thaumarchaeota being confined to the suboxic zone and
anammox bacteria residing within the upper anoxic zone (Table 1), although geochem-
ical coupling of these processes cannot be excluded. High sulfide concentrations
appear to inhibit growth of anammox bacteria (98), thus anammox bacteria are likely
restricted to the upper part of the anoxic zone.

Actinobacteria are likely sources of fully unsaturated and partially saturated long-
chain MKs, specifically of MK8-MK11 (8, 99). Bacteria affiliated with this phylum have
been implicated in denitrification, i.e., the heterotrophic reduction of NO3

� to N2,
within the anoxic zone of the Black Sea (36). Quinones with 9 to 11 isoprenoid units are
abundant in the anoxic zone of the Black Sea, especially in the deeper part (Fig. S3),
suggesting a significant contribution of Actinobacteria to metabolic activity, possibly
denitrification, in the deep anoxic Black Sea.

The occurrence of UQs, PQs, and MQ8:7 in the anoxic zone is enigmatic, as these
quinones are typically associated with aerobic metabolism. It is plausible that some
anaerobic bacteria use ubiquinone-dependent pathways, as is the case for the nitrite-
reducing methanotroph “Candidatus Methylomirabilis oxyfera” (100–102). Likewise,
activity of methanotrophic bacteria (a source of UQs and MQ8:7) that potentially use
nitrate or nitrite instead of oxygen as the electron acceptor has been reported from the
cores of marine oxygen minimum zones (103, 104). Methanotrophic bacteria could also
be involved in cryptic Fe and methane cycling, as previously implied for other anoxic
habitats (105–109). Alternatively, aerobic respiration might be supported by episodic
lateral intrusions of modified Bosporus water that provide dissolved oxygen (as well as
inorganic electron acceptors and fresh organic matter) to the suboxic and upper anoxic
zones of the Black Sea (56, 110, 111). Although lateral intrusions and vertical transport
could also deliver fossil quinones to the anoxic zone (e.g., see reference 64), the isomer
pattern of UQs suggests in situ production of aerobic-type quinones: late eluting UQ
isomers occurred only in the anoxic water column, while they were absent from the
oxic and suboxic zones (Fig. S3 and S4).

Water column methane concentrations were not measured at our study site, but
methane has been shown to be present at micromolar levels in the anoxic zone at other
sites in the Black Sea (34, 46). While it was suggested that most of the methane in the
Black Sea water column derives from the sediment (46), the detection of MPs (Fig. 5 and
Fig. S3) indicates that methanogenesis also occurs within the anoxic waters. MPs are
exclusively found in the archaeal order Methanosarcinales (16, 20), which comprises the
metabolically most versatile methanogens utilizing CO2 � H2, acetate, and methylated
compounds as substrates (112). Methanogens are likely outcompeted by sulfate-
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reducing bacteria for acetate and H2 due to thermodynamic constraints (113–115).
Thus, utilization of noncompetitive methylated carbon substrates (114, 116) is a likely
methanogenic pathway employed by Methanosarcinales in the Black Sea. However,
anaerobic methanotrophic archaea (ANME-2), which are phylogenetically associated
with the Methanosarcinales, have also been detected in the anoxic water column of the
Black Sea (34, 35, 82). While the presence of MP in ANME-2 has not been confirmed,
they have been implicated to function as electron carriers in these archaea (117), which
may represent an additional source of MPs.

Other quinones specific for archaea, i.e., fully saturated menaquinones and naph-
thoquinones (16), were not detected in the anoxic zone of the Black Sea. This indicates
that most anaerobic planktonic Cren- and Euryarchaeota either do not produce quino-
nes or that these archaea synthesize bacterium-like polyunsaturated quinones similar
to those found in extremely halophilic archaea of the order Halobacteriales (14) and
thermophilic archaea of the order Thermoplasmatales (16), the latter being the closest
cultivated relatives to the uncultivated planktonic marine group II Euryarchaeota, also
found in the Black Sea (82, 118).

Lithological control on quinone distribution and fossilization of quinones in
Black Sea sediments. Quinone concentrations are highest at the sediment surface and
in the sapropel (Fig. S8A). The concentration maxima could be related to zones of
higher activity, which would be consistent with higher microbial activity typically
observed in shallow sediments (119) and organic matter-rich layers (120). On the other
hand, these zones would show highest preservation (121, 122) if quinones derived from
the water column would accumulate as molecular fossils. This dichotomy between the
dependency of metabolic activity (and, thus, potentially quinone abundance) on
organic matter availability and the possibly higher preservation of allochthonous
quinones in high-TOC intervals poses significant challenges to the interpretation of
sedimentary quinone profiles, because the fate of quinones after deposition, i.e., their
degradation, transformation, and/or preservation, remains unknown. At least some
quinones, such as PQs and vitamin K1, likely are molecular fossils, as they are typically
associated with aerobic metabolisms and/or phototrophy and their abundances are
correlated with preserved oxic/photic zone lipid biomarkers, such as alkenones (hap-
tophyte algae) and cholesterol (eukaryotes) (Fig. S5 and S10). However, normalization
of quinone concentrations to TOC content (Fig. S9) reveals that quinone abundances
are elevated in high-TOC intervals. Maxima in quinone concentrations thus may not be
primarily controlled by preservation but could reflect higher standing stocks of meta-
bolically active microbes. Further, the depth profiles of several quinones differ signifi-
cantly from those of the putative fossil quinones (Fig. S7), and although preferential
export and selective preservation could explain the observed signals, we hypothesize
that most quinones were produced in situ by benthic microbes. We base this hypoth-
esis on three lines of evidence. (i) Selective degradation of quinones is unlikely due to
their highly similar chemical structures. (ii) We further observed distinct compositional
changes between the water column and the sediments within different quinone
classes, e.g., isomer distributions (Fig. S4). This becomes particularly apparent when the
full diversity of quinones is considered (Fig. S11) and is supported by statistical analysis,
which revealed distinct clusters of water column and sedimentary quinones in the
NMDS space (Fig. S12). (iii) Some quinones, for example, MK7:7(a), MK7:7(d), UQ11:11 (a),
and UQ11:11(b), were detected in the sediments but not in the water column. Together,
these findings provide strong evidence that quinone compositions of planktonic and
sedimentary communities differ.

The sedimentary quinone composition seems to be dependent on lithology. Rela-
tive abundance plots of major quinone groups (Fig. 4) and statistical analysis (NMDS)
of individual quinone abundances revealed two clusters that align with lithological Unit
I (euxinic marine) and Unit II (lacustrine) and correlate to some extent with the
geochemical zonation (Fig. S12 and S13; see the next section for a more detailed
discussion). We observed, for example, higher relative abundances of archaeal MKs,
ChQ, and MK8:8-MK11:11 in Unit II than in Unit I as well as fine-scale compositional
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changes within different quinone classes (Fig. S11). The quinone profiles thus agree
with the hypothesis that community assembly and metabolisms in the deep sedimen-
tary biosphere are determined by the initial community composition, and therefore the
environmental conditions during sediment deposition (123–127), modulated by selec-
tive persistence (128). Within each lithological unit, the relative quinone compositions
do not change with depth, not even in the sapropel. This invariance might be indicative
of a high background signal of quinones associated with dormant or dead, but
preserved, microbial biomass that likely masks in situ activity of a much smaller pool of
living microorganisms. Still, the distributions of individual quinones allow the charac-
terization of metabolic stratification, as discussed below.

Respiratory processes in Black Sea sediments. Three biogeochemical zones can
be distinguished based on geochemical characteristics and quinone profiles: (i) the
sulfate reduction zone, including the SMTZ; (ii) sapropel S1; and (iii) the methanogenic
zone.

Concentrations of most quinones decrease within the first 50 cmbsf (Fig. 4 and Fig.
S5), likely reflecting decreasing metabolic activity concomitant with gradual depletion
of electron acceptors (e.g., sulfate) with depth (Fig. 3). Within the broad SMTZ (centered
around ca. 80 to 150 cmbsf), concentrations of many quinones either stabilize or
increase. Compounds that increase include several polyunsaturated MK isomers, e.g.,
MK6:6(b), MK7:7(d), and MK8:8(c) (Fig. S7). Sulfate-reducing Deltaproteobacteria, possibly
also engaged in AOM, are probable sources for these compounds. Similarly, MPs could
originate from ANME archaea, which were previously detected in this depth interval
(129) and which were suggested to utilize these quinone analogs (117). Saturated MKs,
which are more prevalent than polyunsaturated MKs in cultivated archaea, were not
abundant (apart from the thaumarchaeal MK6:0 and MK6:1), suggesting that benthic
archaea do not produce them. Notably, some UQ isomers show peaks in concentration
within the SMTZ (Fig. S7). The sources of and processes associated with these aerobic-
type quinones in anoxic sediments remain unclear, but it is plausible that some
anaerobic bacteria use ubiquinone-dependent pathways, as discussed above for the
anoxic water column. A possible source of UQs could be methanotrophic bacteria
involved in AOM coupled to iron reduction, as discussed above for the water column.
Indeed, Fe2� accumulates in the pore water of the methanogenic zone concomitant
with a decrease in methane concentration (Fig. 3). This release of Fe2� from the
organic-poor, lacustrine sediment of Unit II is strikingly similar to lacustrine sediments
of the Baltic Sea, where the occurrence of AOM coupled to iron reduction was
suggested (105). The lack of MPs in this zone indicates that any archaea involved in this
process are not Methanosarcinales. Quinones characteristic for type II methanotrophs
(MQs) were not detected in this zone either, while UQ8:8, the dominant quinone of type
I aerobic methanotrophs (85), was a major component of the UQ pool (Fig. S11),
potentially indicating activity of this clade.

Saturated and polyunsaturated MK concentrations peak either slightly above or
within the sapropel (Fig. S7), indicating niche metabolic segregation. Coinciding con-
centration maxima of ammonia, phosphate (Fig. 3), and acetate (129) indicate en-
hanced heterotrophic activity in this zone. Due to a lack of electron acceptors, fermen-
tation is likely to be the dominant heterotrophic process, as previously observed for
deeply buried sapropels in the Mediterranean Sea (120). Multiple lineages of unculti-
vated archaea have been suggested to use heterotrophic and/or fermentative metab-
olisms (130–132), e.g., acetogenesis (133–135), and were reported to be abundant in
the sediments studied here (Bathyarchaeota/MCG and MBG-D) (129). However, their
quinone compositions remain unknown. Similarly, members of the candidate phylum
“Atribacteria” (formerly OP9 and JS1), for which fermentation appears to be a charac-
teristic metabolism (136, 137), were found in high relative abundances throughout the
studied sediment core (129). While most fermenting bacteria do not produce iso-
prenoid quinones (8, 10), homoacetogens are a likely source for the high concentra-
tions of MKs (e.g., MK8:8) (138, 139) observed in the sapropel. Potential additional
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sources of polyunsaturated MKs are Chloroflexi, i.e., green nonsulfur bacteria (9, 140),
which were previously found to be abundant and metabolically active in Mediterranean
sapropels (120) and other deep biosphere environments (128, 141). Collectively, geo-
chemical and quinone biomarker evidence indicates that the sapropel supports high
heterotrophic activity, which in turn may supply acetate and potentially other metab-
olites (e.g., H2) to the sulfate reduction and methanogenic zones above and below the
sapropel.

Based on methane concentrations and carbon isotope ratios as well as quinone
distributions, methanogenesis likely occurs in two modes. The gradual decrease in MP
concentration within the upper 400 cmbsf indicates that methanogenesis and methane
oxidation by Methanosarcinales (including ANME-2) predominantly occurs within the
sulfate reduction zone, where methanogenesis is likely methylotrophic. Further down-
core, methane concentrations strongly increase to a maximum below the sapropel at
�630 cmbsf, indicating activity of methanogens other than Methanosarcinales and thus
a vertical segregation of methylotrophic and hydrogenotrophic methanogens in Black
Sea sediments. The methanogens inhabiting the deep sediments are likely obligate
hydrogenotrophs such as Methanobacteriales or H2-dependent methylotrophs such as
Methanomassiliicoccales, which do not produce quinones or quinone analogs (16, 142,
143), or are affiliated with uncultured, potentially methanogenic lineages such as the
Bathyarchaeota (144) or Verstraetearchaeota (65).

Conclusions. By using quinone profiling, a clear zonation of microbial diversity and
redox processes could be resolved throughout the Black Sea water column and
sediments. Coupled with geochemical data, quinone distributions indicated niche
segregation between biogeochemical processes (e.g., photosynthesis, nitrification, aer-
obic methanotrophy, and anoxygenic photosynthesis) within the multilayered chemo-
cline and anoxic zone (anammox, sulfate reduction, and methanogenesis/AOM) and
continuation of anoxic aqueous community composition and respiration modes into
shallow subsurface sediments. Within the sediment, segregation of microbial commu-
nities and respiration modes appeared to be driven by both lithology and geochemical
gradients, with distinct quinone maxima around the sapropel reflecting intense het-
erotrophic activity.

Future work will need to target the relationship between biomass, metabolic activity
(rates) and quinone abundances or distribution patterns, the source assignment of
novel isomers, and the preservation potential of quinones in sediments. Cultivation
experiments, polyphasic water column and sediment profiling studies, as well as
development of methods for the isotopic analysis of quinones (e.g., for distinguishing
MPs originating from methanogenic versus methane-oxidizing Methanosarcinales) will
be needed to promote the utility of quinones as process biomarkers.

MATERIALS AND METHODS
Suspended particulate matter, sediment, and pore water sampling. Suspended particulate

matter and sediment samples were collected in the southern Black Sea in February 2011 at site
GeoB15105 (Fig. 2) during R/V Meteor cruise M84/1 (145). Suspended particulate matter was recovered
at nine water depths, ranging between 40 and 1,200 m, by pumping 6 to 204 liters of seawater through
two precombusted 0.7-�m-pore-size glass fiber filters in tandem using in situ pumps (see Table S2 in the
supplemental material). Recovered filters were immediately wrapped in combusted aluminum foil and
stored at �20°C. Due to the use of 0.7-�m-pore-size filters, membrane lipid and quinone concentrations
should be regarded as minimum estimates (146). Water column profiles of temperature, chlorophyll a
fluorescence, and depth, as well as pressure and dissolved oxygen, were measured with a vertical
resolution of 1 m using a CTD rosette (GeoB15105-5). The salinity was derived from conductivity, while
the density was calculated from pressure and temperature measurements as well as salinity. Water
column samples (10 to 20 ml) were retrieved from these hydrocasts with Niskin bottles and directly
filtered (0.2-�m syringe microfilter) after the recovery of the CTD rosette. Sediments were recovered
using a multicorer (GeoB15105-4) and a gravity corer (GeoB15105-2). Sampling procedures were de-
scribed in detail by Zabel et al. (145). In brief, samples for gas analyses were taken immediately after core
recovery from the freshly cut surfaces after core extrusion (multicorer) or cutting into 1-m sections
(gravity corer). The cores were then sealed with end caps and transferred to a cold room (4°C). In the cold
room, pore water was extracted from sediment cores through holes in the core liner with Rhizon
microsuction samplers (0.1-�m filter width; Rhizosphere Research Products, Wageningen, the Nether-
lands) immediately after core recovery and split into subsamples for offshore and onshore analysis (145).
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After core splitting, sediment for lipid analyses was sampled in the cold room within 24 h after core
recovery and stored at �20°C in brown glass bottles until solvent extraction.

Water column and pore water chemistry. Dissolved sulfate was determined by ion chromatogra-
phy (Metrosep A Supp 5 column, with conductivity detection after chemical suppression; Metrohm
Compact IC) in samples diluted 1:100 with Milli-Q-grade H2O. Concentrations of dissolved phosphate
were determined by forming phosphomolybdenum blue complexes (1 ml sample, 50 �l ammonium
molybdate solution, 50 �l ascorbic acid solution, and 10 min of incubation) and measuring extinction at
820 nm using a Hach Lange DR 5000 spectrophotometer. Total dissolved iron (Fetot) was determined in
HNO3-acidified water samples by inductively coupled plasma optical emission spectroscopy (ICP-OES;
axial plasma observation; Agilent 720). Ferrous iron (Fe2�) was analyzed photometrically onboard directly
after sample collection (147). Dissolved ammonium was detected with a flow injection, Teflon tape gas
separator technique after Hall and Aller (148) using a temperature-compensated conductivity meter (no.
1056; Amber Scientific) equipped with a micro-flowthrough cell (529; Amber Scientific) and a strip chart
recorder. Dissolved hydrogen sulfide was determined in samples fixed with ZnCl2 using the photometric
methylene blue method (149).

Hydrocarbon gases. Concentrations of dissolved methane were determined on board according to
previously reported protocols (150, 151). In brief, 2 to 3 ml of wet sediment was incubated in a gas-tight
22-ml glass vial with a Teflon septum for 20 min at 60°C. After heating, 100- to 500-�l subsamples were
taken from the headspace gas with a gas-tight syringe and analyzed by gas chromatography-flame
ionization detection using a Carboxen-1006 PLOT fused-silica capillary column (0.32 mm by 30 m;
Supelco, Inc., USA) on a ThermoFinnigan Trace GC. Methane concentrations were calculated from the
partial pressure of methane in the headspace gas (calibrated against commercial standards; Scotty
Laboratory Gases), headspace and sample volumes, and corresponding porosity data.

The stable carbon isotopic composition of methane was determined from duplicate analyses of the
same samples using a Trace GC Ultra coupled to a Delta Plus XP isotope ratio mass spectrometer via a
GC Combustion III interface (all ThermoFinnigan), as described previously (152). Carbon isotope ratios are
reported in the �-notation as per milliliter of deviation from the Vienna Pee Dee Belemnite (VPDB)
standard. Analytical precision was determined by repeated injections of commercially available standards
(methane at 100 ppm; Air Liquide) and was better than 1‰.

Total organic carbon. For TOC analysis, an aliquot (�3 g) of homogenized and freeze-dried
sediment sample was decalcified by acidification with 10% HCl. After washing with water, centrifugation,
and freeze drying, between 10 and 30 mg of decalcified sediment was weighed into tin capsules and
analyzed in duplicate on a Thermo Scientific Flash 2000 elemental analyzer connected to a Thermo Delta
V Plus IRMS (153). TOC concentrations refer to initial sediment dry weight (corrected for carbonate
content determined by weighing before and after decalcification) and are reported in weight percent
(wt%) with a limit of detection of 20 �g C.

Quinone and lipid extraction and analysis. Isoprenoid quinones and lipids were ultrasonically
extracted from filters and sediments by following a modified Bligh & Dyer protocol (95) with
dichloromethane-methanol-buffer (1:2:0.8, vol/vol/vol) using phosphate and trichloroacetic acid
(CCl3CO2H) buffers (each 2�). The total lipid extract (TLE) was dried under a stream of N2 and stored
at �20°C until analysis.

TLEs were analyzed on a Dionex Ultimate 3000RS ultra-high-performance liquid chromatography
(UHPLC) system connected to a Bruker maXis Plus ultra-high-resolution quadrupole time of flight tandem
mass spectrometer (qToF-MS) equipped with an electrospray ionization (ESI) ion source operating in
positive mode (Bruker Daltonik, Bremen, Germany). For quantification, a known amount of C46-GTGT
(glycerol trialkyl glycerol tetraether) standard was added to each sample before injection. Analytes were
separated using reversed-phase (RP) HPLC on an ACE3 C18 column (2.1 by 150 mm; 3-�m particle size;
Advanced Chromatography Technologies, Aberdeen, Scotland) maintained at 45°C as described previ-
ously (154).

The mass spectrometer was set to a resolving power of 27,000 at m/z 1,222, and every analysis was
mass calibrated by loop injections of a calibration standard and correction by lock mass, leading to a
mass accuracy of 1 to 3 ppm (155). Ion source and other MS parameters were optimized by infusion of
standards into the eluent flow from the LC system using a T-piece. Quinones were identified by retention
time, accurate molecular mass, and MS2 fragmentation according to Elling et al. (16). Integration of peaks
was performed on extracted ion chromatograms of �10-mDa width and included the [M�H]�,
[M�NH4]�, and [M�Na]� ions. Where applicable, double-charged ions were included in the integration.

Additionally, selected samples were analyzed for low-abundance methanophenazines under the
same chromatographic conditions on a Dionex Ultimate 3000RS UHPLC system connected to an ABSciEX
QTRAP4500 triple-quadrupole/ion trap MS equipped with an ESI ion source operating in positive mode.
Target compounds were detected by scheduled multiple-reaction monitoring of diagnostic tandem MS
(MS/MS) transitions. Ion source, multiple-reaction monitoring transitions, and other MS parameters were
optimized by direct infusion of commercially available standards as well as TLEs of Nitrosopumilus
maritimus and Methanosarcina acetivorans.

Quinone abundances were corrected for the relative response of commercially available menaqui-
none (MK4:4 for MKs, chlorobiumquinone [ChQ7:7], and vitamin K1) and ubiquinone (UQ10:10, trans-isomer
for UQs, and PQs) standards (Sigma-Aldrich, St. Louis, MO, USA) versus the C46-GTGT standard. Due to a
lack of an authentic standard, MP concentrations were not corrected for their relative response and thus
are not included in total quinone abundance and distribution patterns or calculations of diversity indices.
The abundances of isorenieratene were corrected by the relative response of a commercial �-carotene
standard (Sigma-Aldrich). Similarly, the abundances of cholesterol and alkenones were corrected by the
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relative response of a commercial cholesterol standard (Sigma-Aldrich) and synthetic C37:2 and C37:3

alkenone standards (156). The detection limits for quinones and lipids, as detected for authentic
standards using the qToF and triple-quadrupole MS, were approximately 5 pg and 1 pg on column,
respectively, depending on compound class and considering a signal-to-noise ratio of greater than 3.

Statistical analysis. Nonmetric multidimensional scaling (NMDS) analyses were performed in R
(version 3.3.1 [157]) using the vegan package (version 2.4.2 [158]) separately on (i) water column
suspended particulate matter, (ii) sediment quinone data sets, and (iii) the combined data sets. Normal-
ized quinone concentrations (percent) were used for all statistical analyses, and geochemical/oceano-
graphic parameters were fitted to the data. Geochemical/oceanographic parameters used for water
column samples were temperature, fluorescence, salinity, O2, NH4

�, PO4
3�, HS�, and SO4

2�. Geochemical
parameters used for sediment samples were TOC, CH4, �13CCH4, NH4

�, PO4
3�, HS�, and SO4

2�. For
combined analyses, only parameters available for both sediments and water column (NH4

�, PO4
3�, HS�,

and SO4
2�) were considered.
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