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Obesity is tightly linked to hepatic steatosis and insulin
resistance. One feature of this association is the paradox
of selective insulin resistance: insulin fails to suppress
hepatic gluconeogenesis but activates lipid synthesis in
the liver. How lipid accumulation interferes selectively
with some branches of hepatic insulin signaling is not well
understood. Here we provide a resource, based on unbi-
ased approaches and established in a simple cell culture
system, to enable investigations of the phenomenon of
selective insulin resistance. We analyzed the phosphopro-
teome of insulin-treated human hepatoma cells and iden-
tified sites in which palmitate selectively impairs insulin
signaling. As an example, we show that palmitate interferes
with insulin signaling to FoxO1, a key transcription factor
regulating gluconeogenesis, and identify altered FoxO1 cel-
lular compartmentalization as a contributing mechanism for
selective insulin resistance. This model system, together
with our comprehensive characterization of the proteome,
phosphoproteome, and lipidome changes in response to
palmitate treatment, provides a novel and useful resource
for unraveling the mechanisms underlying selective insulin
resistance. Molecular & Cellular Proteomics 17: 10.1074/
mcp.RA117.000560, 836–849, 2018.

Obesity is often accompanied by liver steatosis and type 2
diabetes mellitus (T2D)1. Many aspects of the pathogenesis of

T2D remain unclear, but a common feature is hepatic insulin
resistance with impaired insulin signaling. These defects are
selective and involve the failure of insulin to suppress of
gluconeogenesis but not lipid synthesis (1). Evidence indi-
cates that hepatic insulin resistance is caused by lipid species
that accumulate in hepatocytes and selectively interfere with
insulin signaling (2–4). Lipids implicated in causing hepatic
insulin resistance include triglycerides (TGs), diacylglycerols
(DGs), fatty-acyl CoAs, and ceramides. However, mouse
models exhibit high hepatic levels of each of these lipids with
or without insulin resistance (for examples, see (5–9). Thus, a
consistent causal relationship for a specific lipid has not been
found, and it remains unclear how lipid accumulation causes
the paradox of selective insulin resistance in hepatocytes.

A major hurdle in tackling this question is the complexity of
the systems that are studied. Although many studies of mice
have revealed important insights into hepatic lipid metabo-
lism, insulin signaling, and glucose metabolism, this model
system also has limitations. Murine liver is a complex organ
with multiple interactions of different cells (e.g. hepatocytes,
stellate cells, reticuloendothelial cells, vascular cells) that are
regulated by hormones and the neurological system. When
layered with the complexity of many thousands of lipid spe-
cies, varied over different cell types and cellular compart-
ments, and the complexity of insulin signaling, it is not sur-
prising that pathogenic mechanisms are not easy to discern.

Thus, we sought a complementary, reductionist approach
to systematically study alterations in insulin signaling during
lipid overload by establishing a simpler system that displays
selective insulin resistance. We reasoned that cultured human
hepatocytes treated with lipotoxic lipids might provide such a
system. Among the various human hepatoma cell lines,
HepG2 cells respond to insulin and have defects in insulin
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signaling on lipid accumulation (10). In addition, HepG2 cells
are immortalized and, therefore, are fully compatible with
stable isotope labeling (SILAC)-based phosphoproteomic
analyses by mass spectrometry (11–13).

Using this model system, we show here that HepG2 cells
treated with palmitate exhibit selective insulin resistance, and
we characterize global changes by lipidomic, proteomic, and
phosphoproteomic analyses. By further developing phospho-
proteomic methodology with a protocol that omits peptide
fractionation but includes multiple rounds of enrichment and
mass spectrometry measurements for phosphopeptides, we
quantified 18,000 sites in the phosphoproteome. Several
thousand of these sites are responsive to insulin, and we
show how palmitate treatment interferes with some of these
changes. Our analyses provide a rich resource for generating
and testing new hypotheses about the development of selec-
tive insulin resistance. As a proof-of-principle, we explored
how palmitate interferes with a key node of insulin signaling
regulating gluconeogenesis; we show that impaired FoxO1
signaling with palmitate treatment is associated with changes
in its localization, suggesting a novel contributing mechanism
for selective insulin resistance.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale—A total of three
sample sets of HepG2 cells were analyzed and described in Results.
Each sample set comprised of three biological replicates. Experimen-
tal controls from each sample set include nontreated wild-type
HepG2 cells. Statistical analysis of three biological replicates using
one sample t test with a Benjamini-Hochberg false discovery rate
(FDR) of less than 5% were applied to provide statistical significance
from insulin and palmitate treatments of HepG2 cells.

Protein Extraction and Phosphopeptide Enrichment for Mass Spec-
trometry—HepG2 cells were SILAC labeled and cultured in SILAC
DMEM media with 10% (v/v) dialyzed FBS. For palmitate treatment,
cells were seeded with 30% confluency, cultured for 18 h and treated
with 0.25 mM palmitate for 24 h. Palmitate treated or untreated cells
were stimulated with vehicle (50 �M HEPES, pH 8.0) or 100 nM insulin
for 20 min and lysed in lysis buffer (6 M guanidinium hydrochloride
(GdmCl), 10 mM Tris (2-carboxyethyl) phosphine (TCEP), 40 mM chlo-
roacetamide, alkylating reagent (CAA), 100 mM Tris, pH 8.5). After
heating at 95 °C for 5 min and sonicating, lysate was diluted 1:3
[lysate: dilution buffer (10% acetonitrile, 25 mM Tris, pH 9.0)], digested
with LysC overnight, then further diluted to 1:5 (lysate/dilution buffer)
and digested with trypsin. The resulting peptides were desalted with
Sep-pak Waters C18 cartridge and enriched for phosphopeptides by
incubating with 3 �l titanium dioxide (TiO2) beads suspended in
DHB/buffer B (30 mg/1 ml) for 30 min. Beads were isolated by
centrifugation and washed sequentially with 3% TFA and 30% ace-
tonitrile, 0.3% TFA in 60% acetonitrile, and 0.3% TFA in 100%
acetonitrile to remove peptides bound nonspecifically. The superna-
tant was used for the next round of phosphopeptide enrichment, and
this cycle was repeated eight times. Phosphopeptides on beads were
eluted by 16.5% ammonia in 20% acetonitrile, vacuum dried, resus-
pended in buffer A (0.1% formic acid) and loaded onto HPLC-MS/MS
system for analysis on an Orbitrap Q-Exactive HF (Thermo Fisher
Scientific) mass spectrometer coupled to an Easy nanoLC 1000
(Thermo Scientific) with a flow rate of 300 nl/min. The stationary phase
buffer was 0.5% formic acid, and mobile phase buffer was 0.5% (v/v)
formic acid in acetonitrile. Chromatography using increasing organic

proportion was used for peptide separation (5–40% (v/v) acetonitrile
over a 265 min gradient on a self-packed analytical column using
PicoTipTM emitter (New Objective, Woburn, MA) using Reprosil Gold
120 C18 (Dr. Maisch, Ammerbuch-Entrigen, Germany) 1.9 �m particle
size resin. The mass spectrometer operated in data dependent ac-
quisition mode with a top ten method at a mass range of 300–2000
Da.

For proteome profiling, proteins of a SILAC labeled cell lysate were
reduced using 5 mM dithiothreitol (Sigma-Aldrich) at 37 °C for 1 h,
followed by alkylation of cysteine residues using 15 mM iodoacet-
amide (Sigma-Aldrich) in the dark at room temperature for 1 h. Ex-
cessive iodoacetamide was quenched using 10 mM dithiothreitol.
Proteins were precipitated by the addition of nine volumes of ice-cold
acetone and one volume of methanol and incubated at �80 °C for
2 h. Precipitated proteins were centrifuged for 1 h at 4500 � g at 4 °C.
After washing with methanol, proteins were resolubilized in 100 mM

NaOH aided by sonication at 4 °C and the solution was brought to pH
7.5 with 200 mM HEPES (free acid). Protein concentrations were
determined using bicinchoninic acid assay kit (Pierce), followed by
equal mixing of proteins at 1:1 ratio (light/heavy labels). Proteins were
trypsinized using sequencing grade trypsin (Promega) at 37 °C for
16 h. Digested peptides were subsequently desalted using self-
packed C18 STAGE tips (3 M EmporeTM) (14) for LC-MS/MS analysis.

Lipid Extraction—The lipid extraction protocol was modified from
(15). Briefly, cell lysates (biological triplicates - 200 �g of protein each,
containing the following standard lipid mix (Avanti Polar Lipids): 375
pmoles C17:1 lysophosphatidic acid; 225 pmoles C17:0/C20:4 phos-
phatidic acid; 170 pmoles C17:1 lysophosphatidylserine; 180 pmoles
C17:0/C20:4 phosphatidylserine; 86 pmoles C17:1 lysophosphati-
dylethanolamine; 112 pmoles C17:0/C14:1 phosphatidylethano-
lamine; 95 pmoles C17:1 lysophosphatidylcholine; 112 pmoles C17:
0/C20:4 phosphatidylcholine; 33.2 pmoles C17:1 lysophosphatid-
ylinositol; 165 pmoles C17:0/C20:4 phosphatidylinositol; 105 pmoles
C17:0/C14:1 phosphatidylglycerol; 180 pmoles C17:0/d18:1 cera-
mide; 140 pmoles C17:0/d18:1 sphingomyelin; 155 pmoles C12:0/
d18:1 monohexosyl-ceramide; and 60 pmoles C17:1/C17:1/C17:1
triacylglycerol) were suspended in ice-cold HPLC-grade water, and
transferred to 13 � 100-mm Pyrex culture tubes with polytetrafluo-
roethylene (PTFE)-lined screw caps. Then, HPLC-grade water, meth-
anol, and chloroform were added to each vial, generating a final
chloroform/methanol/water (C/M/W) ratio of 1:2:0.8 (v/v/v). Samples
were vortexed vigorously for 5 min and centrifuged for 10 min at
1,800 � g at room temperature. After centrifugation, the supernatants
were collected and transferred to fresh vials, and the remaining pel-
lets were dried under nitrogen stream. The dry pellets were extracted
with chloroform/methanol (2:1, v/v), centrifuged, and the resulting
supernatants were combined with the corresponding supernatants
from the first step of extraction (C/M/W 1:2:0.8 v/v/v). The combined
supernatants were dried under nitrogen stream, and the resulting
samples were submitted to Folch’s partitioning by dissolving them in
C/M/W (4:2:1.5, v/v/v), followed by vortexing and centrifuging, as
described above. After centrifugation, the lower (organic) and upper
(aqueous) phases were separated and transferred to fresh Pyrex glass
test tubes. The Folch upper phase was then re-extracted with C/M
(2/1; v/v), and the resulting organic phase was combined with the
organic phase from the preceding step. The pooled organic phases
were dried under a N2 stream and stored at �20 °C until use.

UHPLC-ESI-MS/MS for Lipidomics Analyses—Lipid samples ex-
tracted as described above were diluted in 50 �l of C/M (2:1; v/v) and
analyzed by UHPLC-ESI-MS using a modification of the method
described by (16). UHPLC-ESI-MS/MS was conducted using a Di-
onex™ UltiMate 3000™ UHPLC system (Thermo Fisher Scientific)
coupled to Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spec-
trometer (Thermo Fisher Scientific). Five microliter injections of sam-
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ples were made onto a Accucore™ (Thermo Fisher Scientific) C18 LC
column (2.6 �m solid-core particles, length of 30 mm). The eluent A
consisted of acetonitrile/water (50:50 v/v) � 10 mM ammonium for-
mate and 0.2% formic acid, and the eluent B consisted of methanol/
isopropanol/water (10:88:20 v/v/v) � 2 mM ammonium formate and
0.01% formic acid. The following program was used for gradient
elution of analytes (total run time of 46 min) at a constant flow rate of
500 �l per min. 35% eluent B - 45% eluent B over 5 min, 45% eluent
B - 85% eluent B from min 5 - min 28, 85% eluent B - 100% eluent
B from min 28 - min 38, followed by an immediate drop back to 35%
eluent B, which is held constant up to min 46 of each run. The column
temperature was set to 35 °C, and the autosampler tray temperature
was set to 10 °C. The ion source was a HESI II (Thermo Fisher
Scientific) set in the following conditions: sheath gas flow rate set to
60; auxiliary flow rate set to 20; sweep gas flow rate set to 1; spray
voltage (KV) set to 3.00; capillary temperature set to 285 °C, S-Lens
RF level set to 45, and auxiliary temperature set to 370 °C. The mass
spectrometer acquisition settings were as follows: Samples were run
in either positive or in negative ion modes, under otherwise identical
conditions. The instrument was set for Full Scan - top 15 data-de-
pendent MS/MS. Full scan was set for a range of 250–1800 m/z. The
mass resolution was set to 70,000; AGC target was set to 1e6, the
C-trap ion accumulation time was set to 120 ms, Data-dependent
MS/MS was set to a mass resolution of 30,000, AGC target was set
to 5e5, the C-trap ion accumulation time was set to 120 ms, select ion
exclusion was set to 8 s, and the HCD (higher-energy collisional
dissociation) fragmentation ramp was set to 15, 25, and 35 NCE
(normalized collision energy).

Mass Spectrometry Data Analyses using MaxQuant—Mass spec-
trometry data from proteome and phosphosproteome analyses were
processed by MaxQuant software version 1.5.2.8 (17) using the fol-
lowing setting: oxidized methionine residues, protein N-terminal
acetylation and phosphorylation of Ser/Thr/Tyr (phosphoproteome
only) as variable modification, cysteine carbamidomethylation as
fixed modification, first search peptide tolerance 20 ppm, main search
peptide tolerance 4.5 ppm. Protease specificity was set to trypsin
with up to 2 missed cleavages were allowed. Only peptides longer
than five amino acids were analyzed, and the minimal ratio count to
quantify a protein is 2 (proteome only). The false discovery rate (FDR)
was set to 1% for peptide and protein identifications. Database
searches were performed using the Andromeda search engine inte-
grated into the MaxQuant environment (18) against the UniProt-hu-
man database containing 71,579 entires (October 2017). “Matching
between runs” algorithm with a time window of 0.7 min was employed
to transfer identifications among samples processed using the same
nanospray conditions. Protein tables were filtered to eliminate iden-
tifications from the reverse database and also common contaminants.
Phosphosites were categorized based on the probability score: class
I (� 0.75, more than 75% localization probability), class II (0.5–0.75,
50–75% localization probability), class III (0.25–0.5, 25–50% local-
ization probability) and class IV (� 0.25, less than 25% localization
probability). All mass spectrometry data generated for phosphopro-
teomics and proteomics are deposited to the ProteomeXchange Con-
sortium via the PRIDE (19) partner repository (http://proteomecentral.
proteomexchange.org/cgi/GetDataset) with the data set identifier
PXD006395.

Identification and Quantitation of Lipid Species—Mass spectrom-
etry generated by the LC-MS/MS runs for extracted lipids were ana-
lyzed using the LipidSearchTM Software (Thermo Fisher Scientific) for
the identification of lipid species, combining accurate-mass informa-
tion from parent ion with MS2 information. The following parameters
were used for batch analysis: Database - Q Exactive; Search Type -
Product; Experiment Type (Exp Type) - LC-MS; Parent Tolerance
(Parent Tol) - 0.1 Da; NL/Prec Tol - 0.5 Da; Precursor Tolerance (Prec

Tol) - 10.0 ppm; Product Tolerance (15.0) ppm; Merge Range (Min) -
0.0; Minimal Peak Width (min) - 0.0; Threshold Type - Relative; Prod-
uct Ion - 1.0%; m-score threshold - 2.0; Recalculate Isotope - ON;
R.T. Interval (min) - 0.01; Execute Quantitation - ON; m/z Tolerance
(m/z tol) - �10.0/� 10.0; Tolerance Type - ppm; R.T. range (min) -
�0.05/�0.05; Toprank filter - ON; Main Node Filter - Main Isomer
Peak; m-Score Threshold (Display) - 5.0; C-Score Threshold (Display)
- 2.0; Fatty Acid Priority (FA Priority) - ON; ID Quality Filter (A, B, C).
The following parameters were used for sample alignment: Search
Type - Product; Experiment Type (ExpType) - LC - MS; Alignment
Method - Max; R.T. Tolerance - 0.25; Calculate Unassigned Peak
Area - ON; Filter Type - New Filter; Toprank Filter -ON; Main Node
Filter - Main Isomer Peak; m-score threshold - 5.0; ID Quality - A, B,
C. All lipid species identified using the LipidSearchTM software were
manually curated after computational analysis, being either accepted,
rejected, or reassigned.

Known quantities of each lipid standard were analyzed using the
same UHPLC-ESI-MS/MS methods to generate a response factor
(RF; peak area/pmol standard injected). The RF for each standard
was divided by the CerG1 RF to calculate a molar relative response
factor (MRRF) for each major lipid class. The MRRF for each class
was normalized to the CerG1 peak area of each sample, and peak
areas adjusted accordingly. Only those classes for which standards
were detected in each run were considered for analysis. The in-built
statistical tool for the quantitation of lipid species LipidSearchTM is
student t test. For the calculation of lipid class fatty acid composition,
the MainArea values output by LipidSearch™ were assigned to each
FA moiety of a given species and summed using Microsoft Excel
PivotTable. Area % is the summed FA value divided by the lipid class
total, multiplied by 100 to reflect percentage within each lipid class.
All lipidomics data have been deposited to the EMBL-EBI MetaboLi-
ghts database (DOI: 10.1093/nar/gks1004. PubMed PMID: 23109552)
with the identifier MTBLS582. The complete data set can be ac-
cessed at https://www.ebi.ac.uk/metabolights/MTBLS582 (20).

Bioinformatic Analyses—Microsoft Office Excel, R software and
Perseus (Version 1.5.0.9, Max Planck Institute of Biochemistry, Mu-
nich) were used to perform bioinformatics analyses. Only proteins and
phosphorylation sites passed one sample t test with a Benjamini-
Hochberg false discovery rate of less than 5% were considered. The
Gene ontology (GO) annotation enrichment analysis on phosphosites
quantified by Fisher exact test was performed on Perseus and
PANTHER (http://pantherdb.org/) was used to categorize proteins
into different cell components, biological processes or signaling path-
ways. Motif analysis was performed on pLogo (21) using sequences
of phosphopeptides in the phosphoproteome and human proteome
as the background. To identify phosphosites impacted by insulin/
palmitate, normalized heavy/light intensity ratios of quantified phos-
phosites were transformed to log2 data and a 2.5 median absolute
deviations (MAD) threshold was used to reveal positively and nega-
tively regulated sites on proteins and the rest sites were considered
as unchanged.

Western Blotting and Immunostaining—For Western blotting,
HepG2 cells were washed three times with 1� PBS and lysed in RIPA
buffer. Protein concentrations of the lysates were quantified, and
proteins were loaded onto 4–15% SDS-PAGE gels (Bio-Rad Labora-
tories) and transferred to nitrocellulose or PVDF membranes with an
iBlot 2 gel transfer device (Thermo Fisher Scientific) for subsequent
antibody labeling, following the manufacturer’s instructions. For im-
munostaining, HepG2 cells were fixed by 4% paraformaldehyde for
20 min, blocked in 10% normal goat serum (Cell Signaling) at room
temperature for 3 h and labeled with primary and secondary antibod-
ies, according to manufacturer’s manual. Images were taken with IN
Cell Analyzer 6000 Cell Imaging System (GE Healthcare Life Sciences)
and quantified with In Cell Developer Toolbox (Version 1.9.1) and
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ImageJ (Version 1.51i 17). Anti-phospho-eIF4B (Ser422), eIF4B,
phosphoGSK-3 �, GSK-3� (27C10), FoxO1, phosphor-AKT (Ser 473)
and AKT antibodies were from Cell Signaling Technology, anti-phos-
pho-EIF4EBP1-S65 was from NeoScientific, anti-eIF4EBP1 antibody
was from Abcam.

RNA Extraction and Quantitative Real-time PCR—Total RNA from
insulin- and palmitate-treated HepG2 cells were isolated with an
RNeasy kit (Qiagen) according to manufacturer’s instructions. cDNA
was synthesized using iSCript cDNA synthesis kit (Bio-Rad), and
quantitative real-time PCR was performed in triplicates using SYBR
Green PCR Master Mix kit (Applied Biosystems). Primer sequences
for quantitative real-time PCR can be found in supplementary data.

RESULTS

HepG2 Cells Pretreated with Palmitate Exhibit Selective
Insulin Resistance—We sought to establish a reductionist
model system to study insulin signaling in hepatocytes and
selective insulin resistance. Criteria for our system included
that it be an insulin-sensitive human hepatic cell line and, on
treatment with lipotoxic lipids, exhibit insulin resistance with
respect to insulin-mediated suppression of gluconeogenic
genes, yet retain insulin sensitivity for other signaling events,
such as genes regulating lipid synthesis. We also wanted an
immortalized cell line to facilitate SILAC labeling for most
accurate quantitative proteomic studies. Based on the large
body of available literature (e.g. (10) and our own preliminary
experiments (data not shown)), we chose to study insulin
signaling in the human hepatoma cell line, HepG2, and treat-
ment with palmitate as a lipotoxic lipid.

To test the insulin sensitivity of HepG2 cells, we treated
them with 100 nM insulin for 20 min and detected robust
phosphorylation of AKT at Ser473, a canonical marker for
activated insulin signaling (22) (Fig. 1A and 1B). Pretreatment
with 0.25 mM palmitate for 24 h reduced AKT phosphorylation
at Ser473 (10) in these cells. In liver, insulin down-regulates
the expression levels of PEPCK and G6Pase, which catalyze
the rate-limiting and last step in gluconeogenesis, respec-
tively, and up-regulates the levels of SREBP1c, a master
regulator of lipid synthesis (23–25). In HepG2 cells, we found
these gene expression responses were intact, and the down-
regulation of PEPCK and G6Pase was blunted by palmitate
treatment (Fig. 1C). However, palmitate did not affect the level
of SREBP1c transcripts, therefore showing a selective effect
of palmitate treatment on insulin signaling for gluconeogene-
sis, but not lipid synthesis. The expression of PCSK9, an
SREBP2 target gene, trended higher in response to insulin but
was not changed with palmitate treatment, and the expres-
sion of a control transcript, apolipoprotein B, was unaffected
by insulin treatment.

To investigate lipid intermediates that might be responsible
for the selective effects on insulin signaling, we profiled total
cell lipid species by lipidomic analyses, using liquid chroma-
tography coupled online to high-resolution mass spectrome-
try. We found that palmitate treatment of HepG2 cells for 24 h
increased primarily levels of glycerolipids, especially DG and
TG (Fig. 1D). Monoacylglycerols were also increased by

�75%. Ceramides as a class were not greatly increased, and
monohexosylceramides levels were decreased. Further quan-
tification of specific lipid species (Fig. 1E) showed that the
accumulated lipids were highly saturated: for example, TG
(16:0/16:0/16:0) increased 32-fold, and DG (16:0/16:0) in-
creased �9-fold. We also found increased levels of specific
lipid species from lipid classes that were overall unchanged.
These included 18-, 67-, and 3.7-fold increases of specific
saturated ceramides (d18:0/22:0), phosphatidic acid (16:0/16:
0), and PI (18:0/18:1), respectively. Thus, the most prominent
changes induced by palmitate treatment were an increase in
the levels of saturated species of glycerolipids. The broad
changes in lipid species we measure are consistent with lipid
changes found during the development of hepatic insulin
resistance (9, 26–28), thus supporting the use of our cell
model for studying selective insulin resistance.

Determination of a High-Content, Quantified Phosphopro-
teome in HepG2 Cells Treated with Insulin—Insulin signaling
is characterized by a host of phosphorylation events that were
systematically investigated in other cell types (29–31). We
sought to comprehensively measure changes in the phospho-
proteome in HepG2 cells after insulin treatment. Insulin stim-
ulates many phosphorylation sites across a time frame of
seconds to minutes (31). For this study, we examined the
system after 20 min because we expected a wide range of
both early and late signaling changes at this time (31) that
would enable us to subsequently compare how palmitate
treatment affects signaling.

Most current proteomic approaches reply on sample frac-
tionation by ion exchange chromatography to reduce sample
complexity before HPLC-MS/MS analyses to obtain adequate
coverage of the phosphoproteome (32, 33). These additional
fractionation steps require substantial amounts of starting
material, prolonged sample processing (increasing the risk of
noninsulin mediated changes in phosphorylation), and can
introduce material loss and variation among experiments.
Taking advantage of the recent developments in mass spec-
trometry hardware that allow higher scan rates and an im-
proved nanoflow HPLC/ESI strategy (34), we avoided frac-
tionation of peptides by ion-exchange chromatography.
Instead, we performed eight rounds of phospho-enrichment
with TiO2 beads to increase peptide coverage (Figs. 2A and
2B). To allow for quantitation of phosphorylation changes, we
SILAC-labeled HepG2 cells (35). After a 20-min insulin or
mock treatment, cells were lysed and denatured, proteins
were cleaved into small peptides by LysC and trypsin pro-
teases. Phosphopeptides were enriched using a TiO2 resin in
eight subsequent rounds of chromatography.

Our methodology proved efficient and robust. Starting with
�3 mg of protein in a sample (cell lysate from one 15-cm
culture dish), we accurately quantified more than 18,000
phosphosites after eight rounds of phosphopeptide enrich-
ment. The reproducibility of our pipeline was high (Figs. 2C
and 2D): �73% phosphopeptides were quantified in all three
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measured biological replicates and �77% quantified phos-
phopeptides passed a one-sample t test with a FDR of less
than 5%.

In total, 1,103,068 high-resolution (Orbitrap higher-energy
collision dissociation [HCD]) spectra were acquired, resulting
in the identification of phosphopeptides corresponding to

20,961 phosphorylation sites on 17,241 phosphopeptides
from 6781 proteins. The localization of phosphosites on the
phosphopeptide was also highly accurate. MaxQuant catego-
rizes phosphosites based on the probability score: class I
(�0.75), class II (0.75–0.5), class III (0.5–0.25) and class IV
(�0.25). 89.4% of the sites in our phosphoproteome were in

FIG. 1. HepG2 cells treated with palmitate exhibit selective insulin resistance accompanied by selected changes in the lipidome. A,
Western blot analysis of Akt phosphorylation at S473. Insulin stimulation increased Akt phosphorylation, which is impaired by palmitate
treatment. B, Quantification of data from (A). C, Relative mRNA expression of insulin response genes of gluconeogenesis and lipid synthesis
in HepG2 cells. Measurements were made 2 h after 100 nM insulin stimulation. ApoB served as a control. Statistical significance was
determined using student’s t test; *, p � 0.05. D, Major lipid classes that are changed in palmitate-treated (versus untreated) cells. Results are
shown separately for positive and negative ion modes. E, Specific lipid species that are changed in 24 h 0.25 mM palmitate-treated and
untreated cells (monohexosylceramides, CerG1; dihexosylceramides, CerG2; sphingomyelins, SM; coenzyme, Co; phosphatidylmethanol,
PMe; glycerophosphates, PA (lyso-PA, LPA); glycerophosphocholines, PC (lyso-PC, LPC); glycerophosphoethanolamines, PE (lyso-PE, LPE);
glycerophosphoglycerols, PG; glycerophosphoinositols, PI (lyso-PI, LPI); glycerophosphoserines, PS (lyso-PS, LPS); cholesterol esters, ChE;
ceramides, Cer; monoradylgerolipids, MG; diradylglycerolipids, DG; triradylglycerolipids, TG; dimethylphosphatidylethanolamine, dMePE;
cardiolipins, CL).
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FIG. 2. Analysis of the phosphoproteome and proteome of HepG2 cells treated with insulin. A, Experimental workflow. Heavy (Arg 10,
Lys 8) labeled and light (Arg 0, Lys 0) HepG2 cells were lysed, 1:1 mixed, and digested with trypsin and LysC. Digested peptides were enriched
for phosphopeptides by incubating with TiO2 beads for eight rounds. Phosphopeptides obtained from each enrichment were desalted and
analyzed by Q-Exactive HF mass spectrometry. B, Enrichment of phosphosites. Summed number of phosphosites quantified after round(s) of
phosphoenrichment. C, Replicates of the analysis. Venn diagram of phosphosites quantified in individual replicates, respectively. More than
70% of phosphosites were quantified in all three replicates (n � 3). D, Reproducibility of the methodology. Quantitative reproducibility for
duplicates are shown. E, Total phosphosites and proteins identified and quantified.
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class I, including 49.2% sites with scores higher than 0.99,
and none of our phosphosites was in class IV. Our phospho-
proteome data set was obtained using three biological repli-
cates, and only the sites identified consistently (one sample t
test, FDR�0.05) were used for further analyses. Distribution of
singly, doubly, and multiple phosphorylated peptides in each
round of TiO2 enrichment in HepG2 are illustrated in supple-
mental Fig. S1.

To better characterize the proteins expressed in HepG2
cells and to provide a reference for interpreting the phospho-
proteome results, we also measured the proteome of HepG2
cells. We identified nearly 6800 expressed proteins, of which
over 5000 were quantitated (Fig. 2E). In total, 13,827 phos-
phosites in 4409 proteins reported to meet minimum thresh-
old for significance. Analysis of these proteins showed that
those involved in cell growth and cell-cycle progression, such
as translation initiation/elongation/termination and mRNA me-
tabolism, were the most abundant proteins (see Fig. 3A) and
RNA binding proteins (PC00031) were the largest protein
class (see Fig. 3B). Additionally, we detected high levels of
proteins involved in gluoconeogenesis and glycolysis, in ac-
cordance with the Warburg hypothesis that glycolytic meta-
bolic pathways are hyperactive in cancer cells.

Measuring the Phosphoproteome of HepG2 Cells Treated
with Insulin Reveals Novel Phosphosites—The results of our
analysis of the insulin-responsive phosphoproteome are
shown in Fig. 3C. By employing a significance threshold of 2.5
median absolute deviation (MAD), 1222 phosphosites were
identified as up-regulated and 1309 were down-regulated on
insulin stimulation. Using the Fisher exact test, we found that
up-regulated phosphosites were specifically enriched for in-
sulin signaling-relevant biological processes, including PKB/
Akt and mTOR signaling cascades (Fig. 3D). A motif analysis
showed that the most frequent sequence found in insulin-
responsive phosphopeptides correspond to protein kinase
AKT consensus motifs (RxRxxS/T; (36)), as is typical for Akt
phosphorylation (Fig. 3E).

We constructed a cell signaling network based on quanti-
tative information of phosphosites in our database that we
mapped onto known pathways of insulin signaling. The results
are shown in Fig. 4. This analysis revealed many known phos-
phosites for insulin signaling (shown in yellow), confirming
these as sites in HepG2 cells, and additionally, identified
many previously unrecognized sites (shown in green). The
identification of these sites highlights the depth of coverage
provided by our methodology.

Several of the newly identified insulin-induced phosphoryl-
ation sites are noteworthy. For example, our data set showed
that insulin up-regulates phosphorylation of two sites (S435
and T440) on FMRP (fragile X mental retardation) protein by
more than 10-fold (14.2- and 13.1-fold, respectively). FMRP
plays a central role in neuronal development and loss of
FMRP leads to fragile X syndrome (37), which includes mild to
moderate intellectual disability. Recently, up-regulated insulin

signaling has been found in a Drosophila FMRP mutant, and
inhibited insulin signaling ameliorates fragile X syndrome (38).
Moreover, FMRP function has been linked to circadian regu-
lation of metabolic genes in murine liver (39, 40). The most
common FMRP isoforms have a potential nuclear export se-
quence (NES) 425-EVDQLRLERLQIDEQ-441 and do not lo-
calize in the nucleus. However, isoforms 10 and 11 lack the
NES but have 425-LQQRKRGRASCAEET-441 instead (41).
The S435 and T441 phosphosites localize in this unique se-
quence of isoforms 10 and 11. Because insulin specifically
phosphorylates FMRP isoforms 10 and 11, we hypothesize
this modification might alter their subcellular localization.

We also detected strong changes in the phosphorylation of
multiple sites on AS160 (Akt substrate of 160 kDa) protein:
Ser314, Ser318, Ser341, Ser344, Ser569, Ser570, and
Ser666. AS160 is crucial for translocating Glut4 glucose
transporter to the plasma membrane (42). Two sites (Ser318
and Ser341) within the protein kinase AKT consensus motif
(RXRXXS/T) are required for Glut4 translocation (43). The
other phosphosites have not been previously characterized,
probably because they are not fitting a canonical protein
kinase AKT motif. Our data set shows that phosphorylation of
AS160 by insulin is not limited to AKT-preferring consensus
motif and previously unknown regulatory mechanisms may
exist.

Our data set also uncovered a dramatic (11-fold) increase in
phosphorylation of phosphoinositide 3-kinase regulatory sub-
unit 4 (also named p150) at Ser1313. Very little is known about
p150 except that it promotes PI3 kinase activity (44), thus
suggesting a previously unknown layer of insulin-mediated
phosphoinositide regulation.

Palmitate Pretreatment Disrupts Selected Nodes of Hepatic
Insulin Signaling—We next investigated the effects of palmi-
tate pretreatment on insulin signaling by treating “heavy” Lys/
Arg SILAC-labeled HepG2 cells with 0.25 mM palmitate for
24 h and comparing them with “light” cells as a control. Both
heavy and light cells were stimulated with 100 nM insulin for 20
min and then lysed for phosphoproteomic analyses (Fig. 5A).
We combined this phosphoproteome with the insulin-treat-
ment phosphoproteome and found that 9482 phosphosites
were quantified in both phosphoproteomes, including 724
insulin-responsive phosphosites. By scatter plot analysis
and applying a threshold of 2 MAD, we identified 107 insulin
phosphosites that were impaired by palmitate treatment
and 132 phosphosites that were enhanced (Fig. 5B). The
remainder of the phosphosites were unaffected by insulin
treatment.

Mapping of the affected sites onto the insulin signaling
network revealed that palmitate pretreatment affected insulin
signaling at specific nodes (Fig. 5C). For example, palmitate
treatment impaired insulin-mediated phosphorylation of sites
on proteins responsible for glucose metabolism, such as
FoxO1 and GSK�/�, whereas sites on proteins involved in cell
growth/proliferation and lipid metabolism were not affected or
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up-regulated. We also performed immunoblots to confirm
protein phosphorylation findings of several targets for
which antibodies were available (pS256-FoxO1, pS9-GSK3�,
pS422-EIF4B, and pS65-EIF4eBP1) in response to insulin and
palmitate treatments (supplemental Fig. S2). In each case, the

phosphoproteomic findings were confirmed. Notably, al-
though palmitate interfered with FoxO1 phosphorylation, which
regulates gluconeogenesis, this treatment did not interfere
broadly with insulin signaling, thereby validating HepG2 cells as
exhibiting selective insulin resistance in this model.

FIG. 3. Analysis of the HepG2 phosphoproteome. A, Ranked abundance atlas of HepG2 hepatocyte proteins. GO enrichment analysis was
performed by Fisher exact test with a threshold of Benjamini-Hochberg FDR 1%. B, Proteins in HepG2 proteome categorized by PANTHER
classification system. C, Distribution of quantified phosphosites (Student’s t test, p � 0.05). Applying a threshold of 2.5-median absolute
deviations (MAD) to the log2-transformed data revealed 1222 positively regulated and 1309 negatively regulated phosphosites. D, Enrichment
analysis of proteins with phosphosites up-regulated by insulin. E, Motif analysis for insulin up-regulation phosphosites reveals high represen-
tation of an Akt consensus site.
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Palmitate Pretreatment Results in Localization of FoxO1 to
the Nucleus—The finding that palmitate treatment impaired
insulin signaling in a selective manner suggested the hypoth-
esis that palmitate might interfere with specific signaling
events rather than a cascade of events. FoxO1 protein local-
izes to the nucleus or cytoplasm, depending on its phospho-
rylation status (45). Insulin treatment normally causes phos-
phorylation of FoxO1, which in turn causes this transcription
factor to localize to the cytoplasm, preventing it from stimu-
lating gluconeogenic gene expression (46). Because we found
that palmitate pretreatment causes impairment of insulin’s
effects on phosphorylation of FoxO1, we hypothesized that
this impairment may be because of physical isolation of
FoxO1 from kinases (i.e. that FoxO1 might be localized to the
nucleus on palmitate treatment), rendering it insensitive to
insulin signaling in the cytoplasm. We first examined how
palmitate treatment affects FoxO1 regulation in HepG2 cells
by examining mRNA levels of the FoxO1 target genes [Dhrs9,

Pdk4, Rdh8, Midn, Nr0b2, and Rbp1 (47–52)] 2 h following
palmitate treatment. We found that these genes undergo al-
terations in expression levels (in the expected directions)
when cells were treated with palmitate (Fig. 6A). Despite the
differential transcriptional activities of its target genes, im-
mmunostaining of FoxO1 showed that the transcription factor
is localized predominantly in nuclei in both untreated and
palmitate-treated cells (Fig. 6B and 6C). Consistent with pre-
vious findings (46), we found that insulin treatment causes
FoxO1 to be exported from the nucleus into the cytoplasm.
Most significantly, palmitate pretreatment of HepG2 cells re-
sulted in FoxO1 to be retained in the nuclei, even with insulin
stimulation (Fig. 6B and 6C).

DISCUSSION

How lipid accumulation during hepatic steatosis leads to
selectively impaired insulin signaling is an important, but com-
plex problem. To reduce the complexity of this problem, we

FIG. 4. Insulin-Signaling Cascade in HepG2 Hepatocytes. From our data set and previously characterized pathways of insulin signaling,
we constructed a diagram of hepatocyte insulin signaling, including branches that control cell growth, glucose metabolism, lipid metabolism
and apoptosis. Yellow: previously identified sites; Green: previously unknown sites.
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took a reductionist approach with a simple human hepatocyte
cell model of selective insulin resistance induced by pretreat-
ment with palmitate. We used this system to generate a
resource providing the relative abundances of proteins, lipids,
and many insulin signaling targets. We identified known and
previously unknown phosphosites regulated by insulin and
show that only some of these are altered by palmitate pre-
treatment. We also characterized the lipid changes in re-
sponse to palmitate and found changes, for instance in DG
and ceramides, consistent with previous studies of hepatic
insulin resistance.

Among several experimentally amenable cell lines, we
chose HepG2 hepatoma cells for our analyses of insulin sig-
naling because we find these cells reproduce critical features
of selective insulin resistance. Despite being a hepatoma cell
line and having relatively low gluconeogenesis (53), the intact
insulin signaling network and the resultant gene expression

changes reflect the physiological situation during hepatic ste-
atosis. Those changes lead to impairment of glucose metab-
olism regulation, but lipogenesis, as measured by a gene
expression, is stimulated by insulin. Thus, palmitate treatment
of HepG2 cells provides a highly simplified, but experimentally
accessible model for studying selective insulin resistance ob-
served in hepatic steatosis associated with obesity, where
insulin signaling is similarly compromised (54). Because the
key features of selective insulin resistance are reproduced, we
believe that our data sets will provide a rich source for devel-
oping hypotheses for testing in primary hepatocytes or in vivo.

To analyze insulin signaling in this system in depth, we
further developed sample preparation methods that involve
state-of-the-art protocols for analyzing phosphoproteomes
(55). By using multiple rounds of phosphopeptide enrichment
without other peptide fractionation, we obtained ultra-deep
phosphoproteome coverage with more than 18,000 phospho-

FIG. 5. Palmitate selectively affects insulin signaling cascade. A, Experimental workflow for the analyses of insulin responsive sites
compromised by palmitate treatment. Heavy (Arg 10, Lys 8) labeled and light (Arg 0, Lys 0) HepG2 cells grown in medium containing palmitate
and either control treated or incubated with insulin as shown. Mass spectrometry analysis was performed as outlined in Fig. 2A. B, Scatter plot
of insulin (	) phosphoproteome and palmitate (	) phosphoproteome. Pink and Red: phosphosites downregulated by palmitate; Purple:
phosphosites unaffected; Light blue and blue: phosphosites up-regulated by palmitate. C, Palmitate selectively impairs phosphosites in
signaling branches controlling glucose metabolism but not cell proliferation and lipid metabolism.

FIG. 6. FoxO1 localizes to nuclei of HepG2 cells during palmitate treatment. A, Relative mRNA expression levels of FoxO1 target genes
in HepG2 cells following 24 h palmitate treatment. Statistical significance was determined by Mann-Whitney test (* p � 0.05 and ** p � 0.005,
n � 6). B, Immunocytochemistry analyses of FoxO1 localization in 24-h palmitate- and/or 2-h insulin-treated HepG2 cells. Green: FoxO1; Blue:
DAPI. C, Pearson’s correlation coefficient of colocalization analyses between green-FoxO1 and blue-DAPI immunostainings (n � 8).
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sites quantitated. Most likely, the gain in sensitivity is because
of the increased retention of phosphopeptides with lower
affinity for TiO2 resin (after higher affinity peptides were de-
pleted in the early rounds of enrichment) and the repeated
measurements. This methodology, which will be applicable to
other signaling pathways, allowed us to analyze the response
of the insulin signaling network after metabolic perturbation of
cells. Surprisingly, after many important studies of insulin
signaling (30, 31, 56, 57), our deep coverage of the phospho-
proteome continued to reveal new targets of the insulin-sig-
naling pathway. For example, we found a novel connection
between insulin signaling and specific isoforms of FMRP pro-
teins, which is corroborated by genetic interaction in the
Drosophila model organism (38). Thus, our data set on insulin
stimulation performed with adapted, new methodology pro-
vides a rich resource for novel biological discoveries.

Using the reductionist system, we found that palmitate
impairs a surprisingly small number of this large set of insulin-
responsive signaling nodes. Notably, we detected specific
impairment of two key nodes of glucose metabolism by palmi-
tate: the phosphorylation of the FoxO1 transcription factor
and the kinase GSK3. Both factors regulate key steps in liver
gluconeogenesis (58). Impairing their response to insulin thus
can explain at least some aspects of selective insulin resist-
ance. Our findings are consistent with previous reports that
FoxO1 (Ser256) and GSK3� (Ser9) phosphorylation are im-
paired in hepatocytes from mice fed a high-fat diet (59).
Moreover, FoxO1 phosphorylation at serine 256 is diminished
in livers of steatosis patients (60).

In addition to FoxO1 and GSK3�, we also found decreased
phosphorylation of several other sites during palmitate treat-
ment, such as serine 23 on NF-�B, which might alter its
stability. Similarly, SHC1 phosphorylation on serine 29, nor-
mally occurring directly after insulin receptor stimulation, was
impaired after palmitate treatment. How these changes will
affect signaling output is not yet clear, but our resource will
enable future studies of these important signaling nodes.

Notably, although palmitate treatment caused a down-reg-
ulation of Akt S473 phosphorylation (found by immunoblot, as
this site is in a peptide not accessible to mass spectrometry
analyses), not all downstream Akt targets mirrored this down-
regulation, and only a few proteins, such as FoxO1 and
GSK3�, failed to respond to insulin-stimulated phosphoryla-
tion in palmitate-treated cells. At least two nonexclusive
mechanisms may account for this resistance to insulin-medi-
ated phosphorylation. One is the activation of a palmitate-
activated phosphatase, which has only a subset of insulin-
stimulated phosphosites as targets, and another is the
sequestration of proteins in subcellular locations where they
are not accessible to the upstream kinases involved in insulin
signaling. Although there is ample evidence for phosphatase
activation because of lipid changes (e.g. for ceramide- or
palmitate-activated phosphatases) (61, 62), we also uncov-
ered evidence for the control of substrate phosphorylation by

subcellular localization. Specifically, we found that palmitate
treatment prevents nuclear export of FoxO1 by insulin. At this
site, the transcription factor will not be accessible to cytoplas-
mic Akt kinase, explaining why in the presence of palmitate,
phosphorylation cannot occur. This model is consistent with
previous studies in MIN6 cells (63). Furthermore, the palmi-
tate-induced localization of FoxO1 into the nucleus resulted in
the alteration of the transcription activities of its target genes.
These data suggest the hypothesis that selective insulin re-
sistance occurs, at least in part, because of changes in sub-
cellular localization of key transcription factors, such as
FoxO1, rendering them insensitive to insulin.

An important and unresolved question is precisely how
lipids, such as palmitate, and other lipids accumulating during
hepatic steatosis, mediate impairments in insulin signaling (2).
Although different lipids might use different pathways to in-
terfere with signaling, lipidomic analyses in our model system
suggest that particularly the accumulation of saturated glyc-
erophospholipids is at least one potent way to compromise
the response to phospholipids. It is unclear how these
changes lead to altered signaling. Changes in lipids of the
plasma membrane, the endoplasmic reticulum (ER), or other
intracellular organelles might activate signaling molecules (ki-
nases or phosphatases) or stress responses, such as the
unfolded protein response (UPR), that cause changes that
interfere with insulin signaling in cells. Importantly, however,
our data suggest that intervention at the step which leads to
incorporation of palmitate into glycerophospholipids may be
beneficial to avert the effects of saturated glycerophospho-
lipids, such as DGs (64). Thus, either inhibiting acyl-CoA
synthetase enzymes activating palmitate to palmitoyl-CoA, or
inhibiting GPAT enzymes, esterifying palmitate to lysophos-
phatidic acid, might be a strategy to prevent palmitate inter-
ference with insulin signaling.

In summary, we provide a rich resource, based on a com-
bination of unbiased approaches, for a reductionist model of
selective insulin resistance. This resource is characterized by
deep coverage of the phosphoproteome, proteome, and lip-
idome under various conditions. Our study reveals key nodes
that are misregulated during selective insulin resistance and
suggests novel hypotheses how this might lead to dysregu-
lated glucose and lipid metabolism in physiology. Although by
themselves these data cannot clarify the physiological impor-
tance of the nodes we find impaired, they afford new hypoth-
eses and suggest a few, specific sites that are key to the
development to selective, hepatic insulin resistance. Given
the magnitude of this problem because of the raising epi-
demic of obesity linked hepatic steatosis, this likely will mo-
tivate further testing and developing strategies for treatment
of selective insulin resistance, and ultimately type II diabetes.
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Mara Monetti and members of the Farese and Walther laboratory
for comments on the manuscript, and Gary Howard for editorial
assistance.

Palmitate-induced Selective Insulin Resistance in Hepatocytes

Molecular & Cellular Proteomics 17.5 847



DATA AVAILABILITY

The mass spectrometry proteomics data have been de-
posited to http://proteomecentral.proteomexchange.org/cgi/
GetDataset (project ID: PXD006395) and (https://www.ebi.
ac.uk/metabolights/MTBLS582 (project ID: MTBLS582).

* This work was supported by R01 DK101579 (to R.V.F.) the
Mathers foundation (to T.C.W). T.C.W is an investigator of the Howard
Hughes Medical Institute.

□S This article contains supplemental material.
‡‡ To whom correspondence should be addressed: Department of

Genetics and Complex Diseases, Harvard T. H. Chan School of Public
Health, Boston, MA, 02115. E-mail: twalther@hsph.harvard.edu.

§§ These authors contributed equally.

REFERENCES

1. Brown, M. S., and Goldstein, J. L. (2008) Selective versus total insulin
resistance: a pathogenic paradox. Cell Metab. 7, 95–96

2. Farese, R. V., Jr, Zechner, R., Newgard, C. B., and Walther, T. C. (2012) The
problem of establishing relationships between hepatic steatosis and
hepatic insulin resistance. Cell Metab. 15, 570–573

3. Samuel, V. T., and Shulman, G. I. (2012) Mechanisms for insulin resistance:
common threads and missing links. Cell 148, 852–871

4. Chaurasia, B., and Summers, S. A. (2015) Ceramides - Lipotoxic Inducers
of Metabolic Disorders. Trends Endocrinol. Metab. 26, 538–550

5. Chakravarthy, M. V., Pan, Z., Zhu, Y., Tordjman, K., Schneider, J. G.,
Coleman, T., Turk, J., and Semenkovich, C. F. (2005) “New” hepatic fat
activates PPARalpha to maintain glucose, lipid, and cholesterol homeo-
stasis. Cell Metab. 1, 309–322

6. Monetti, M., Levin, M. C., Watt, M. J., Sajan, M. P., Marmor, S., Hubbard,
B. K., Stevens, R. D., Bain, J. R., Newgard, C. B., Farese, R. V., Sr
Hevener, A. L., and Farese, R. V., Jr. (2007) Dissociation of hepatic
steatosis and insulin resistance in mice overexpressing DGAT in the liver.
Cell Metab. 6, 69–78

7. Brown, J. M., Betters, J. L., Lord, C., Ma, Y., Han, X., Yang, K., Alger, H. M.,
Melchior, J., Sawyer, J., Shah, R., Wilson, M. D., Liu, X., Graham, M. J.,
Lee, R., Crooke, R., Shulman, G. I., Xue, B., Shi, H., and Yu, L. (2010)
CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-
induced obesity and glucose intolerance. J. Lipid Res. 51, 3306–3315

8. Hoy, A. J., Bruce, C. R., Turpin, S. M., Morris, A. J., Febbraio, M. A., and
Watt, M. J. (2011) Adipose triglyceride lipase-null mice are resistant to
high-fat diet-induced insulin resistance despite reduced energy expend-
iture and ectopic lipid accumulation. Endocrinology 152, 48–58

9. Minehira, K., Young, S. G., Villanueva, C. J., Yetukuri, L., Oresic, M.,
Hellerstein, M. K., Farese, R. V., Jr, Horton, J. D., Preitner, F., Thorens,
B., and Tappy, L. (2008) Blocking VLDL secretion causes hepatic stea-
tosis but does not affect peripheral lipid stores or insulin sensitivity in
mice. J. Lipid Res. 49, 2038–2044

10. Gao, D., Nong, S., Huang, X., Lu, Y., Zhao, H., Lin, Y., Man, Y., Wang, S.,
Yang, J., and Li, J. (2010) The effects of palmitate on hepatic insulin
resistance are mediated by NADPH Oxidase 3-derived reactive oxygen
species through JNK and p38MAPK pathways. J. Biol. Chem. 285,
29965–29973

11. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H.,
Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids
in cell culture, SILAC, as a simple and accurate approach to expression
proteomics. Mol. Cell. Proteomics 1, 376–386

12. Ren, F., Wu, H., Lei, Y., Zhang, H., Liu, R., Zhao, Y., Chen, X., Zeng, D.,
Tong, A., Chen, L., Wei, Y., and Huang, C. (2010) Quantitative proteom-
ics identification of phosphoglycerate mutase 1 as a novel therapeutic
target in hepatocellular carcinoma. Mol. Cancer 9, 81

13. Sun, Y., Mi, W., Cai, J., Ying, W., Liu, F., Lu, H., Qiao, Y., Jia, W., Bi, X., Lu,
N., Liu, S., Qian, X., and Zhao, X. (2008) Quantitative proteomic signature
of liver cancer cells: tissue transglutaminase 2 could be a novel protein
candidate of human hepatocellular carcinoma. J. Proteome Res. 7,
3847–3859

14. Rappsilber, J., Ishihama, Y., and Mann, M. (2003) Stop and go extraction
tips for matrix-assisted laser desorption/ionization, nanoelectrospray,

and LC/MS sample pretreatment in proteomics. Anal. Chem. 75,
663–670

15. Gazos-Lopes, F., Oliveira, M. M., Hoelz, L. V., Vieira, D. P., Marques, A. F.,
Nakayasu, E. S., Gomes, M. T., Salloum, N. G., Pascutti, P. G., Souto-
Padron, T., Monteiro, R. Q., Lopes, A. H., and Almeida, I. C. (2014)
Structural and functional analysis of a platelet-activating lysophosphati-
dylcholine of Trypanosoma cruzi. PLoS Negl. Trop. Dis. 8, e3077

16. Frohlich, F., Petit, C., Kory, N., Christiano, R., Hannibal-Bach, H. K.,
Graham, M., Liu, X., Ejsing, C. S., Farese, R. V., and Walther, T. C.
(2015) The GARP complex is required for cellular sphingolipid home-
ostasis. Elife 4

17. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification
rates, individualized p.p.b.-range mass accuracies and proteome-wide
protein quantification. Nat. Biotechnol. 26, 1367–1372

18. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., and
Mann, M. (2011) Andromeda: a peptide search engine integrated into the
MaxQuant environment. J. Proteome Res. 10, 1794–1805

19. Vizcaino, J. A., Csordas, A., Del-Toro, N., Dianes, J. A., Griss, J., Lavidas,
I., Mayer, G., Perez-Riverol, Y., Reisinger, F., Ternent, T., Xu, Q. W.,
Wang, R., and Hermjakob, H. (2016) 2016 update of the PRIDE database
and its related tools. Nucleic Acids Res. 44, 11033

20. Haug, K., Salek, R. M., Conesa, P., Hastings, J., de Matos, P., Rijnbeek, M.,
Mahendraker, T., Williams, M., Neumann, S., Rocca-Serra, P., Maguire,
E., Gonzalez-Beltran, A., Sansone, S. A., Griffin, J. L., and Steinbeck, C.
(2013) MetaboLights–an open-access general-purpose repository for
metabolomics studies and associated meta-data. Nucleic Acids Res. 41,
D781–D786

21. O’Shea, J. P., Chou, M. F., Quader, S. A., Ryan, J. K., Church, G. M., and
Schwartz, D. (2013) pLogo: a probabilistic approach to visualizing se-
quence motifs. Nat. Methods 10, 1211–1212

22. Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen,
P., and Hemmings, B. A. (1996) Mechanism of activation of protein
kinase B by insulin and IGF-1. EMBO J. 15, 6541–6551

23. Girard, J. (2006) The inhibitory effects of insulin on hepatic glucose pro-
duction are both direct and indirect. Diabetes 55, 5

24. Yellaturu, C. R., Deng, X., Cagen, L. M., Wilcox, H. G., Mansbach, C. M.,
2nd, Siddiqi, S. A., Park, E. A., Raghow, R., and Elam, M. B. (2009) Insulin
enhances post-translational processing of nascent SREBP-1c by pro-
moting its phosphorylation and association with COPII vesicles. J. Biol.
Chem. 284, 7518–7532

25. Repa, J. J., Liang, G., Ou, J., Bashmakov, Y., Lobaccaro, J. M., Shimo-
mura, I., Shan, B., Brown, M. S., Goldstein, J. L., and Mangelsdorf, D. J.
(2000) Regulation of mouse sterol regulatory element-binding protein-1c
gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta.
Genes. Dev. 14, 2819–2830

26. Han, M. S., Park, S. Y., Shinzawa, K., Kim, S., Chung, K. W., Lee, J. H.,
Kwon, C. H., Lee, K. W., Lee, J. H., Park, C. K., Chung, W. J., Hwang,
J. S., Yan, J. J., Song, D. K., Tsujimoto, Y., and Lee, M. S. (2008)
Lysophosphatidylcholine as a death effector in the lipoapoptosis of
hepatocytes. J. Lipid Res. 49, 84–97

27. van Herpen, N. A., and Schrauwen-Hinderling, V. B. (2008) Lipid accumu-
lation in non-adipose tissue and lipotoxicity. Physiol. Behav. 94, 231–241

28. Yetukuri, L., Katajamaa, M., Medina-Gomez, G., Seppanen-Laakso, T.,
Vidal-Puig, A., and Oresic, M. (2007) Bioinformatics strategies for lipido-
mics analysis: characterization of obesity related hepatic steatosis. BMC
Syst. Biol. 1, 12

29. Kruger, M., Kratchmarova, I., Blagoev, B., Tseng, Y. H., Kahn, C. R., and
Mann, M. (2008) Dissection of the insulin signaling pathway via quanti-
tative phosphoproteomics. Proc. Natl. Acad. Sci. U.S.A. 105, 2451–2456

30. Humphrey, S. J., Yang, G., Yang, P., Fazakerley, D. J., Stockli, J., Yang,
J. Y., and James, D. E. (2013) Dynamic adipocyte phosphoproteome
reveals that Akt directly regulates mTORC2. Cell Metab. 17, 1009–1020

31. Humphrey, S. J., Azimifar, S. B., and Mann, M. (2015) High-throughput
phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Bio-
technol. 33, 990–995

32. Hilger, M., Bonaldi, T., Gnad, F., and Mann, M. (2009) Systems-wide
analysis of a phosphatase knock-down by quantitative proteomics and
phosphoproteomics. Mol. Cell. Proteomics 8, 1908–1920

33. Pan, C., Olsen, J. V., Daub, H., and Mann, M. (2009) Global effects of kinase
inhibitors on signaling networks revealed by quantitative phosphopro-
teomics. Mol. Cell. Proteomics 8, 2796–2808

Palmitate-induced Selective Insulin Resistance in Hepatocytes

848 Molecular & Cellular Proteomics 17.5

http://proteomecentral.proteomexchange.org/cgi/GetDataset
http://proteomecentral.proteomexchange.org/cgi/GetDataset
https://www.ebi.ac.uk/metabolights/MTBLS582
https://www.ebi.ac.uk/metabolights/MTBLS582
http://www.mcponline.org/cgi/content/full/RA117.000560/DC1


34. Makarov, A., Denisov, E., and Lange, O. (2009) Performance evaluation of
a high-field Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20,
1391–1396

35. Ong, S. E., and Mann, M. (2005) Mass spectrometry-based proteomics
turns quantitative. Nat. Chem. Biol. 1, 252–262

36. Pearce, L. R., Komander, D., and Alessi, D. R. (2010) The nuts and bolts of
AGC protein kinases. Nat. Rev. Mol. Cell Biol. 11, 9–22

37. Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., Fu, Y. H., Kuhl, D. P., Pizzuti, A.,
Reiner, O., Richards, S., Victoria, M. F., Zhang, F. P., Eussen, B. E., van
Ommen, G. B., Blonden, L. A. J., Riggins, G. J., Chastain, J. L., Kunst,
C. B., Galjaard, H., Caskey, C. T., Nelson, D. L., Oostra, B. A., and
Warren, S. T. (1991) Identification of a gene (FMR-1) containing a CGG
repeat coincident with a breakpoint cluster region exhibiting length var-
iation in fragile X syndrome. Cell 65, 905–914

38. Monyak, R. E., Emerson, D., Schoenfeld, B. P., Zheng, X., Chambers, D. B.,
Rosenfelt, C., Langer, S., Hinchey, P., Choi, C. H., McDonald, T. V.,
Bolduc, F. V., Sehgal, A., McBride, S. M., and Jongens, T. A. (2016)
Insulin signaling misregulation underlies circadian and cognitive deficits
in a Drosophila fragile X model. Mol. Psychiatry

39. Lumaban, J. G., and Nelson, D. L. (2015) The Fragile X proteins Fmrp and
Fxr2p cooperate to regulate glucose metabolism in mice. Hum Mol.
Genet. 24, 2175–2184

40. Zhang, J., Fang, Z., Jud, C., Vansteensel, M. J., Kaasik, K., Lee, C. C.,
Albrecht, U., Tamanini, F., Meijer, J. H., Oostra, B. A., and Nelson, D. L.
(2008) Fragile X-related proteins regulate mammalian circadian behav-
ioral rhythms. Am. J. Hum. Genet. 83, 43–52

41. Dury, A. Y., El Fatimy, R., Tremblay, S., Rose, T. M., Cote, J., De Koninck,
P., and Khandjian, E. W. (2013) Nuclear Fragile X Mental Retardation
Protein is localized to Cajal bodies. PLoS Genet. 9, e1003890

42. Garvey, W. T., Maianu, L., Zhu, J. H., Brechtel-Hook, G., Wallace, P., and
Baron, A. D. (1998) Evidence for defects in the trafficking and transloca-
tion of GLUT4 glucose transporters in skeletal muscle as a cause of
human insulin resistance. J. Clin. Invest. 101, 2377–2386

43. Sano, H., Kane, S., Sano, E., Miinea, C. P., Asara, J. M., Lane, W. S.,
Garner, C. W., and Lienhard, G. E. (2003) Insulin-stimulated phosphoryl-
ation of a Rab GTPase-activating protein regulates GLUT4 translocation.
J. Biol. Chem. 278, 14599–14602

44. Panaretou, C., Domin, J., Cockcroft, S., and Waterfield, M. D. (1997)
Characterization of p150, an adaptor protein for the human phospha-
tidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidyl-
inositol transfer protein to the p150.Ptdins 3-kinase complex. J. Biol.
Chem. 272, 2477–2485

45. Biggs, W. H., 3rd, Meisenhelder, J., Hunter, T., Cavenee, W. K., and Arden,
K. C. (1999) Protein kinase B/Akt-mediated phosphorylation promotes
nuclear exclusion of the winged helix transcription factor FKHR1. Proc.
Natl. Acad. Sci. U.S.A. 96, 7421–7426

46. Nakae, J., Kitamura, T., Silver, D. L., and Accili, D. (2001) The forkhead
transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-
6-phosphatase expression. J. Clin. Invest. 108, 1359–1367

47. Shin, D. J., Joshi, P., Hong, S. H., Mosure, K., Shin, D. G., and Osborne,
T. F. (2012) Genome-wide analysis of FoxO1 binding in hepatic chroma-
tin: potential involvement of FoxO1 in linking retinoid signaling to hepatic
gluconeogenesis. Nucleic Acids Res. 40, 11499–11509

48. Obrochta, K. M., Krois, C. R., Campos, B., and Napoli, J. L. (2015) Insulin
regulates retinol dehydrogenase expression and all-trans-retinoic acid
biosynthesis through FoxO1. J. Biol. Chem. 290, 7259–7268

49. Wei, D., Tao, R., Zhang, Y., White, M. F., and Dong, X. C. (2011) Feedback
regulation of hepatic gluconeogenesis through modulation of SHP/Nr0b2

gene expression by Sirt1 and FoxO1. Am. J. Physiol. Endocrinol. Metab.
300, E312–E320

50. Cheng, Z., and White, M. F. (2011) Targeting Forkhead box O1 from the
concept to metabolic diseases: lessons from mouse models. Antioxid.
Redox. Signal. 14, 649–661

51. Zhao, G., Jeoung, N. H., Burgess, S. C., Rosaaen-Stowe, K. A., Inagaki, T.,
Latif, S., Shelton, J. M., McAnally, J., Bassel-Duby, R., Harris, R. A.,
Richardson, J. A., and Kliewer, S. A. (2008) Overexpression of pyruvate
dehydrogenase kinase 4 in heart perturbs metabolism and exacerbates
calcineurin-induced cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol.
294, H936–H943

52. Long, Y. C., Cheng, Z., Copps, K. D., and White, M. F. (2011) Insulin
receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth
and metabolism via the Akt and AMPK pathways. Mol. Cell Biol. 31,
430–441

53. Okamoto, T., Kanemoto, N., Ban, T., Sudo, T., Nagano, K., and Niki, I.
(2009) Establishment and characterization of a novel method for evalu-
ating gluconeogenesis using hepatic cell lines, H4IIE and HepG2. Arch.
Biochem. Biophys. 491, 46–52

54. Samuel, V. T., Liu, Z. X., Qu, X., Elder, B. D., Bilz, S., Befroy, D.,
Romanelli, A. J., and Shulman, G. I. (2004) Mechanism of hepatic
insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem.
279, 32345–32353

55. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N., and Mann, M. (2014)
Minimal, encapsulated proteomic-sample processing applied to copy-
number estimation in eukaryotic cells. Nat. Methods 11, 319–324

56. Monetti, M., Nagaraj, N., Sharma, K., and Mann, M. (2011) Large-scale
phosphosite quantification in tissues by a spike-in SILAC method. Nat.
Methods 8, 655–658

57. Schmelzle, K., Kane, S., Gridley, S., Lienhard, G. E., and White, F. M. (2006)
Temporal dynamics of tyrosine phosphorylation in insulin signaling. Di-
abetes 55, 2171–2179

58. Puigserver, P., Rhee, J., Donovan, J., Walkey, C. J., Yoon, J. C., Oriente, F.,
Kitamura, Y., Altomonte, J., Dong, H., Accili, D., and Spiegelman, B. M.
(2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-
1alpha interaction. Nature 423, 550–555

59. Bae, E. J., Xu, J., Oh, D. Y., Bandyopadhyay, G., Lagakos, W. S., Keshwani,
M., and Olefsky, J. M. (2012) Liver-specific p70 S6 kinase depletion
protects against hepatic steatosis and systemic insulin resistance.
J. Biol. Chem. 287, 18769–18780

60. Valenti, L., Rametta, R., Dongiovanni, P., Maggioni, M., Fracanzani, A. L.,
Zappa, M., Lattuada, E., Roviaro, G., and Fargion, S. (2008) Increased
expression and activity of the transcription factor FOXO1 in nonalcoholic
steatohepatitis. Diabetes 57, 1355–1362

61. Yuyama, K., Mitsutake, S., and Igarashi, Y. (2014) Pathological roles of
ceramide and its metabolites in metabolic syndrome and Alzheimer’s
disease. Biochim. Biophys. Acta 1841, 793–798

62. Wu, Y., Song, P., Xu, J., Zhang, M., and Zou, M. H. (2007) Activation of
protein phosphatase 2A by palmitate inhibits AMP-activated protein
kinase. J. Biol. Chem. 282, 9777–9788

63. Martinez, S. C., Tanabe, K., Cras-Meneur, C., Abumrad, N. A., Bernal-
Mizrachi, E., and Permutt, M. A. (2008) Inhibition of Foxo1 protects
pancreatic islet beta-cells against fatty acid and endoplasmic reticulum
stress-induced apoptosis. Diabetes 57, 846–859

64. Jornayvaz, F. R., and Shulman, G. I. (2012) Diacylglycerol activation of
protein kinase Cepsilon and hepatic insulin resistance. Cell Metab. 15,
574–584

Palmitate-induced Selective Insulin Resistance in Hepatocytes

Molecular & Cellular Proteomics 17.5 849


