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Helicobacter pylori is a common pathogen that is esti-
mated to infect half of the human population, causing
several diseases such as duodenal ulcer. Despite one of
the first pathogens to be sequenced, its proteome re-
mains poorly characterized as about one-third of its pro-
teins have no functional annotation. Here, we integrate
and analyze known protein interactions with proteomic
and genomic data from different sources. We find that
proteins with similar abundances tend to interact. Such an
observation is accompanied by a trend of interactions to
appear between proteins of similar functions, although
some show marked cross-talk to others. Protein function
prediction with protein interactions is significantly im-
proved when interactions from other bacteria are in-
cluded in our network, allowing us to obtain putative
functions of more than 300 poorly or previously unchar-
acterized proteins. Proteins that are critical for the topo-
logical controllability of the underlying network are signif-
icantly enriched with genes that are up-regulated in the
spiral compared with the coccoid form of H. pylori. Deter-
mining their evolutionary conservation, we present evi-
dence that 80 protein complexes are identical in compo-

sition with their counterparts in Escherichia coli, while 85
are partially conserved and 120 complexes are completely
absent. Furthermore, we determine network clusters that
coincide with related functions, gene essentiality, genetic
context, cellular localization, and gene expression in dif-
ferent cellular states. Molecular & Cellular Proteomics
17: 10.1074/mcp.RA117.000474, 961–973, 2018.

Helicobacter pylori (H. pylori)1 is a pervasive pathogen that
is uniquely adapted to life in the acidic environment of the
human stomach and associated with gastric inflammation and
duodenal ulcer (1, 2). Persisting in such an environment by
tightly associating with epithelial cells, H. pylori affects an
estimated half of the human population. As a consequence, H.
pylori is notorious for causing low-level inflammation and
duodenal ulcer as well as stomach carcinoma and MALT
(mucosa-associated lymphoid tissue) lymphoma (1–3), caus-
ing 700,000 deaths annually worldwide (4).

The genome of H. pylori reference strain 26695 was com-
pletely sequenced in 1997 (5) and encodes �1,587 proteins
with about 34% remaining uncharacterized (6). Given its im-
pact on world health, a concerted effort is required to under-
stand this significant number of proteins and their role in
infection and disease.

Interactions between proteins are needed for almost all
biological processes, helping to understand pathways as well
as linking poorly or uncharacterized proteins. Only a few
comprehensive bacterial interactome studies have been pub-
lished to date, such as Escherichia coli (7), Campylobacter
jejuni (8) and Mycobacterium tuberculosis (9). In particular,
protein interactions of H. pylori were among the first to be
determined in bacteria (10), an interactome that has been
recently expanded (11), capturing roughly 70% of the pro-
teome. While such interactomes have been detected using
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yeast two-hybrid methods, a few studies also identified bac-
terial protein complexes (12–15).

Several studies have attempted to characterize the pro-
teome of H. pylori. Bumann et al. (16) found more than 1,800
protein spots on 2-dimensional gels, of which 200 were iden-
tified. Similarly, Jungblut et al. (17) found up to 1,800 protein
spots on 2-dimensional gels. 152 were identified, including 27
proteins that corresponded to hitherto hypothetical proteins
(17). Govorun et al. (18) analyzed the proteomes of four H.
pylori clinical isolates and identified 126 proteins. More re-
cently, Jungblut et al. (19) used intensive prefractionation to
identify a total of 567 proteins (36.6% of the proteome). Re-
cently, we have identified 1,190 and 1,143 proteins by 2D-
LC-MS and GeLC-MS, respectively (20, 21), representing
roughly 72% of the H. pylori proteome.

As proteomes and interactomes have been determined in-
dependently, their relationship remains unclear. Here, we in-
tegrate proteomic quantitative measurements in a network of
roughly 3,000 protein–protein interactions (10, 11). Our anal-
yses of diverse datasets allow us to explore the role of abun-
dance in both the proteome and interactome as well as the
structure and functionality of networked patterns. Investigat-
ing the proteomes of spiral and coccoid forms of H. pylori, we
find that proteins that are critical for the control of the under-
lying interactome are significantly enriched with genes that
are differentially expressed in the spiral form. Such observa-
tions potentially point to single proteins that play a role in the
adaptability of the pathogen to different physiological condi-
tions. Furthermore, we predict the function of more than 300
previously poorly annotated genes as well as protein com-
plexes and functional network clusters in H. pylori. As a con-
sequence, our integration and analysis of various large-scale
datasets provide new insights into the proteome, interactome,
and physiology to significantly improve our knowledge of this
important pathogen.

EXPERIMENTAL PROCEDURES

Essential Genes—We collected essentiality data from several com-
prehensive genetic studies in H. pylori (22, 23). Furthermore, we
added genes that were essential for H. pylori colonization (24, 25).

Relative and Absolute Protein Quantification—Data on relative
changes in protein abundance between coccoid and spiral cells were
extracted from our previous study (21). Briefly, four biological repli-
cates of coccoid and spiral H. pylori cells were measured by LC-MS
using a stable isotope labeling in cell culture based approach, cap-
turing 1,143 proteins.

As for proteomic abundances, we collected data from a previous
study as well (20). Nine replicates were measured by LC-MS/MS
analysis without sample fractionation, capturing the abundance val-
ues of 1,190 proteins in H. pylori.

Protein–protein Interactions in H. pylori—We collected a total of
3,002 protein interactions from two high-throughput studies. In
particular, we considered a set called PIM1 from (10) and PIM2 from
(11) that both were determined by yeast two-hybrid approaches.
We also identified 1,466 interactions that were classified as core
data (i.e. high confidence) as they represent the overlap of PIM1
and PIM2 (10, 11).

Clustering Analysis—We used the Markov Clustering (26) algorithm
(MCL) to identify clusters of interactions in the combined core H.
pylori network. Applying different combinations of parameters, we
automatically assessed each cluster’s ability to significantly enrich
coherent proteins. In particular, we utilized functional annotations
from the Comprehensive Microbial Resource (27), gene ontology (GO)
(28) and Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base (29). Furthermore, we utilized gene essentiality from (22–25). For
microarray analyses, we utilized 16 sets of gene expression analyses
of H. pylori (27) from the Comprehensive Microbial Resource and
considered three cases: genes up-regulated (�), genes down-regu-
lated (�), and genes differently regulated (� or �). Each experiment
is identified by a number, a title, and the author (Table S4). For GO
term enrichment analysis, we used the TopGo python library (30). For
other annotations, we used Fisher’s exact test and considered clus-
ters if they enriched genes with p � 0.05.

Functional Classes of Proteins—H. pylori proteins were grouped
according to broad functional classes that were defined by clusters of
orthologous groups (COGs) (31, 32) since COGs provide a consistent
classification of bacterial genes based on orthologous groups.

Enrichment Analysis—Binning proteins with a certain characteristic d
(e.g. with a given number of interactions), we calculated the fraction of
proteins that had a feature i in each group d, fi(d). As a null model, we
randomly sampled protein sets with feature i of the same size 10,000
times and calculated the corresponding random fraction, fi,r(d). The
enrichment/depletion of proteins with feature i in a group d is then
defined as

Ei�d� � log2� fi�d�

fi,r�d��
Interactions Between Functional Classes—Proteins of H. pylori

were grouped according to their protein abundance. Focusing on a
set of protein interactions, we counted the occurrence of different
abundance group combinations (33). For each combination of abun-

dance groups i, j, we determined its probability po�i, j� �
nij

N
, where N

is the total number of interactions between the underlying abundance
groups. As a null model, we determined an expected probability of

interactions between classes i, j: pe�i, j� �

�vivj� �
Jij

2

2
N�N � 1�

2
. Specifically, vi is

the number of viable proteins in group i (i.e. proteins of group i that are
involved in at least one interaction in the underlying set), and Ji,j is the
number of genes that are involved in both groups. Combining these

probabilities, we determined a log-odds ratio: r �
po�1 � po�

�1

pe�1 � pe�
�1. For

large samples, we estimated the variance of the odds distribution

�2 � nij
�1 � �N � nij�

�1 � a�1 � �b � a��1 where a � �vivj� �
Jij

2

2

and b �
N�N � 1�

2
. In particular, we calculated a p value for the

significance of a link between two groups by a Z-test, where z �
r
�

and considered each link with p � 0.05 (33).
Bacterial Meta-protein Interaction Data—We used 2,231 binary

interactions between E. coli proteins that we have previously deter-
mined through yeast two-hybrid screens (7). As for other yeast two-
hybrid screen sets, we utilized 12,012 interactions in Campylobacter
jejuni (8), 3,121 interactions in Mesorhizobium loti (34), 3,236 interac-
tions in Synechocystis sp. PCC6803 (35), 2,519 interactions in Strep-
tococcus pneumoniae (36), 3,684 interactions in Treponema pallidum
(33), 783 interactions in Bacillus subtilis (37), and 8,042 interactions in
M. tuberculosis (9).

Improved Protein Function Prediction in H. pylori

962 Molecular & Cellular Proteomics 17.5

http://www.mcponline.org/cgi/content/full/RA117.000474/DC1


Utilizing all-versus-all BLASTP searches with the InParanoid script
(38) in protein sets of two species, sequence pairs with mutually best
scores were selected as central orthologous pairs. Proteins of both
species that showed such an elevated degree of homology were
clustered around these central pairs, forming orthologous groups.
The quality of the clustering was further assessed by a standard
bootstrap procedure. We only considered the central orthologous
sequence pair with a confidence level of 100% as the real ortholo-
gous relationship. Protein sequence information of bacterial organ-
isms was retrieved from Uniprot (39).

Functional Prediction of Unknown Proteins in H. pylori—We mod-
eled the prediction of a functional class � of a protein i as a Potts
model (40). In particular, we considered functional annotation of pro-
teins in H. pylori using COG classes as of the EggNOG database (24).
All proteins without a functional annotation as well as proteins that
were either classified as unknown or had a general function (such as
membrane protein or ABC transporter) were randomly assigned a
function out of the remaining 23 classes. In particular, we minimized
the following global function E � � �

i, j
Jij���i,�j� � �

i
hi��i�, where Jij

is the adjacency matrix of the interaction network that accounts for
unclassified proteins. In particular, Jij 	 1 if unclassified proteins i and
j interact and vice versa. �(i,j) is the discrete � function, where � 	 1
if unclassified proteins i and j have the same function (i.e. �i 	 �j) and
vice versa. As a consequence, the first term allows us to optimize the
number of interactions between unclassified proteins if they are pre-

dicted to have the same function. Depending on the assigned func-
tion to an otherwise unclassified protein, the second term aims to
optimize support for the assigned function of protein i. In particular,
we determine the number of classified proteins hi(�i) that interact with
unclassified protein i with the same function � that was assigned to
unclassified protein i. To minimize E, we applied a simulated anneal-
ing approach that features an effective temperature T. After initially
assigning random functions to all unclassified proteins, we randomly
selected a protein, changed its function to a different class, and
determined the energy of the new configuration. If the difference of
energies 
E � 0, the new configuration was accepted. If 
E � 0,
the new configuration was accepted with probability p � e�
E/T. To
obtain stabilized functional configurations, we repeated such a Monte
Carlo step 10,000 times (40). Subsequently, we increased the inverse
of T by 0.01 in each step and repeated such Monte Carlo steps.
Since minimum energy solutions are not unique, we repeated such
runs of simulated annealing 100 times and considered the fraction
of times an unclassified protein i was observed in a certain func-
tional state � as an estimate of the probability that protein i belongs
to class �.

Heterogeneity of Functional Prediction—The Simpson s-index con-
siders the fractions with which a given protein was assigned to a
functional class. In particular, we calculated its heterogeneity of func-
tional fractions as a Simpson diversity (41) index defined as
s � �i � 1

N pi
2, where pi is the fraction with which a given protein was

FIG. 1. The interactome and proteome of H. pylori. (A) We map all high-quality interactions between proteins in the core protein interaction
network and their corresponding abundances in H. pylori. Furthermore, we label all proteins with their protein functions and essentiality. (B) We
bin protein abundances in three groups (high: top 20%, low: bottom 20%, intermediate: remainder) and determine the enrichments of functions
in each bin. We find that highly abundant proteins preferably are enriched with metabolic functions.

Improved Protein Function Prediction in H. pylori

Molecular & Cellular Proteomics 17.5 963



assigned to functional class i. Such a measure tends to 1 if one
function dominates the distribution of fractions and vice versa.

Three-dimensional Modeling of Protein Structures—To model the
structures of proteins (Fig. 6), we used Protein Data Bank (PDB) (42)
structures 1A50 (TrpAB), 1PII (TrpCF), 1KGZ, (TrpD), 1I1Q (TrpFE),
2EEY (MoaC), 2FUW (Mog), 3RPF (MoaDE), and 2BZ0 (RibA). We
created images with PyMOL v1.5.0.1.

Determination of Critical, Intermediate, and Redundant Pro-
teins—We defined a set S � V of nodes in a network G 	 (V, E) as a
minimum dominating set (MDSet) if every node v � V is either an
element of S or adjacent to an element of S. In a binary integer linear
programming problem (ILP) we assigned a binary variable xv 	 1
when a protein v � V that participates in interactions E in a protein
interaction network G is an element of the MDSet, and xv 	 0 other-
wise. The smallest set of MDSet nodes is obtained by min�

v � V
xv,

subject to the constraint xv � �
w � ��v�

xw � 1 where �(v) was the set
of interaction partners of protein v. However, many optimal solutions
exist that provide MDSets of the same size. Such characteristics
suggest the existence of subset of nodes that always (critical nodes),
never (redundant nodes), and sporadically appear in MDSets (inter-
mediate nodes). To find such subsets, our objective is to determine if

v � MDSet always appear in the MDSet of any solution. For each
v � MDSet, we create an ILP as before and assume that xv 	 0 (i.e.
not participating in the MDSet). After solving the ILP, we determine
the size of the corresponding MDSet Nv that we obtained with xv 	 0.
If Nv � N, v is a critical node and intermediate otherwise. For all nodes
that did not participate in the original MDSet, v�MDSet, we need to
check if they always appear outside MDSets. For v�MDSet, we
create an ILP as before and assume that xv 	 1 (i.e. participating in
the MDSet). After solving the ILP, we determine the size of the
corresponding MDSet Nv that we obtained with xv 	 1. If Nv � N, v is
a redundant node and intermediate otherwise (43, 44). To solve these
ILP problems, we utilized a branch-and-bound algorithm (45) as im-
plemented by the lpSolve library.

Betweeness Centrality—As a global measure of its centrality, we
calculated a node’s betweenness, indicating a node’s appearance in
shortest paths through the whole network. In particular, we defined

betweenness centrality cB of a node v as cB�v� � �
s 	 t 	 v � V

�st�v�

�st
,

where sst was the number of shortest paths between proteins s and t,
while sst (v) was the number of shortest paths running through v.

RESULTS

Proteome Versus Interactome—We combine interaction
datasets that have been determined by yeast two-hybrid ap-
proaches and obtain an interactome of H. pylori that connects
1,060 proteins (�70% of the proteome) through roughly 3,000
interactions (10, 11). Furthermore, a “core” interactome, cap-
turing high-confidence interactions, connects 759 proteins
(49% of the proteome) through 1,466 interactions. In Fig. 1A,
we label each protein with its functional class, essentiality,
and abundance in this high-quality core network of protein
interactions. As for estimating absolute quantities, we utilize
data from our previous study (20) where we measured the
abundance of proteins in H. pylori without sample fraction-
ation with a LC-MS approach. Only accounting for proteins
with at least three unique peptides, we obtain abundance
values of 1,130 proteins that correspond to 831 interacting
proteins in the combined interactions network of H. pylori. In
Fig. 1B, we determine the functions of the most abundant
proteins by binning proteins according to their abundance
in three groups. Utilizing functional annotations from the
EggNOG database (46), we find that most abundant proteins
are involved in metabolite biosynthesis, transport and catab-
olism, protein turnover, translation and energy production.
Fig. 2A indicates that essential proteins are significantly over-
represented among highly abundant proteins (Student’s t test,
p � 10�2). To account for interactions between proteins, we
determine the proteins’ propensity to interact with proteins of
certain abundance levels. In particular, we calculate each
protein’s abundance specific Z-score and group proteins in
bins of certain Z-scores. In Fig. 2B, we determine the enrich-
ment of interactions between proteins that appear in a given
Z-score bin, utilizing the combined network of all protein
interactions. Generally, we observe that proteins predomi-
nately interact with proteins of similar abundance. Still, our
results further indicate that proteins in low-abundance bins

FIG. 2. Essentiality and abundances. (A) Grouping proteins into
bins of abundances, we observe that essential proteins are more
abundant than their nonessential counterparts (p � 10�2, Student’s t
test). (B) Using the combined interaction network in H. pylori, proteins
appear to predominately interact with proteins of similar abundance.
In turn, interactions that involve proteins in low-abundance bins tend
to interact with proteins in intermediate-abundance bins.
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appear to interact with proteins in intermediate-abundance
bins.

The Functional Cross-talk of the Interactome—Resembling
other interactome hairballs (Fig. 1A) the H. pylori interactome
does not show clear functional clustering. However, the inter-
action data are well supported by interactions between pro-
teins of the same functional group (Fig. 3). This observation
can be used to validate the reliability (or at least plausibility) of
an interaction dataset since random interactions would pro-
vide no significant enrichment. Interestingly, we additionally
observe some unexpected functional cross-talk. For example,
ribosomal proteins and proteins involved in translation inter-
act with proteins involved in motility more often than expected
by chance (groups I and K in Fig. 3). Similarly, motility proteins
also interact with proteins involved in amino acid metabolism.

Predicting Functions of Proteins Using a Bacterial Meta-
interactome—To investigate the functional predictive power
of our initial network of experimentally determined interac-
tions in H. pylori, we randomly pick 80% of all functionally
annotated proteins 1,000 times to predict the functions of the
remaining 20% in each random run. Using a stochastic model
(40), we represent every protein by a profile that reflects the
probability of having a certain function. Applying different
probability thresholds for the presence of a functional anno-
tation, we determine receiver operating characteristic curves
and consider the corresponding area under the curve as a
measure of prediction quality (47) (Fig. 4A). To increase the
predictive power of the underlying protein interaction net-
work, we augment our network in H. pylori with protein inter-
actions from other bacteria (36, 48). Specifically, we consider
interactions that have at least one interacting protein with a
functionally annotated ortholog in H. pylori, while its interact-
ing counterpart is at least functionally annotated in the corre-
sponding organism. Focusing on the same previously sam-
pled sets of proteins, we predict the functions of the
corresponding 20% by utilizing the augmented network. No-
tably, we observe a significant shift toward increased values

of the area under the receiver operating characteristic curve
(p � 10�50, Student’s t test), suggesting that the augmenta-
tion of the original network with interactions from other bac-
teria significantly improves the quality of functional predic-
tions (Fig. 4A). Since each protein is represented by a profile
of function-specific probabilities, we calculate the Simpson
s-index (41) as a measure of heterogeneity of predicted func-
tions. Such a measure tends to be 1 if one function dominates
the distribution of fractions (i.e. has a high probability). In turn,
the s-index approaches 0 if probabilities are equally distrib-
uted. Since our sampling approach randomly picks a subset
of proteins and predicts functions based on the remaining
proteins in both the original interaction network of H. pylori
and the augmented network, we directly compare the impact
of the augmented network on the homogeneity of functional
prediction. In Fig. 4B, we calculate the mean s-indices of each
protein, suggesting that functional predictions of the majority
of proteins benefit from the addition of the bacterial meta-
interactome. Based on our observations that interactions from
other bacteria have a considerable benefit on our ability to
predict functions, we apply our approach to the functional
prediction of 337 poorly characterized or previously unknown
H. pylori proteins. While we determine the probability that a
given protein has a particular function, we assess the sig-
nificance of our predictions by randomly sampling known
functions 100 times. Applying a Z-test, we determine a
corrected p value for each score (49) that we consider
significant if FDR�0.05. The heatmap in Fig. 4C shows the
range of functions predicted for these proteins, including a
sizeable fraction to be involved in transcriptional and trans-
lational activities. In Supplemental Table S1, we present the
functional profiles of all proteins in the order in which they
appear in Fig. 4C.

Control of the H. pylori Protein Interaction Network—Con-
sidering the network of protein–protein interactions in H. py-
lori, we aim at the elucidation of proteins that are important for
the topological controllability of the underlying network (43,

FIG. 3. Functional crosstalk in the interactome of H. pylori. Determining the prevalence of interactions between functional groups, we
observe that the majority of interactions appear between proteins of the same functional class.
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44, 50). In particular, networks are dominated by minimum
dominating sets (MDSet) that can be determined by an ILP.
Such a method allows us to find the smallest set of nodes
where each non-MDSet node is adjacent to a node in the
MDSet. However, many different configurations of MDSets
exist that have the same number of critical proteins. As such,
an assumption implies sets of nodes that always, partially, or
never participate in MDSets. Therefore, we define proteins as
critical if they always participated in the MDSet of a given
configuration (Fig. 5A). Furthermore, we consider redundant
nodes that never appeared in MDSets while intermediate
nodes sporadically occur in MDSets. Applying an algorithm
that allows us to determine such sets of nodes (43, 44), we
observe that the percentage of critical nodes is roughly

�10%, while intermediate nodes constitute �30% of all pro-
teins (Fig. 5B). The mean degree of critical proteins far ex-
ceeds the corresponding values of intermediate and redun-
dant proteins that are close to the mean degree of all proteins
in the underlying interaction networks (Fig. 5B).

As for other topological characteristics, we calculate the
betweeness centrality of all nodes in the underlying network.
Defining the top 20% of proteins with highest betweeness
centrality as a set of bottleneck nodes, we calculate the
enrichment of such proteins in sets of critical, intermediate,
and redundant proteins. Given all proteins in the underlying
interaction network, we sample sets of proteins by randomly
shuffling their labels, generating nonoverlapping, random sets
of critical, intermediate, and redundant proteins. We observe

FIG. 4. Functional prediction of unknown proteins in H. pylori using a bacterial meta-interactome. (A) To assess the quality of our
classification procedure, we randomly sample 20% of all functionally annotated proteins in H. pylori and utilize the remainder to predict their
functions. To measure prediction quality we calculate the area under the receiver operating characteristic curve, suggesting that the addition
of the bacterial meta-interactome allows for better functional prediction (p � 10�50, Student’s t test). (B) We consider all randomized samples
and calculate the mean s-indices of each gene of unknown function (circles) in both the original network of H. pylori and the augmented
network. In the scatter-plot the homogeneity of the functional prediction of the majority of genes (78.6%) benefit from including the bacterial
meta-interactome. (C) Combining the network of protein interactions of H. pylori and the bacterial meta-interactome, we predict the functions
of 337 proteins with unknown or poorly characterized functions (FDR � 0.05).
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that critical proteins in all organisms are strongly enriched
with bottlenecks (p � 10�4). Albeit insignificantly, intermedi-
ate proteins are enriched with bottleneck nodes as well, while
critical proteins hardly are bottlenecks (p � 10�4, Fig. 5C).

Additionally, we compare protein levels in the spiral and
coccoid cells of H. pylori based on previously published pro-
teomic data (21) to link the generated interaction network with
cell physiology. These cellular forms were analyzed by LC-
MS, allowing the comparison of relative changes between the
two states with high accuracy. Determining the fold change
and the corresponding p value using a Student’s t test of
proteins comparing the spiral and coccoid expression levels,
we generate a Volcano plot where we label each protein as
critical, intermediate or redundant (Fig. 5D). Qualitatively, we
observe that critical proteins seem to have a higher abun-
dance in the spiral form of H. pylori. As a corollary, we con-

sider a set of regulated genes defined as proteins with �0.5 �

fold change � 0.5 and p � 0.05 (21). Randomly sampling sets
of regulated genes 10,000 times (Fig. 5E), we observe that
critical proteins are significantly enriched with regulated
genes (p � 0.05) while redundant proteins are found diluted
(p � 0.05). Assuming that critical proteins play a role in the
transition between the spiral and coccoid forms, we perform
an analysis of their functions. Fig. 5F indicates that func-
tions of critical proteins mostly revolve around transcrip-
tional and posttranslational modification functions. In Sup-
plemental Table S2, we annotate each protein with its role,
fold change comparing coccoid to spiral form, and func-
tional annotation.

Genomic Organization and the Interactome—Bacterial ge-
nomes are typically organized through functional gene clus-
ters such as operons that encode functional units such as

FIG. 5. Controlling the H. pylori protein interaction network. (A) In a toy network we illustrate the concept of critical, intermediate, and
redundant nodes. (B) In the table, we present statistics of the protein interaction network of H. pylori and of its corresponding critical,
intermediate, and redundant proteins. Notably, critical proteins are highly connected, while degrees of intermediate and redundant nodes
revolve around the mean degree of all proteins (dashed line). (C) We define the top 20% of proteins with the highest node betweeness as a
set of bottleneck proteins. Randomly sampling sets of critical, intermediate, and redundant proteins 10,000 times, we find that critical nodes
are strongly enriched with bottlenecks. While intermediate nodes are moderately enriched, we also find a significant depletion of redundant
nodes in the underlying set of bottleneck proteins. (D) In the Volcano plot of the fold change of proteins that compares their abundance levels
in the coccoid and spiral form, we label all proteins with their critical, intermediate, and redundant role in the underlying network of protein
interactions of H. pylori. We define proteins with a fold change of �0.5 and ��0.5 (p � 0.05) as regulated proteins (shaded areas), suggesting
that critical, regulated proteins predominantly appear as being present in the spiral form. (E) As a corollary, we randomly sample sets of
regulated proteins 10,000 times. We observe that critical proteins are significantly enriched with regulated genes. (F) We determine the
enrichment of functions in the set of critical proteins by randomly sampling their functions. We observe that critical proteins predominately
appear in transcriptional and posttranslational modification functions.
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protein complexes. Interdependence of genomic loci and pro-
tein interaction maps has been demonstrated for the T. palli-
dum interactome (33) as well as for phage interactomes (51,
52). To reveal such genomic links we map protein interactions
onto operons in the H. pylori genome (53) (Fig. 6). For in-
stance, the well characterized urease gene cluster (operons
4721–4722) reveals interactions among the enzyme’s core
components (UreA-UreB), between the urease accessory fac-
tors UreE-UreG and UreF-UreH, and finally between UreA and
UreH (see Fig. 6 in (11)). Another example is observed in
operon 4,987, a gene cluster that encodes enzymes involved
in tryptophan biosynthesis. A comparison with experimental
protein structures from orthologs shows that our protein-
protein interaction (PPI) studies (11) capture most PPI inter-
actions that are important to assemble the enzyme complexes
(Fig. 6, right panel): TrpA-TrpB and TrpE-TrpG are organized
as heterotetramers with two subunits of each protein. TrpD is
a homodimer, and TrpCF is a single protein that functions as
a monomer. Likewise, operon 4888 encodes for enzymes
involved in molybdopterin biosynthesis while the protein in-
teraction map accurately reflects the organization of the en-
zyme complex.

An example for enriched crosstalk between different gene
clusters is found between two operons (4960 and 5013),

encoding ribosomal proteins or products that are related to
protein translation and tRNA modification, respectively. The
hypothetical protein HP1414, the first gene in the miaA
operon, binds the ribosomal proteins L19 and S16 as well as
the hypothetical protein HP1150 (which belongs to COG1837,
a family of putative RNA-binding proteins). In fact, HP1414 is
the H. pylori homologue of the ribosomal silencing factor RsfS
(	RsfA) that we previously showed to bind to ribosomal pro-
tein L14, preventing association of the small and large ribo-
somal subunit (54). L19 is located in the direct neighborhood
of L14 in the ribosome-forming bridges (B8 and B6) to the
small ribosomal subunit (55), potentially representing a novel
or additional hotspot for RsfS action. Both operons are func-
tionally associated since both encode for products that are
involved in protein translation.

One more example of interconnected operons is found
between operon 4815 and 5035 that encode several unchar-
acterized (HP0469-HP0465) and flagellar rod proteins (FliE,
FlgC, FlgB), respectively, suggesting that the 4815 operon
may be involved in motility. Involvement of HP0466 in flagellar
biosynthesis has already been suggested by others based on
its interaction with FlgB and homology comparisons of the
operon member HP0465 with motility accessory factors of C.
jejuni (56). Moreover, transposon insertion into the HP0466

FIG. 6. Examples of PPI enrichments in and between genomic operons. Interacting proteins are symbolized by connected gene symbols
(heteromers) and colored gene symbols (homomers). In the right panel, protein structures of Trp and Moa orthologs highlight detected (solid
arrows) and undetected (dashed arrows) intermolecular interactions that are known from the enzymes
 tertiary structures.
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locus causes a colonization defect (24) whereas for HP0468
no functional information is available.

Protein Complexes in H. pylori—Protein functions are often
mediated by protein complexes that are defined as stable
assemblies of multiple proteins. Since complexes have not
been studied systematically in H. pylori, we utilize extensive
experimental data on protein complexes from E. coli (57) and
M. pneumoniae (14) to predict homologous complexes in H.
pylori. Utilizing orthologous protein information from the COG
database (31, 32), we find that H. pylori shares 786 ortholo-
gous proteins with E. coli but only 260 with M. pneumoniae
(Fig. 7A). As an example for different levels of complex con-
servation, we observe that the murein tripeptide transporter, a
hetero-pentamer, is well conserved in H. pylori, while only
three out of five subunits in the periplasmic nitrate reductase
are present. In contrast to E. coli, the cascade complex is
completely missing from H. pylori (Fig. 7B). In Fig. 7C,

we count the number of complexes with different degrees of
conservation in H. pylori using reference sets of E. coli
complexes from the EcoCyc database (58) and the dataset
of (57). Furthermore, we use protein complex information
from M. pneumoniae (14). The degree of conservation (Fig.
7A) prompts us to focus on E. coli, indicating that E. coli
may be a good model for some processes in epsilon-pro-
teobacteria but not for others. Using a reference set of 285
well-studied E. coli complexes from EcoCyc (58), we predict
80 H. pylori complexes to be identical (in composition) with
their counterparts in E. coli. Another 85 complexes are par-
tially conserved while 120 are completely absent. All pre-
dicted complexes in H. pylori are available in Supplemental
Table S3.

Functional Integration of Gene Expression—To identify
functionally relevant network clusters, we systematically an-
alyze the H. pylori high-quality core protein interaction net-

FIG. 7. Predicted protein complexes in H. pylori. (A) Proteomes of E. coli, M. pneumoniae, and H. pylori overlap substantially using
orthologous proteins. Proteins not belonging to COGs were excluded. (B) We show selected protein complexes indicating different degrees
of complex conservation. Dashed circles indicate proteins in E. coli complexes that are absent in H. pylori. Stoichiometry of protein complexes
is indicated if they diverge from one subunit. (C) We count the number of complexes with different degrees of conservation in H. pylori.
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work to identify subnetworks that overrepresent certain func-
tional groups, using functional terms from the Comprehensive
Microbial Resource (27), GO (28), KEGG (29), gene essential-
ity, genetic context, cellular localization, and gene expression
data. Some of these clusters are illustrated in Fig. 8 while
detailed results can be found in Supplemental Table S4. For
instance, cluster 16 consists of nine proteins that are highly
interconnected by interactions. Involved genes are co-ex-
pressed under different conditions: Six genes of the cluster
are up-regulated when the growth conditions are shifted to
low pH values while three members are up-regulated under
limited iron accessibility in the stationary phase. Finally, three
proteins have an increased expression level when H. pylori is
grown in contact with liver cells versus medium alone. While
cluster members belong to very different pathways (e.g.
Cag17 and Cag20 belong to the type IV secretion system,
IspA is a geranyltranstransferase, CeuE a periplasmic iron-
binding protein, and Ggt is a gamma-glutamyltranspepti-
dase), they are connected by interactions and gene expres-
sion. While such discordant expression patterns are found in
other clusters as well (e.g. clusters 17, 26, and 36), our results

suggest the presence of conditions under which these genes
are co-expressed, allowing proteins to interact. Clusters 26
and 36 are enriched for proteins related to chemotaxis and
motility. Notably, our screens detect all three CheV paralogs
in the H. pylori genome (HP0019, HP0393, and HP0616) to
bind to the hemolysin secretion protein precursor HylB
(cluster 36). Moreover, we find that HP0019 and HP0393
interact with the methyl-accepting chemotaxis transducer
(TlpC) but not HP0616. Cluster 6 shows that this combina-
tion strategy unearthed additional interesting aspects that
cannot be detected when one parameter is analyzed in
isolation. While seven members that belong to three differ-
ent operons are connected, GO assignments of HP0164
(signal-transducing protein, histidine kinase) and OmpR (re-
sponse regulator HP0166) suggest an involvement of the
cluster members in two-component signaling.

DISCUSSION

Given that H. pylori is a major human pathogen causing
millions of ulcers and other health problems each year sur-
prisingly little is known about its molecular biology. To fill this

FIG. 8. Selected interaction clusters with various enriched functional terms, genomic context, co-expression, co-localization, and
phenotypes. We depict interaction clusters that we derive from the combined H. pylori core protein interaction map with significant
enrichments (p � 0.05). All results can be found in Supplemental Table S5. Node labels represent protein names (if available) or the locus
number of the corresponding protein. Co-expressed genes based on operons are given in the legends by the transcription unit number as used
in (53) and gene expression data (Supplemental Table S5). For each cluster, we provide a separate legend highlighting the enriched properties.
In particular, clusters 16 and 17 are enriched for differentially, co-expressed proteins when growth is shifted to low pH values conditions.
Clusters 13 and 65 are enriched for essential genes, while cluster 23 is enriched with ribosomal proteins. Clusters 26 and 36 include
flagellar/chemotaxis proteins, and cluster 6 is enriched for intra- and interconnected operons.
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gap, we investigate the proteome and interactome in a more
systematic way.

Investigating the abundance of proteins in H. pylori, we find
that highly abundant proteins revolve around translational,
posttranslational modification, protein turnover, metabolite
biosynthesis, transport, catabolism, and energy production
functions. Furthermore, we find that abundant proteins are
typically encoded by essential genes.

Combining protein interactions with protein abundances,
we observe that proteins of similar abundance preferably
interact with each other. While we find some interactions
between proteins of different abundances, our results clearly
confirm assumptions that interacting pairs of proteins are
usually present in roughly stoichiometric ratios.

Notably, H. pylori still encodes a large number (�500) of
uncharacterized proteins. Among proteins of known func-
tion, we find that interactions usually connect proteins of
similar activity. Based on such characteristics, we utilize a
bacterial meta-interactome of closely related bacteria to
predict the functions of unknown proteins. In particular, we
account for interactions that are conserved in other closely
related bacteria. Such an augmentation of our initial network
of protein interactions allows us to increase the accuracy of
our classification method significantly and to predict the
function of more than 300 proteins with previously poorly
annotated or unknown function. Resembling the spectrum
of functions of abundant proteins, we find that the majority
of proteins thus obtained mostly revolve around transla-
tional and posttranslational modification functions.

Utilizing our network of protein interactions in H. pylori, we
determine sets of proteins that topologically control the un-
derlying network. In particular, we find sets of critical, inter-
mediate, and redundant proteins that always, partially, or
never appear in different control configurations of the under-
lying network. In particular, each control configuration fea-
tures a minimum dominating set (MDSet) so that every node is
either an element of the MDSet or adjacent to a protein of the
MDSet. Notably, critical proteins appear to be enriched with
regulated genes that are significantly present in the spiral form
of H. pylori. The spiral form of H. pylori is mostly dividing while
the coccoid is a nonculturable but viable form. The observa-
tion that genes that are overexpressed in the spiral compared
with the coccoid form are enriched with critical proteins sug-
gests that the underlying topology network plays a role in the
switch of the two bacterial forms. Notably, critical proteins are
also enriched with proteins of high betweeness, representing
central topological proteins with a propensity to connect dif-
ferent, disparate parts of the network. Therefore, we surmise
that critical proteins may assume the role of levers that allow
the bacteria to activate certain functions to change between
forms as well as integrate different parts of the network to
carry out the transformation from coccoid to spiral form. As a
corollary, we hypothesize that such proteins carry functions
that contribute to the spiral form. Indeed, we find that critical

proteins are mostly enriched with transcriptional and post-
translational modification functions.

As for protein complexes, we integrate protein complex
information of E. coli and M. pneumoniae and infer potential
complexes in H. pylori by determining evolutionarily con-
served complex components. As expected, we find a higher
rate of conserved complexes when we consider E. coli
protein complexes. Such a result may be rooted in the fact
that E. coli has almost six times as many proteins than M.
pneumoniae. Furthermore, its protein complexes are better
investigated than their counterparts in Mycoplasma, sug-
gesting that E. coli is a better model for protein complexes
as H. pylori shares significantly more orthologs with E. coli
than M. pneumoniae. Moreover, we integrate the interac-
tome with functional and expression profiles of genes in
H. pylori, allowing us to find significant protein clusters.
Our analysis reveals an abundance of different network
clusters that combine certain functions that integrate the
placement of operons of cluster members as well. Such an
observation clearly suggests that expression, function, and
operon regulation are driving forces of the observed net-
work clusters.
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37. Marchadier, E., Carballido-López, R., Brinster, S., Fabret, C., Mervelet, P.,
Bessieres, P., Noirot-Gros, M. F., Fromion, V., and Noirot, P. (2011) An
expanded protein–protein interaction network in Bacillus subtilis reveals
a group of hubs: Exploration by an integrative approach. Proteomics 11,
2981–2991

38. Remm, M., Storm, C. E., and Sonnhammer, E. L. (2001) Automatic clus-
tering of orthologs and in-paralogs from pairwise species comparisons.
J. Mol. Biol. 314, 1041–1052

39. UniProt. (2015) UniProt: A hub for protein information. Nucleic Acids Res.
43, D204–D212

40. Vazquez, A., Flammini, A., Maritan, A., and Vespignani, A. (2003) Global
protein function prediction from protein–protein interaction networks.
Nat. Biotechnol. 21, 697–700

41. Simpson, E. H. (1949) Measurement of diversity. Nature 163, 688
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