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The coordination of protein synthesis and degradation reg-
ulating protein abundance is a fundamental process in
cellular homeostasis. Today, mass spectrometry-based
technologies allow determination of endogenous protein
turnover on a proteome-wide scale. However, standard dy-
namic SILAC (Stable Isotope Labeling in Cell Culture) ap-
proaches can suffer from missing data across pulse time-
points limiting the accuracy of such analysis. This issue is of
particular relevance when studying protein stability at the
level of proteoforms because often only single peptides
distinguish between different protein products of the same
gene. To address this shortcoming, we evaluated the merits
of combining dynamic SILAC and tandem mass tag (TMT)-
labeling of ten pulse time-points in a single experiment.
Although the comparison to the standard dynamic SILAC
method showed a high concordance of protein turnover
rates, the pulsed SILAC-TMT approach yielded more com-
prehensive data (6000 proteins on average) without missing
values. Replicate analysis further established that the same
reproducibility of turnover rate determination can be ob-
tained for peptides and proteins facilitating proteoform re-
solved investigation of protein stability. We provide several
examples of differentially turned over splice variants and
show that post-translational modifications can affect cellu-
lar protein half-lives. For example, N-terminally processed
peptides exhibited both faster and slower turnover behavior
compared with other peptides of the same protein. In addi-
tion, the suspected proteolytic processing of the fusion
protein FAU was substantiated by measuring vastly differ-
ent stabilities of the cleavage products. Furthermore, differ-
ential peptide turnover suggested a previously unknown
mechanism of activity regulation by post-translational de-
stabilization of cathepsin D as well as the DNA helicase

BLM. Finally, our comprehensive data set facilitated a de-
tailed evaluation of the impact of protein properties and
functions on protein stability in steady-state cells and
uncovered that the high turnover of respiratory chain
complex I proteins might be explained by oxidative
stress. Molecular & Cellular Proteomics 17: 974–992,
2018. DOI: 10.1074/mcp.RA118.000583.

Proteins participate in the control as well as the execution
of virtually every process that is involved in the perpetuation of
cellular homeostasis thereby defining the functional state of a
cell. Despite a common genetic basis, cells and tissues of
organisms feature a wide range of physiological diversity not
least determined and regulated by underlying differences in
protein expression patterns (1). Even though the abundance
of cellular proteins remains constant over time under steady-
state conditions, they exist in a dynamic state in which they
are continuously destructed and reconstructed (2). This “de-
fault” protein turnover contributes to a cell’s capability to
rapidly respond to external stimuli by dynamically altering
protein abundance to establish an appropriate new equilib-
rium. To expand the understanding of the concerted action of
protein synthesis and degradation for the control and adjust-
ment of protein abundance, protein turnover has been studied
for decades (3). Traditional approaches have made use of a
multitude of methodologies notably pulse-chase radiolabeling
(4, 5), inhibition of protein synthesis (6), or tagging of endoge-
nous proteins with fluorescent dyes (7, 8). However, radioactive
labeling only allows for the analysis of bulk protein turnover or
the determination of the stability of single proteins. Treatment of
cells with translation inhibitors disrupts cell homeostasis and
half-lives determined in this way might not fully reflect the actual
endogenous degradation process. Similarly, measuring the sta-
bility of fluorescently tagged and overexpressed proteins might
also not equate physiological protein half-lives.

In recent years, advances in mass spectrometry (MS) based
technologies in conjunction with Stable Isotope Labeling in
Cell Culture (SILAC)1 (9) have dramatically improved protein
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turnover measurements. Today, protein replacement rates
can be determined on a global scale by measuring the incor-
poration of “heavy” isotope labeled amino acids into newly
synthesized proteins in a time dependent manner. Likewise,
the loss of the residual “light” amino acids reflecting the
degradation of proteins can be determined in each pulse time
point. Such a dynamic SILAC setup has enabled the parallel
measurement of turnover characteristics of thousands of en-
dogenous proteins expressed at physiological levels (10–16).
However, despite ongoing efforts, technical issues still exist
and important cellular mechanisms affecting protein stability
at the molecular level still remain elusive. For example, com-
parison of different studies often show limited correlation of
protein turnover rates and sometimes arrive at contrasting
conclusions about which protein properties might affect half-
lives (7, 11, 14, 16–18). In addition, different cellular stabilities
have been reported for the same protein depending on its
localization (14), the cellular condition (16), protein interac-
tions (19), or its post-translational modification state (17).
Moreover, differences in turnover rates have also been de-
tected for splice variants of the same gene (20). Considering
that more than 200 different types of protein modifications
have been described to exist (21) and that nearly all multi-
exon genes have been shown to be alternatively spliced (22),
proteoform level turnover measurements are important but
have largely been neglected in the past.

Studying proteoform dynamics is not trivial. First, a robust
and accurate method for quantification of pulsed SILAC la-
beled peptides across multiple time points is needed be-
cause, in proteomic datasets, often only single peptide se-
quences distinguish noncanonical from canonical isoforms or
modified from nonmodified proteins. However, the standard
dynamic SILAC approach suffers from substantial missing
quantitative values across pulse time-points. This issue is
amplified when increasing the number of measured pulse
time-points and matters a lot when analyzing data at the
peptide level. Although protein level quantification can make
use of averaging several peptide measurements thereby in-
creasing the robustness of turnover estimation, every missing
value may severely lower accuracy at the peptide level. Mul-
tiplexing of pulsed SILAC samples derived from different time-
points might overcome this issue and the general feasibility of
combining pulsed SILAC with iTRAQ (isobaric Tags for Rela-
tive and Absolute Quantification) 4-plex labeling has previ-
ously been demonstrated in Streptomyces coelicolor (23)
albeit with low proteome coverage. Subsequently, TMT (tan-
dem mass tag) labeling of pulsed SILAC samples has been
proposed in a review by Hughes and Krijgsveld (24) and
recently demonstrated by Welle et al. (25) who determined
turnover dynamics for 1,276 human proteins in a single MS3
based experiment. However, none of the above studies have
specifically addressed turnover at the level of proteoforms.

In the present study, we combined the standard dynamic
SILAC approach with TMT labeling of 10 pulse time-points to

perform proteome-wide analysis of proteoform resolved turn-
over. We report a robust normalization method for multiplexed
turnover data and describe a new approach to compute ab-
solute protein copy numbers per cell from TMT data. We
demonstrate high concordance of pulsed SILAC-TMT and
standard dynamic SILAC data. Moreover, we show that
SILAC-TMT hyperplexing enabled high proteome coverage
(6,000 proteins) within reasonable time (2 days) of LC-MS
measurements. Systematic evaluation of replicates showed
that robust single peptide level turnover measurements are
possible if experiments are conducted carefully. Following
this approach and facilitated by the deep proteome coverage,
we highlight several examples of post-transcriptional and
post-translational processing leading to differential protein
stabilities. Our dataset also enabled a reevaluation of molec-
ular determinants of proteome stability and showed that oxi-
dative stress contributes to the high turnover of proteins in the
respiratory chain complex I. To enable further research on the
topic, all raw data obtained in this study is available in PRIDE
(26) and protein stability data will be made available in
ProteomicsDB (27).

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale—The rationale of the
experimental design, data normalization and curve fitting of time-
resolved SILAC pulse data is described in detail in the results section
and the supplementary methods. Briefly, four HeLa cell culture rep-
licates and a MS measurement duplicate of SILAC pulse experiments
were performed to assess the reproducibility of the pulsed SILAC-
TMT approach and enable statistical evaluation of differences in
peptide turnover rates measured as rates of SILAC label incorporation
or loss. Two cell batches were switched from light (K0/R0) to heavy
(K8/R10) label and two replicates were switched from heavy to light
label and lysed after different time-points. After digestion, peptides
were labeled using TMT, combined, fractionated, and analyzed em-
ploying a MS2 or MS3 method for TMT quantification. In addition, for
one replicate, fractional SILAC labeling was directly analyzed on MS1
level omitting the TMT labeling step to enable a comparison of the
three different quantification approaches. To obtain labeling rate con-
stants, TMT data were normalized based on steady-state assump-
tions and equations following first-order kinetics were fitted to pep-
tide data. After filtering for high quality curve fits, data condensed at
the peptide and protein level were analyzed regarding determinants of
protein turnover and splice variant and proteoform-specific turnover
behavior. For the investigation of the turnover of proteins assembled
in respiratory chain complex I on induction of oxidative stress, HeLa
cells were treated with the complex I inhibitor rotenone and the
complex I specific substrates glutamate and malate. After a 3 or 8 h
pulse with heavy medium, ratios of newly synthesized to formerly
existing proteins (heavy-to-light ratios) were evaluated in a parallel
reaction monitoring (PRM) assay and compared with control cells
either treated with glutamate and malate or with DMSO. All cell culture
conditions were evaluated as triplicates to enable statistical analysis
of turnover differences. Detailed information on the procedures of the
cell culture experiment, sample processing, PRM assay setup (Tier
level 3), data normalization and analysis can be found in the supple-
mentary methods section.

Cell Culture and Lysis—HeLa cells were cultured in SILAC DMEM
(Thermo Fisher Scientific, Waltham, MA) supplemented with 10%
dialyzed FBS (GibcoTM via Thermo Fisher Scientific), 1% antibiotic
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antimycotic solution (Sigma, Munich, Germany) and 1.74 mM L-proline
(� 99%, Sigma). L-lysine and L-arginine were added in either light
(Lys-12C6

14N2/K0, isotope purity � 99%; Arg-12C6
14N4/R0 � 98%,

Sigma) or heavy (Lys-13C6
15N2/K8, isotope purity � 99%; Arg-

13C6
15N4/R10, isotope purity � 99%, Cambridge Isotope Laborato-

ries, Tewksbury, MA) form to a final concentration of 0.798 mM and
0.398 mM, respectively. For time-resolved pulse experiments, HeLa
cells were seeded at 5.7e3 cells/cm2 and the pulse was started after
40 h of cultivation. Old medium was removed, light (or heavy) labeled
cells were washed twice using PBS with MgCl2/CaCl2 (Sigma), and
heavy (or light) medium was added. Cells were lysed in urea lysis
buffer (8 M urea, 40 mM Tris-HCl (pH 7.6), 1 � EDTA-free protease
inhibitor (cOmpleteTM, Mini, Roche via Sigma) and 1� phosphatase
inhibitor mixture) directly before medium exchange (0 h time point)
and 1, 3, 6, 10, 16, 24, 34, and 48 h (0, 1, 3, 6, 10, 16, 24, 32, 40, and
50 h for the comparison of MS2 and MS3 based quantification) after
medium exchange. For the “infinite” time point, cells grown in heavy
(or light) medium for � 10 cell doublings (checked for �99.9% label
incorporation) were seeded in heavy (or light) medium concurrently to
light (or heavy) labeled cells and lysed in urea lysis buffer at the same
time as the cells of the 48 h time point. For determination of cell
doubling times, HeLa cells were seeded in 96 well plates at the same
density as for the pulse experiments. After medium exchange, cells
were counted in six replicates every 12 h.

Protein Digestion, TMT Labeling and Peptide Fractionation—Ly-
sates were cleared by centrifugation for 20 min at 20,000 � g and
4 °C, protein concentration was determined by the Bradford method
(Coomassie (Bradford) Protein Assay Kit, Thermo Fisher Scientific),
and 200 and 30 �g of protein per sample were further processed for
the pulsed SILAC-TMT and the pulsed SILAC workflow, respectively.
After reduction (10 mM DTT, 30 °C, 30 min) and alkylation (50 mM

chloroacetamide, room temperature, 30 min, in the dark), lysates
were diluted to 1.6 M urea using 40 mM Tris-HCl (pH 7.6). Digestion
was performed by adding trypsin (Promega, Mannheim, Germany,
1:50 enzyme-to-substrate ratio) and incubating overnight at 37 °C at
700 rpm. Digests were acidified by addition of neat formic acid (FA) to
1% and desalted using 50 mg tC18, reversed-phase (RP) solid-phase
extraction cartridges (Waters Corp., Eschborn, Germany; wash sol-
vent: 0.1% FA; elution solvent: 0.1% FA in 50% ACN). Peptide
solutions were frozen at �80 °C and dried in a SpeedVac.

TMT labeling and high pH RP tip fractionation were performed as
previously described (28). Briefly, digests (200 �g per time point) were
reconstituted in 20 �l of 50 mM HEPES (pH 8.5), and 5 �l of a 11.6 mM

TMT stock (Thermo Fisher) in 100% anhydrous ACN were added to
each sample. After incubation for 1 h at 25 °C and 500 rpm, the
labeling reaction was stopped by adding 2 �l of 5% hydroxylamine.
Peptide solutions were pooled and acidified using 20 �l of 10% FA.
Reaction vessels in which the labeling took place were rinsed with 20
�l of 10% FA in 10% ACN, and the solvent was added to the pooled
sample. The pools were frozen at �80 °C and dried down in a
SpeedVac. Subsequently, pooled samples were desalted using 50
mg tC18, RP solid-phase extraction cartridges (Waters Corp.; wash
solvent: 0.1% FA; elution solvent: 0.1% FA in 50% ACN). Peptide
solutions were frozen at �80 °C and dried in a SpeedVac.

For high pH RP tip fractionation, self-packed StageTips (five disks,
Ø 1.5 mm, C18 material, 3 M EmporeTM via Sigma) were activated and
equilibrated using 50 �l of 100% ACN, followed by 50 �l of 25 mM

NH4COOH (pH 10) in 50% ACN and 100 �l of 25 mM NH4COOH (pH
10). Dried digests (30 �g) were reconstituted in 50 �l of 25 mM

NH4COOH (pH 10) and loaded onto the C18 material. Peptides were
sequentially eluted using 40 �l of 25 mM NH4COOH (pH 10) contain-
ing increasing concentrations of ACN (5, 7.5, 10, 12.5, 15, 17.5, and
50% ACN for TMT labeled digests for comparison of MS2 and MS3
based quantification and 5, 10, 15, 17.5, and 50% ACN for untagged

SILAC labeled digests for comparison of MS1 and MS3 based quan-
tification). The sample flow through was combined with the 17.5%
ACN eluate and the 5% ACN fraction with the 50% ACN fraction,
resulting in a total of six or four fractions, respectively, which were
dried down in a SpeedVac and stored at �20 °C until LC-MS
measurement.

For the final experimental setup conducted in 4 replicates, TMT
labeled sample pools were fractionated via hydrophilic strong anion
exchange (hSAX) chromatography as previously described (29).
Briefly, samples were reconstituted in hSAX solvent A (5 mM Tris-HCl,
pH 8.5) and separated using a Dionex Ultimate 3000 HPLC system
(Dionex Corp., Idstein, Germany) equipped with an IonPac AG24
guard column (2 � 50 mm) and an IonPac AS24 strong anion ex-
change column (2 � 250 mm, Thermo Fisher) at a flow rate of 250
�l/min. The equivalent of 180 �g protein digest was loaded onto the
column using 100% hSAX solvent A for 2 min and subsequently
separated by increasing hSAX solvent B (5 mM Tris-HCl, pH 8.5, 1 M

NaCl) from 0 to 40% in 16 min. After washing the column for 10 min
at 100% hSAX solvent B, it was equilibrated with 100% hSAX solvent
A. During separation, 40 fractions (1 min each) were collected. After-
ward, fractions were acidified with 5 �l neat FA and less complex,
early and late fractions were pooled as follows: 1–4, 5–7, 8–9, 26–27,
28–30, 31–33, 34–35, 36–40. The resulting 24 fractions were de-
salted using self-packed StageTips (three disks, Ø 1.5 mm, C18
material, 3 M EmporeTM; wash solvent: 0.1% FA; elution solvent: 0.1%
FA in 50% ACN). Eluted fractions were frozen, dried down in a
SpeedVac and stored at �20 °C until LC-MS analysis.

LC-MS Measurements—Nano flow LC-ESI-MS measurements
were performed using a Dionex Ultimate 3000 UHPLC� system cou-
pled to a Fusion Lumos Tribrid mass spectrometer (Thermo Fisher
Scientific). After reconstitution in 0.1% FA, an amount corresponding
to 1.2–1.5 �g peptides was injected. Peptides were delivered to a trap
column (75 �m x 2 cm, packed in-house with 5 �m C18 resin;
Reprosil PUR AQ, Dr. Maisch, Ammerbruch-Entringen, Germany) and
washed using 0.1% FA at a flow rate of 5 �l/min for 10 min. Subse-
quently, peptides were transferred to an analytical column (75 �m �
45 cm, packed in-house with 3 �m C18 resin; Reprosil Gold, Dr.
Maisch) applying a flow rate of 300 nL/min and separated using a 100
min linear gradient from 4% to 32% LC solvent B (0.1% FA, 5%
DMSO in ACN) in LC solvent A (0.1% FA in 5% DMSO). The Fusion
Lumos was operated in data dependent acquisition (DDA) and posi-
tive ionization mode. Full scan MS1 spectra were recorded in the
orbitrap from 360 to 1300 m/z at a resolution of 60K (automatic gain
control (AGC) target value of 4e5 charges, maximum injection time
(maxIT) of 50 ms). For MS analysis of SILAC samples without TMT
label, MS2 spectra were recorded in the orbitrap at 15K resolution
after HCD (higher energy collisional dissociation) fragmentation using
an isolation window 1.6 m/z, an AGC target value of 1e5, a maxIT of
50 ms, 28% normalized collision energy (NCE), and a fixed first mass
of 100 m/z. In the MS2-based TMT method, the isolation window was
set to 1.2 m/z, the AGC target value to 1.2e5, the maxIT to 100 ms, the
NCE to 33%, and the fixed first mass to 120 m/z. For both methods,
cycle time and dynamic exclusion were set to 2 and 60 s, respectively.
In the MS3-based TMT method, MS2 spectra for peptide identifica-
tion were recorded in the ion trap in rapid scan mode via sequential
isolation of up to 10 precursors (isolation window 0.7 m/z, AGC target
value of 2e4, maxIT of 100 ms, dynamic exclusion of 90 s) and
fragmentation via CID (NCE of 35%, activation Q of 0.25). Then, for
each peptide precursor, an additional MS3 spectrum for TMT quan-
tification was obtained in the orbitrap at 60K resolution (scan range
100–1000 m/z, charge dependent isolation window from 1.3 (2�) to
0.7 (5–6�) m/z, AGC of 1.2e5 charges, maxIT of 110 ms). For this, the
precursor was again fragmented as for MS2 analysis, followed by
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synchronous selection of the 10 most intense peptide fragments in
the ion trap and further fragmentation via HCD using a NCE of 55%.

Database Searching—Peptide and protein identification and quan-
tification for DDA type of experiments was performed using Max-
Quant (v1.5.5.1) with its built in search engine Andromeda (30, 31).
Tandem mass spectra were searched against the Swissprot database
(human, 42,145 entries, including splice variants, downloaded on
01.02.2016) supplemented with common contaminants. Carbam-
idomethylated cysteine was set as fixed modification and oxidation of
methionine, and N-terminal protein acetylation as variable modifica-
tions. For pulsed SILAC samples without TMT label, Lys0/Arg0 and
Lys8/Arg10 were specified as metabolic labels, whereas for pulsed
SILAC-TMT samples, TMT10 was specified as label within a re-
porter ion MS3 experiment type and K8 and R10 were set as
additional variable modifications. Isotope impurities of the TMT
batch were specified in the configuration of TMT modifications to
allow MaxQuant the automated correction of TMT intensities. Tryp-
sin/P was specified as the proteolytic enzyme, with up to two
missed cleavage sites allowed. Precursor tolerance was set to �5
ppm, and fragment ion tolerance to �20 ppm. Results were ad-
justed to 1% peptide spectrum match (PSM) and 1% protein false
discovery rate (FDR) employing a target-decoy approach using
reversed protein sequences.

Pulsed SILAC-TMT Data Normalization, Curve Fitting and Half-life
Determination—Reverse database hits, nonhuman contaminants and
missed cleavage peptides that contained both a light and a heavy
version of lysine or arginine were removed from the pulsed SILAC-
TMT dataset. Data normalization was conducted under the assump-
tion that the total protein amount (light plus heavy labeled protein) is
equal across time-points (see supplementary methods for detailed
information). Subsequently, curves were fitted to TMT intensities us-
ing a nonlinear least square (NLS) optimization in R (version 3.3.3) (32)
adopting first order labeling kinetics. Data were filtered according to
following criteria: labeling (turnover) rate K: 0–5; offset B: 0–0.3;
curve maximum A: 0.67–1.5; coefficient of determination R2�0.8. To
determine protein and peptide half-lives (T1/2), cell doubling rates
were estimated via fitting an exponential growth equation to counted
cell numbers and subtracted from labeling rates to obtain protein
degradation rates (k). Half-life was then calculated as ln(2)/k (see
supplementary methods for details).

Bioinformatic Analysis—For comparisons to previously published
data (11, 12, 14, 25, 33–35), proteins were first matched based on the
first IPI/UniProt identifier and, second, on the first gene name entry in
each protein group. For integration of turnover data with protein
properties and functions, the median of log transformed data from all
four replicates was utilized. Functional annotations (36–41) were
always based on the leading UniProt identifier in each group. Protein
copy numbers were estimated by harnessing the fractional MS1
intensity assigned to the intensity of the first (for degradation curves)
or last (for synthesis curves) TMT-channel and approximating the
mass of a protein as a fraction of the total protein mass by the
proportion of the protein’s MS signal intensity to the total MS signal
(42). Secondary structure prediction was performed employing the
s2d method (43). Expected linear relationships were analyzed using
Pearson’s correlation coefficients (R). Otherwise Spearman rank cor-
relation coefficients (�) were computed. The Perseus software suite
(v.1.5.6.0) (44) was used to perform correlation analysis, functional 1D
enrichment analyses (45) and two-sided t-tests using log-trans-
formed, normal-distributed peptide and protein turnover rates or
heavy-to-light ratios obtained in the PRM assay and corrected for
multiple testing applying a permutation based FDR calculation. S0, a
constant which accounts for differing variances across the range of
measured values and accordingly adapts the significance cutoff of
statistical analyses (46), was calculated in R (version 3.4.1, function

“samr”) for each dataset separately. Crystal structures of respiratory
chain complex I were obtained from the RCSB protein data bank
website (http://www.rcsb.org (47); PDB ID: 5XTD (48)) and visualized
using PyMOL. More detailed information on specific data analyses
can be found in the supplementary methods.

RESULTS

Experimental Design for the Measurement of Protein Turn-
over on a Proteome-wide Scale—We aimed to design an
experimental workflow which facilitates systematic determi-
nation of protein turnover measured as SILAC label incorpo-
ration or loss on a proteome-wide scale ideally providing
proteoform resolution. This demanded (1) a deep proteome
profiling method to ensure good protein and peptide cover-
age, (2) an adequate number of pulse time-points enabling
high accuracy of turnover estimation, (3) a robust quantifica-
tion method for single peptides across all time-points, and (4)
high reproducibility of (peptide) rate estimations. To meet
these requirements, an approach combining TMT labeling of
ten different pulsed SILAC time-points together with peptide
fractionation by hydrophilic strong anion exchange chroma-
tography was employed (see Fig. 1). For calculation of mean-
ingful peptide ratios for curve fitting, a maximum value corre-
sponding to the total abundance of a peptide for both,
increasing (synthesis) and decreasing (degradation) label, was
required. This was achieved by allocating the first TMT chan-
nel to cells lysed directly before the pulse start (0 h) and
reserving the last TMT channel for cells that were already
completely labeled with the SILAC amino acids that were
provided during the pulse (inf. h, in practice � 200 h, see Fig.
1). This experimental design also allowed for estimation of
ratio compression in the first/last TMT channel resulting from
coisolation of oppositely labeled peptides which can nega-
tively influence turnover rate estimations. In addition, this
enabled us to calculate protein abundances as copies per cell
from TMT intensities by utilizing the fraction of the MS1 in-
tensity that was linked to the first or the last TMT channel of
peptides showing degradation or synthesis, respectively (see
supplementary Methods for details).

Intermittent time-points were chosen based on three re-
quirements: (1) High temporal resolution for early time-points
to facilitate accurate quantification based on the assumed
first order kinetics; (2) Exponential growth of HeLa cells during
the entire pulse period to maintain the steady-state assump-
tion which required avoiding growth inhibition because of high
cell densities at later time-points; (3) Given the DDA mode for
MS analysis, a comparable MS1 intensity of SILAC pairs to
increase the probability of fragmentation and thus quantifica-
tion of fractional SILAC labeling of both, the K0/R0 and the
K8/R10 labeled peptides. Based on these considerations,
HeLa cells were lysed 1, 3, 6, 10, 16, 24, 34, and 48 h after
medium exchange (see Fig. 1). It should be noted that optimal
time-points may differ for different cell lines depending on the
respective cell doubling rates.
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To correct for mixing errors of TMT labeled digests, data
were normalized based on the premise that the sum of K0/R0
and the K8/R10 peptide intensities should be constant across
different time-points (i.e. TMT channels), as equal protein
amounts were employed for each time point (for detailed
information see supplementary methods). After normalization,
curves for estimation of turnover rates, determined from the
kinetics of SILAC label incorporation or loss, were fitted to
quantitative data of all peptide evidence, based on the as-
sumption of exponential protein degradation (see Fig. 1, see
supplemental Table S1). The normalization procedure im-
proved the overall quality of the curve fitting as indicated by an

overall shift of the R2 distribution to higher values (see supple-
mental Fig. S1A). In addition, the number of successful curve fits
after filtering also increased (in total 210,704 before and 238,489
after normalization in all four cell culture replicates). We system-
atically evaluated several criteria to remove poor quality peptide
curve fits, for example, because of low TMT intensities or high
ratio compression (see supplemental Fig. S1A) and provide a
graphical user interface implemented in the R package “pro-
turn” (“https://github.com/mengchen18/proturn”) for curve fit-
ting visualization and assessment of filter criteria.

For calculation of half-life times (T1/2), labeling rates indic-
ative of protein or peptide turnover were corrected for cell
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FIG. 1. Schematic representation of the multiplexed pulsed SILAC-TMT strategy for estimation of protein synthesis and degradation
employed in this study. Cells grown in K0/R0 containing medium were pulsed labeled with medium supplemented with K8/R10 and lysed after
10 different time-points (inf. h corresponds to � 10 cell doublings). After digestion, peptides derived from different time-points were labeled
with TMT, pooled, and fractionated using hydrophilic strong anion exchange (hSAX) chromatography. Peptides were identified by MS2 spectra
and quantified using MS3 scans. Decreasing and increasing labels represent protein degradation and synthesis. Assuming exponential protein
degradation, one-phase decay and association functions were applied for estimation of the rates of K0/R0 label decrease and K8/R10 label
increase (A: curve maximum; B: curve offset; K: turnover rate; see supplementary methods for a detailed explanation of the curve fitting).
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doubling rates to obtain rates of protein synthesis and deg-
radation. To account for minor differences in growth behavior
and thus to improve accuracy of half-life time calculations,
cell doubling rates were determined for each cell culture rep-
licate separately. Using the identical cell batch and applying
the same conditions (e.g. cell medium exchange) as for the
corresponding, simultaneously conducted pulse experiment,
cell doubling times for the four cell culture replicates ranged
from 26.3 h to 30.9 h (see supplemental Fig. S1B).

Comparison to Other SILAC Based Protein Turnover Meas-
urement Approaches—It is well known that isobaric tagging
circumvents missing values occurring in data dependent MS1
based quantification approaches. However, quantification
based on fragment ions of isobaric tags can suffer from ratio
compression resulting from coisolation of peptides featuring
differing quantitative behavior. Hence, it was of interest to
assess and minimize such ratio compression as much as
possible to avoid an adulteration of labeling rate estimations.
Our experimental design enabled estimation of ratio distortion
in either the first or last TMT channel. Indeed, a median
residual intensity of 28.0% in the 0 h time point of synthesis
curves indicated that severe ratio compression was present
for SILAC-TMT samples that were measured in 6 high pH RP
fractions using a MS2 readout (see supplemental Fig. S2A). In
contrast, the MS3 based quantification method using the
same sample and fractionation reduced the median residual
intensity to 1.8%. In addition, a more extensive fractionation

scheme was employed in following experiments to further
minimize ratio distortion and concomitantly increase pro-
teome coverage. In this final setup, residual intensities in the
outermost TMT channels were still detectable, but data filter-
ing based on curve fitting parameters (see above) resulted in
less than 10% ratio compression for more than 80% of all
used peptide evidence (see Fig 2A).

In order to address if our TMT multiplexed, pulsed SILAC
approach using MS3 based quantification provided results
like the standard dynamic SILAC workflow, aliquots of lysates
from pulsed HeLa cells were processed in either way. Result-
ing samples were analyzed expending equal amounts of
LC-MS measurement time, using the same function for curve
fitting, and applying identical filtering criteria after curve fitting.
Hence, TMT labeled and pooled samples derived from 10
pulse time-points (see Fig. 1, measured in 24 fractions) were
compared with 6 nontagged pulsed SILAC samples (1, 3, 6,
10, 24, 48 h, each measured in 4 fractions). MS3 based ratios
of labels across time-points and derived turnover rates were
in good agreement with those calculated from the classical
MS1 based pulsed SILAC method as indicated by an overall
correlation of R � 0.70 (see Fig. 2B and supplemental Table
S2) and exemplified by the virtually identical labeling curves of
the protein STAT3 (see Fig. 2C). Importantly, rates determined
by either of both approaches also correlated as well with
already published protein rates as these literature data corre-
lated among each other (R � 0.51–0.53, see supplemental
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Fig. S2B). However, for 41% of filtered synthesis and degra-
dation curve fits in the MS1 based approach, intensities were
not detectable for all 6 time-points. A head-to-head compar-
ison of MS1 and MS3 measurements disclosed that these
missing intensity values across SILAC isotope pairs or time-
points can decrease accuracy of rate estimations as exem-
plified by the protein STAT6 (see Fig. 2D) resulting in half-lives
of 31.3 and 23.6 h for MS1 and MS3, respectively. More
generally, it became apparent that the precision of MS3 based
quantification of reporter ions devoid of missing values en-
hanced the overall goodness of the curve fits in the multiplex-
ing strategy to a median R2 of 0.98 compared with 0.94 in the
MS1 based approach (see Fig 2E). As a result, turnover dy-
namics could be determined for 83% of proteins identified
with the multiplexing strategy, whereas only 58% of protein
identifications in the MS1 based quantification approach
passed filter criteria after curve fitting. Also facilitated by a
deeper fractionation, the pulsed SILAC-TMT strategy yielded
6035 proteins with quantified turnover compared with 3,600
proteins in the classical pulsed SILAC approach using the
same amount of measurement time yet covering ten instead
of six pulse time-points (see Fig 2F).

Reproducibility of Protein and Peptide Turnover Rate Esti-
mations—Next, we assessed the reproducibility of the pulsed
SILAC-TMT approach. To do so, a total of four pulsed SILAC
experiments using different HeLa cell batches were per-
formed, two of which were subjected to a SILAC label swap.
In addition, fractions of one replicate were measured twice
providing a technical MS replicate. After data processing and
filtering, turnover rates were computed for on average 5,957

protein groups per cell culture replicate (see Fig. 3A and
supplemental Table S1). For 71–76% of all proteins, informa-
tion on both protein label increase and decrease was available
providing an internal duplicate measurement of protein turn-
over rates for each sample in a steady-state system. In all four
cell culture replicates combined, synthesis and/or degrada-
tion curves were obtained for 55,067 protein group unique
peptides (59,586 peptides when also counting oxidized forms)
assigned to 7203 proteins (see Fig 3B) with a median se-
quence coverage of 17.4%. In total, turnover rates were com-
puted for more than 86% of all identified proteins groups and
for 6083 proteins, rates from both label increase and decrease
were obtained. Labeling rate pairs showed a median Pear-
son’s correlation coefficient (R) of 0.64 and a median coeffi-
cient of variation (CV) of 15% (see Fig. 3C). When rates of
label decrease and increase were treated separately, the
technical MS duplicate and the cell culture quadruplicates
exhibited a median R of 0.80 and 0.77 and a median CV of 8
and 18%, respectively (see Fig. 3C), demonstrating good
precision of the pulsed SILAC-TMT approach. Interestingly,
turnover rate determinations on peptide level were as repro-
ducible as for proteins (median R of 0.84 and 0.72 and median
CV of 8 and 18%, see supplemental Fig. S3A). Notably, for
technical replicates more than 82% of both estimated protein
and peptides rates showed a CV of less than 20%. However,
when correlating rates obtained from label increase and de-
crease within a sample, the level of concordance dropped on
peptide level (median R of 0.51 and CV of 0.16, see supple-
mental Fig. S3A). This observation was attributable to residual
ratio distortion which still affected some peptides and adul-
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terated turnover rate determination in opposite ways, eventu-
ally more strongly deteriorating correlation analysis on pep-
tide than on protein level. Likewise, a weak correlation (R of
0.36) of peptide labeling rates with CVs computed from in-
creasing and decreasing curve pairs was identified suggest-
ing that ratio compression more severely affects rate deter-
minations of high turnover peptides (see supplemental Fig.
S3B) as one might expect. However, we point out that there
was generally no correlation of turnover rates and replicate
CVs (exemplified for peptide rates across technical replicates
in supplemental Fig. S3C, R � 0.04). This encouragingly im-
plies the absence of an overall precision bias depending on
the turnover rate, meaning that rate determination is reliable

across the measured range of fast and slow turnover peptides
or proteins (for examples see Fig. 3D and supplemental Fig.
S3D).

Evaluation of Intrinsic Determinants of Protein Turnover—
Estimated protein turnover rates spanned three orders of
magnitude resulting in calculated half-lives ranging from
minutes (exemplified by serine/threonine-protein kinase
SIK1) to thousands of hours (for fatty acid desaturase 2
(FADS2), see Fig 4A and supplemental Table S3). The me-
dian half-life of all proteins was 37.8 h. Apart from an
expected slight underrepresentation of the membrane and
the extracellular subproteomes, our set of proteins proved
to be functionally representative for the entire human pro-
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teome (see supplemental Fig. S4A). In addition, protein copy
numbers per cell determined from the SILAC-TMT data were
in good agreement with published data (33, 34) (R � 0.72 and
0.85, see supplemental Fig. S4B) and covered several orders
of magnitude substantiating the highly representative charac-
ter of the data at hand (see supplemental Fig. S4C). Hence,
the current compilation of protein turnover data provided a
good opportunity to investigate the influence of protein prop-
erties and functions on protein stability.

Two factors that might affect protein turnover could be
protein size and cellular abundance, as these codetermine the
energy costs caused by resynthesis of a certain protein spe-
cies after its degradation in a steady-state system. Indeed,
protein half-lives were positively (albeit not strongly) corre-
lated with protein abundance (� � 0.38, see Fig. 4B). In
contrast, and perhaps surprisingly, protein size did not show
any consistent or global effect on protein stability. Other pro-
tein properties that potentially influence turnover are the pri-
mary and secondary structure as well as the hydrophobicity of
a protein. We observed overall weak correlations of protein
half-lives and amino acid content or predicted proportion of
�-helix, �-sheet and coil structures (� between �0.28 and
0.23). For example, a high percentage of hydrophobic amino
acids and an ordered secondary structure were associated
with longer half-lives, whereas polar amino acids and a dis-
ordered structure (often showing high proline content)
seemed to rather destabilize proteins (see Fig. 4C and sup-
plemental Fig. S4D). It is noteworthy that all examined protein
features correlated with each other to some extent, i.e. for
instance, the more abundant a protein was, the smaller (� �

�0.40) and the less polar (� � �0.30) and disordered (� �

�0.22) it tended to be (see supplemental Fig. S4E). In order to
investigate whether susceptibility to aggregation might be
associated with cellular protein turnover, protein half-lives
were compared with corresponding melting points that have
recently been reported for HeLa proteins (35). However, no
general dependence of cellular protein turnover on thermal
stability could be determined (see supplemental Fig. S4F).

The localization of proteins might also affect their stability.
To examine a potential spatial regulation of turnover, proteins
were grouped according to their subcellular location reported
by the human protein atlas (HPA) (40) and the MitoCharta 2.0
(38) project. Again, proteins in these categories spanned a
wide range of stability even when only assessing proteins
which were exclusively found at a single location (see Fig. 4D).
However, endo-, lyso-, and peroxisomal proteins (median
T1/2 of 80.2 h) appeared to be more stable compared with the
overall cellular proteome. We note that the small number of
data points limits the generalizability of this observation. Con-
versely, proteins which constitute members of mitotic cell
structures (centrosome, mitotic spindle, cytokinetic bridge,
and midbody, median T1/2 of 24.9 h) exhibited shorter me-
dian half-lives potentially reflecting the need for rapid regula-
tion of abundance during different phases of the cell cycle. In

contrast, actin and intermediate filaments and proteins exclu-
sively located in the endoplasmic reticulum (ER) were on
average slightly more stable compared with nuclear and cell
junction proteins (median T1/2 of 77.8, 58.7 and 50.5 versus
30.3 and 22.4 h). Other localizations did not show any con-
siderable trend toward an overall stabilization or destabiliza-
tion of associated proteins.

We next investigated the relation of protein half-lives to
annotated functions using protein domain and family informa-
tion provided by the PROSITE (37) and HPA (39) databases. A
functional 1D enrichment analysis illustrated the significantly
shorter half-lives of transcription factors containing zinc finger
(ZF), fork head, basic helix-loop-helix (bHLH) and leucine
zipper domains (bZIP), as well as nuclear receptors (see Fig.
4E). Examples included, members of the STAT (Signal trans-
ducer and activator of transcription) family, the transcriptional
regulators MAX and MYC as well as retinoic acid and andro-
gen receptors. In contrast, several families of enzymes, nota-
bly oxidoreductases, ligases, lyases, isomerases, and hydro-
lases were significantly overrepresented in more stable
proteins (see Fig. 4E). Interestingly, the aforementioned tran-
scription factors and enzymes also clearly differed in the
biochemical features assessed above. Enzymes did not only
possess longer half-lives compared with transcription factors
(55.4 h versus 17.6 h), but were also more abundant (50,000
versus 9,000 copies per cell) and more hydrophobic (44%
versus 37% hydrophobic amino acids) and exhibited much
less disordered secondary structures (54% versus 84% coil
structure, see supplemental Fig. S4G). Other distinctively
more stable functional protein groups included cell and or-
ganelle membrane associated transporters and, interestingly,
proteins with a C-terminal KDEL motif, which targets proteins
to the ER. The latter indicates that proteins which permanently
and exclusively reside in the ER lumen, like for instance pro-
tein disulfide isomerases, are indeed more stable as already
suggested by the HPA subcellular location annotations (see
Fig. 4D). Furthermore, the Rab family of GTPases, which
regulate vesicular trafficking, exhibited significantly longer
half-lives. On the contrary, kinesin like proteins, which are
involved in mitosis via the control of chromosome segrega-
tion, were enriched in high turnover proteins. Likewise, pro-
teins bearing ASX hydroxyl and EGF like domains appeared to
be rather short-lived. We note that these domains often cooc-
cur on extracellular proteins (e.g. fibrillins and fibulins), and
the detected comparably short half-lives might therefore
rather reflect the intracellular transit time before these se-
creted proteins are lost from the pool of analyzed proteins
than their overall stability. The same argument applies for
proteins featuring von Willebrand factor type C (VWFC) re-
peats which include among others fibrillar collagens. Taken
together, the collective turnover data set facilitated the anal-
ysis of protein properties and functions affecting protein sta-
bility, but no universal protein immanent factors strongly in-
fluencing half-lives were identified.
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Oxidative Stress as a Regulating Factor for NADH Dehydro-
genase Stability—Besides protein intrinsic factors such as
structure and function, protein half-lives might also be regu-
lated by molecular interactions. To this end, we evaluated the
stability of CORUM complex members (36) and found that
proteins reported to be part of a protein complex exhibited
overall longer half-lives (median 51.9 h) compared with pro-
teins which are not listed in the CORUM database (median
44.1 h) suggesting a stabilizing effect of protein interactions
and complex formation. In particular, the proteasome and

ribosome (and their precursors) were significantly enriched in
more stable proteins (see Fig. 5A). Interestingly, respiratory
chain complex I (NADH dehydrogenase) members were the
only proteins participating in complexes and the electron
transport chain that showed overall significantly shorter half-
lives (median 9.5 h, p value � 1.84e-11, see Fig. 5A and 5B).
Together with the ubiquinol cytochrome C oxidoreductase
(respiratory chain complex III), the NADH dehydrogenase is
the main site of superoxide radical formation caused by elec-
tron leakage in the respiratory chain (see Fig. 5C). Therefore,
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genase) was significantly enriched in high turnover proteins. The size of each circular shape indicates the number of proteins in each complex.
B, Scatter dot plots show protein half-lives of members of the different respiratory chain complexes. Black lines indicate the median half-life
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we hypothesized that the high turnover of complex I proteins
may be an adaptive mechanism to compensate oxidative
stress by replacing damaged complex members and thus to
maintain the functionality of the electron transport chain
which is needed for energy generation by oxidative phosphor-
ylation. Following this assumption, the turnover of NADH de-
hydrogenase proteins should be accelerated on enhanced
oxidative stress. In order to test this hypothesis, HeLa cells
were treated with the complex I inhibitor rotenone in combi-
nation with glutamate and malate to increase oxidative stress
specifically at complex I (49) (see supplemental Fig. S5A). By
inhibiting electron transfer from iron-sulfur centers to ubiqui-
none, rotenone treatment should lead to a backload of elec-
trons which should be further amplified by the increased
electron supply provided by the NADH dehydrogenase sub-
strates glutamate and malate (see Fig. 5C). The rotenone and
control treatments (either DMSO or solely glutamate and
malate) were followed by a 3 or 8 h pulse in K8/R10 SILAC
medium (see supplemental Fig. S5A). To overcome missing
quantitative data across treatment conditions and replicates
in a DDA type of experiment, a parallel reaction monitoring
assay was developed to quantify heavy-to-light ratios, which
reflected the fraction of newly synthesized to the total protein
amount. In total, 43 peptides representing 27 complex I pro-
teins were monitored in their K0/R0 and K8/R10 labeled
states (see supplemental Table S4). For both pulse time-
points, rotenone treated cells showed a clear shift toward
higher heavy-to-light (H/L) ratios compared with control cells
implying that the overall fraction of newly synthesized com-
plex I members and thus their turnover increased (see Fig. 5D
and supplemental Fig. S5B–S5D). Proteins featuring peptides
with a significantly different H/L ratio were mainly located at
the so-called IF site where electrons are transferred from
NADH to FMN (flavin mononucleotide) and further passed
down the chain of iron-sulfur centers (see Fig. 5E). Taken
together, these results indicate that the turnover of many
respiratory chain complex I members is accelerated on the
blockade of electron transfer to ubiquinone suggesting that a
general regulation of their half-lives by oxidative stress could
exist.

Proteoform Resolved Protein Turnover—Expecting a cell to
be able to respond quickly to cellular stimuli such as rotenone
induced, oxidative stress as shown above, inevitably leads to
the hypothesis that protein turnover could be dynamically
regulated by post-translational protein modifications. For the
above example on the turnover of respiratory chain proteins,
it was unfortunately not possible to test this hypothesis di-
rectly because information on methionine oxidized respiratory
chain peptides and their nonoxidized counterparts was not
available. In general, the comparison of oxidized and non-
modified counterpart peptides did not show any global shift in
turnover because of oxidation (see supplemental Fig. S6A).
This is not surprising assuming that protein and peptide oxi-
dation largely also occurs during sample processing and,

hence, would not alter the measured, cellular turnover. More-
over, a Student’s t-Test did not reveal any significant differ-
ences of individual oxidized and nonmodified peptide pairs
(FDR � 5%, S0 � 0.05). However, we generally, and quite
unexpectedly, observed that turnover rates determined from
all spectrum evidences for a certain peptide sequence
showed less variation (median CV of 18%) than rates derived
from all spectrum evidences for a protein group (median CV of
25%, see Fig. 6A upper panel). A protein group can contain
peptides which originated from different, expressed protein
isoforms, if unique peptide(s) are identified solely for one of
these isoforms and only shared peptides have been identified
for the other isoform(s). Thus, the global difference in CV
values of protein groups compared with peptides suggested
that protein isoforms (that are unavoidably included in a pro-
tein group) might indeed often differ in their turnover behavior.
Given the availability of four cell culture replicates, statistical
testing was feasible to prioritize protein groups consistently
containing peptides with considerably varying stabilities. To
do so, only peptides for which a turnover rate was determined
at least 3 times (from synthesis or degradation curves or
different replicates) and which belong to protein groups con-
taining at least three of these peptides were included (25,313
peptides assigned to 3130 protein groups). A two-sided, 5%
FDR corrected t-Test (S0 � 0.048) yielded 425 peptides from
305 protein groups for which turnover rates significantly dif-
fered (see supplemental Fig. S6B and supplemental Table
S5). Among these, several protein groups containing different
splice variants were identified. For example, the only peptide
which was exclusively assigned to isoform 2 of nucleosome
assembly protein 1-like 4 (NAP1L4) was much less stable
(T1/2 � 4.1 h) compared with peptides occurring in both
isoforms 1 and 2 (T1/2 � 56.0 h, see Fig. 6B). It must be
pointed out that these differences might also be caused by a
putative stabilizing modification which happens to occur in
the identified isoform 1 specific sequence stretch, hence
making the unmodified counterpart peptide appear less sta-
ble compared with the other peptides of the protein. However,
the occurrence of different half-lives for different isoforms was
also observed in cases where isoforms were unambiguously
identified via several unique peptides and which thus were
assigned to different protein groups as exemplified by chro-
mosome transmission fidelity protein 8 homolog (CHTF8, 5.7
versus 117.1 h for isoform 1 versus splice variant DERPC, see
Fig. 6B). Notably, most of these protein group separated
isoforms featuring significantly different turnover rates also
possessed considerably different primary sequences and
thus physicochemical properties.

After the removal of all protein groups that contained more
than one protein (isoform), turnover rates of all peptide evi-
dences belonging to a single protein still showed overall
higher CVs (median CV of 22%) than rates derived from all
evidences for single peptides (median CV of 18%, see Fig. 6A,
lower panel). This demonstrates that alternative splicing alone
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is not sufficient to explain the variation in turnover across
peptides assigned to the same gene. In fact, many peptides
located at the protein N terminus were found to exhibit sig-
nificantly different turnover rates. To further explore this, rates
of differently modified N-terminal peptides of the same protein
were compared among each other in addition to the compar-
ison to the overall protein turnover rate. Even without enrich-
ment of N-terminal peptides, rates were obtained for 343
N-terminal peptides from 306 proteins. About half of these
peptides (53%) neither contained the initiator Met residue nor
were they acetylated. After filtering, differences were statisti-
cally evaluated for 287 proteins (see supplemental Fig. S6C).
Eleven N termini significantly differed in their turnover rates,
but the effect was not consistent for the type of modification
(see Fig. 6C). Although, for instance, the N-terminal peptide
without the initiator methionine of HNRNPH1 appeared to be
turned over more quickly compared with the whole protein, it
was the other way around for the mitotic spindle-associated
MMXD complex subunit MIP18 (FAM96B).

Higher turnover rates for peptides located near the N ter-
minus were also identified for mitochondrial proteins like the
G-rich sequence factor 1 (GRSF1, see Fig. 6D, left panel). As
a matter of fact, these peptides were part of or spanned
cleavage sites of transit peptides which target nuclear en-
coded proteins to mitochondria. This suggests that these
localization signals are in general rapidly cleaved off and
degraded leading to mature, more stable proteins. Likewise,
propeptides often appeared to be less stable compared with
mature proteins as exemplified by prosaposin which is
cleaved into four different saposins, a signal peptide, and
several propeptides (see supplemental Fig. S6D). Another
case where proteolytic processing led to products with differ-
ent apparent cellular stability is illustrated by cathepsin D
(CTSD), a protease that consists of a light and a heavy chain
which are encoded by the same gene and is post-translation-
ally cleaved (50) (see Fig. 6E). Interestingly, not only did the
activation peptide of CTSD exhibit a higher turnover (T1/2 �

3.7 h), but also its light chain showed a shorter half-life (7.5 h)
compared with the heavy chain (33.9 h). Moreover, we pro-
vide, to our knowledge, the first experimental evidence for the
post-translational cleavage of the protein produced by the
fusion gene FAU. This is demonstrated by the considerably
different stabilities of peptides corresponding to the Ubiquitin-
like protein FUBI and the 40S ribosomal protein S30 part of
the fusion protein (T1/2 � 0.3h versus 52.4 h, see Fig. 6F).

Apart from these rather intuitively explicable examples,
mechanistic explanations for discrepancies between peptide
and corresponding protein turnover rates were often less
apparent. A group of proteins, for instance, exhibited a dis-
tinctively higher turnover for the most C-terminal located pep-
tides (examples are shown in Fig. 6D, middle panel). This
might hint to a C-terminal modification which stabilizes these
proteins and thus would lead to a seemingly shorter half-life of
the unmodified C terminus. In fact, many peptides showing
significantly different turnover rates encompassed reported
modification sites. Among others, for example the only pep-
tide of elongation factor 2 (EEF2) showing a substantially
higher turnover rate contained His715 which is believed to be
the only histidine in eukaryotes that is converted into diph-
thamide (51) (see Fig. 6D, right panel). Furthermore, for the
heat shock cognate 71 kDA protein (HSPA8), the peptide
showing the by far highest turnover rate included a lysine
(position 561) that was demonstrated to be trimethylated by
the methyltransferase METTL21A, thereby modulating its
chaperone activity (52). In addition, the most stable peptide of
the bloom syndrome protein (BLM) comprises Thr766 which
has been shown to be phosphorylated by cyclin dependent
kinase 1 (CDK1) potentially regulating its helicase activity
during mitosis (48). In contrast to these examples, many pep-
tides also featuring significantly different rates did not encom-
pass any known modification site (exemplified by GNL3L in
Fig. 6D, right panel). Still, all the cases described above
clearly demonstrate differential turnover rates for different
proteoforms suggesting an association of post-transcriptional
and post-translational processing with protein stability.

DISCUSSION

Technical and Data Analysis Considerations—Enabled by
the introduction of the SILAC technology and advances in MS
based proteomic technologies in general, several attempts
have been made in recent years to investigate endogenous
proteome turnover (10–15). Still, generating such data at high
quality is far from trivial and many factors must be carefully
considered when planning and executing such experiments.
At the technical level, the accuracy of the commonly applied
standard dynamic SILAC method employing MS1 based
quantification can be impaired by missing data across differ-
ent pulse time-points. When considering the combined use of
quantitative information of multiple peptides, this shortcoming
might be tolerable at the protein level, but, especially for

exhibit significantly different turnover compared with the rate of the whole protein (see also supplemental Fig. S6B). The left panel shows
examples for mitochondrial proteins in which the N-terminal transit peptides shows a higher turnover than other peptides of the same protein.
The middle panel shows a similar analysis but for proteins with higher turnover C-terminal peptides. The right panel shows examples for
proteins in which one peptide displayed a strong difference in turnover compared with other peptides of the same protein which often but not
always encompass known modification sites. E, Fractional peptide labeling is depicted for cathepsin D (CTSD), a protein that is proteolytically
processed into a signal peptide, an activation peptide (blue circles), a light chain (red circles) and a heavy chain (gray circles). F, Fractional
peptide labeling is depicted for the fusion protein FAU. Peptides representing the Ubiquitin-like protein FUBI are shown in blue, peptides from
the 40S ribosomal protein S30 are shown in gray.
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single peptides, such rate estimations can be unreliable.
Therefore, we established a method that combines the quan-
titative precision of TMT-10plex labeling with pulsed SILAC
labeling of cells and evaluated the merits of this approach.
Direct comparisons illustrated the extent of the missing value
issue in the MS1 based quantification method. Absent inten-
sities across SILAC pairs and time-points reduced the number
of successfully determined protein labeling rate constants and
concomitantly decreased the quality of curve fits. This was the
case even though missing values were already minimized by
utilizing the automatic SILAC pair identification and the match
between runs function implemented in the MaxQuant soft-
ware (53) and even though less stringent criteria regarding
missing values were applied for the curve fitting of MS1
quantified label accumulation and clearance. Even though
TMT labeling effectively overcomes the issue of missing val-
ues and thus facilitates determination of turnover rates at
single peptide level, it is well known that quantification using
isobaric tags suffers from ratio distortion caused by coiso-
lated peptides. This drawback can have massive conse-
quences for rate determinations in particular if a light and a
heavy peptide are cofragmented because they would in gen-
eral show the exact opposite TMT intensity behavior. Indeed,
when applying MS2 based quantification of reporter ions,
severe ratio compression was detected often rendering de-
termined labeling rates plain invalid. This was also underlined
by the fact that, after correction of these turnover rates for cell
doubling, almost 50% of all quantified proteins had negative
half-lives which typically result either from an underestimation
of labeling rates or an overestimation of cell doubling rates. By
contrast, using a more extensive fractionation scheme and a
MS3 based TMT quantification strategy, ratio distortion was
minimized, and negative values were obtained for less than
3% of all proteins which is a very small fraction compared with
other published turnover studies. Moreover, turnover rates
obtained from this experimental workflow were in good agree-
ment with rates determined via the classical approach based
on MS1 quantification. Overall, we conclude that a MS3
based measurement is required for proper estimation of pro-
tein turnover when using a pulsed SILAC-TMT format.

In contrast to the standard pulsed SILAC approach, the
SILAC-TMT hyperplexing strategy provided a duplicate meas-
urement of turnover rates for all cases where both peptides of
a SILAC pair were fragmented. This helped to assess the
quality of rate estimations offering an additional level of con-
fidence within the same experiment. In fact, a comparison of
rates calculated from label increase and decay exposed
those, mainly high turnover peptides for which residual TMT
ratio compression affected determined rates. Although not
investigated in this study, this internal duplicate may be par-
ticularly helpful for the evaluation of turnover rates in non-
steady state dynamic or disturbed systems such as cell dif-
ferentiation or on cell treatments. The data normalization and
curve fitting functions used assumed that the average abun-

dance of all proteins does not change during the course of the
experiment (steady state) and, therefore, that the synthesis
rate of a protein equals its degradation rate. For this reason,
cell seeding densities and culture conditions were carefully
elaborated to assure that HeLa cells were no longer in lag
phase or not yet entering the stationary growth phase during
all SILAC pulses. Still, cells were cultured under somewhat
noncontinuous conditions as nutrients were depleted and
metabolites accumulated over the course of the experiment.
These factors can potentially cause cells to respond with a
change in abundance of certain proteins. Consequently, we
cannot preclude the possibility that the applied curve fitting
algorithms might not perfectly describe the detected labeling
behavior for all proteins.

In light of the above, an even greater challenge might be
posed when aiming to establish an appropriately adopted
model for labeling kinetics under nonsteady-state circum-
stances which would account for changes in protein abun-
dance during an experiment. In addition, when studying
dynamic systems, one would typically compare different con-
ditions eventually obtaining absolute quantitative information
about protein stabilities. In this regard, measured labeling
kinetics are not only dependent on protein degradation and
resynthesis, but are also critically influenced by sheer cell
doubling. However, cell doubling rates are likely to change
during cell treatments and might even be changing during a
pulse experiment under nonsteady-state conditions. This il-
lustrates the difficulties of such comparative experiments and
emphasizes the need for an accurate method to measure
temporally resolved labeling kinetics and the correct determi-
nation of cell doubling times which must be conducted under
the same culture conditions using identical cell batches.

In addition to steady-state assumptions, the applied expo-
nential synthesis and degradation models also presume that
the probability of a protein being degraded stays constant
over its life-time. This alone might not hold true for all proteins.
In fact, newly synthesized proteins have previously been re-
ported to show shorter half-lives before they enter a second,
more stable state (4). Recently, McShane et al. found that
about 10% of all proteins detected in their study show such
nonlinear degradation behavior (19). Many of these proteins
were members of protein complexes that were produced in
super-stoichiometric amounts substantiating the assumption
of protein stabilization because of complex formation which
has been termed cooperative stability (54). Besides, cotrans-
lational ubiquitination and rapid degradation of misfolded pro-
teins immediately after synthesis have also been demon-
strated (55, 56) suggesting that a biphasic degradation
behavior could also be a result of cellular quality control
mechanisms. For evaluation of nonlinear degradation kinetics,
an initial discrimination of newly and aged proteins would be
needed, for example via a combination of different pulse and
chase time-points (4) or a second metabolic label (19). Our
present study, as most other published turnover surveys,
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does not provide such resolution. Instead, our data describes
an average behavior of the different states of a protein likely
dominated by the turnover characteristics of the most abun-
dant one.

The systematic evaluation of replicate analyses, followed by
the assessment of the reproducibility for turnover estimations
attested a reliable precision of the SILAC-TMTM approach on
the protein as well as the peptide level. Moreover, the four cell
culture replicates did not only allow for testing of statistically
significant differences but should also increase the robust-
ness of combined turnover information from replicates. To the
best of our knowledge, the present study provides the most
comprehensive dataset on endogenous protein turnover. Still,
we point out that very quickly turned over proteins, particu-
larly those which are completely turned over within 1 h, will be
missing or underrepresented in the dataset simply because of
the choice of time-points and curve fitting constraints. Nev-
ertheless, the representative proteome coverage and high
quality of the data allowed us to reassess potential determi-
nants of protein stability which are inherent to the protein
itself.

Biological Implications—We observed a positive correlation
between protein abundance and turnover, but a negative
correlation between protein abundance and length which cor-
roborates findings by others (13, 14, 57). Making highly abun-
dant proteins stable and small might offer a route for cells to
avoid excessive energy consumption considering the costs
for resynthesis of degraded proteins. It should be noted
though that for high abundant proteins, even slow degrada-
tion rates will lead to degradation of many molecules. For the
60S ribosomal protein L18, for example, only 0.13% of all
molecules were determined to be degraded per hour (cor-
rected for cell doubling). But at a cellular abundance of on
average more than 1 Mio copies per cell, this still results in the
degradation and subsequent resynthesis of about one RPL18
molecule every 3 s illustrating the energy efforts for the main-
tenance of the default turnover of very stable, but high abun-
dant proteins. Protein size (length) has also been reported to
be associated with protein stability based on measurements
using fluorescently tagged proteins in mammalian cells and
yeast (7, 18). Although perhaps intuitive, as making longer
proteins should contribute to energy consumption during
translation, others subsequently argued that this is not the
case for endogenous proteins (11, 14) and our data confirms
that there is no global correlation of protein length with protein
stability.

However, we did observe a weak correlation of protein
half-lives with features of primary and secondary protein
structure in that polar amino acids, proline (which is known to
disrupt ordered structures), and random coils were associ-
ated with short-lived proteins, the latter confirming earlier
reports (11, 18). In addition, overall sequence and structure
differences appeared to explain, at least in part, the signifi-
cantly different stabilities of functionally distinct proteins. It

has been known for a long time that the hydrophobic effect
drives protein folding thereby reducing the surface area of
proteins and the solvent accessibility of hydrophobic amino
acids and leading to more ordered structures (58, 59). Con-
versely, a more polar and random protein structure with rel-
atively larger surface areas could possibly lead to a higher
accessibility for modifications and interactions which could
potentially induce protein degradation. This assumption
would be in line with the hypothesis of cooperative protein
stability because surfaces of proteins in complexes are also
less solvent exposed (54, 60). Indeed, it has been hypothe-
sized that disordered proteins with larger surface areas tend
to engage in more promiscuous interactions and are also
more likely to have pathological effects when overexpressed
(61). This higher dosage sensitivity of disordered proteins
would provide a conceptual explanation for the inverse cor-
relation of the content of random coils with protein abundance
which was observed in the present study. Overall, the ob-
served higher turnover rate of rather disordered proteins
could be a regulatory mechanism that protects cells from
toxic protein aggregates.

In terms of single amino acids, serine had the strongest
association with protein stability. One might speculate that its
destabilizing effect might in part be related to its involvement
in the formation of phosphodegrons, amino acid motifs that
are recognized by E3 ligases which ubiquitinylate and thus
mark respective proteins for degradation (62). In contrast,
charged amino acids did not appear to have any consistent
effect on endogenous protein turnover in our data. This is
somewhat contradictory to results of a fluorescence-based
genomic tagging study, which found glutamate, aspartate,
lysine and arginine to be enriched in stable proteins (7). This
again suggests that protein stabilities derived from genomic
tagging approaches investigating overexpressed proteins
might not be readily transferable to endogenous protein half-
lives.

Another factor that has been described to influence turn-
over rates is the localization of proteins. In the present study
only minor differences in half-lives of proteins assigned to
different cell locations were observed. However, we note that
potentially different turnover rates for the same protein spe-
cies localizing to various cell compartments could not be
distinguished in our work because whole cell extracts were
analyzed. A spatially resolved study would provide further
insights, especially considering recent observations that pro-
teins frequently localize to multiple cell compartments (40).
Indeed, after subcellular fractionation, Boisvert et al., de-
tected differing stabilities of the same proteins depending on
their localization (14). They detected complex subunits to
exhibit longer half-lives after complex assembly which has
recently been further supported by McShane et al. (19).

As mentioned earlier, the present study does not provide
the resolution to discriminate between free and assembled
complex units. However, a generally longer half-life of pro-
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teins that are part of complexes was detected supporting the
overall notion of a stabilizing effect of protein interactions. The
only significant exception to this rule was the NADH dehydro-
genase, complex I of the electron transport chain. Despite of
being highly abundant, members of this complex exhibited
rather short half-lives. We suspected that this may be related
to damage inflicted by oxidative stress, which was corrobo-
rated by experiments performed under rotenone induced,
oxidative stress conditions. Within the scope of this work, only
NADH dehydrogenase proteins were investigated, thus fur-
ther studies are required to clarify whether the turnover of
other respiratory chain proteins can also be regulated by other
forms of oxidative stress. This might be of interest for mem-
bers of complex III, as this is the second site of superoxide
formation in the electron transport chain. Surprisingly, not all
assayed subunits of respiratory chain complex I showed the
same significant increase in turnover on rotenone treatment
indicating that single subunits mainly located around the iron-
sulfur centers were substituted in the complex. Although a
selective exchange of single subunits has been described
before in other complexes (63, 64), the process and mecha-
nisms by which this occurs still remain to be determined.
Notably, half-lives of proteins within some complexes (also
including the respiratory chain complexes) showed major vari-
ations which might further support the principle of a selective
degradation of single complex subunits. However, another
explanation might be that measured turnover rates represent
an average of the degradation behavior of free and assembled
subunits. As already stated, these two states might possess
different stabilities and, in addition, not exhibit the same fre-
quencies for all complex members. Indeed, for NADH dehy-
drogenase, this presumption was substantiated by an ob-
served negative correlation of copies and half-lives (� �

�0.34) attesting a higher turnover for those subunits which
must feature a higher proportion of the free protein state.

Not only proteins within the same complex varied in their
stabilities, but even peptides assigned to the same protein
group differed more in their turnover rates than what could be
simply explained by technical variation. It has been stated
before that isoforms and differentially modified proteins can
exhibit different stabilities (12, 17, 20), but because of the
restricted quantification accuracy at the peptide level, these
kinds of analyses have hitherto largely been limited to com-
parisons of turnover dynamics of groups of peptides or the
simple comparison of proteins included in a modification da-
tabase to those not registered in this database. As we dem-
onstrated, using the pulsed SILAC-TMT multiplexing ap-
proach, an evaluation of turnover rates at the level of single
peptides is feasible. Among the peptides with significantly
different turnover times, several were constituents of distinct
splice variants potentially representing isoform specific pro-
tein turnover. For most of these examples, physicochemical
properties of annotated splice variants considerably differed
which further reinforces the notion that structure, hydropho-

bicity and abundance play a fundamental role in regulating
protein stability. How this is controlled at a molecular level,
however, remains largely elusive.

As noted above, certain sequence motifs termed degrons
have been found to serve as recognitions signals for E3 ubiq-
uitin ligases and are therefore connected to protein stability
(65–67). In addition to the aforementioned phosphodegrons,
it has been demonstrated that the identity of N-terminal res-
idues following the initiator methionine and N-terminal proc-
essing are associated with different protein stabilities (17, 68).
We also found that proteins possessing an N-terminal alanine
were significantly enriched in long-lived proteins, whereas
lysine and glutamate appeared to have a rather destabilizing
effect (1D enrichment analysis at 1% FDR employing protein
half-life data). However, the overall effect was small (enrich-
ment scores between �0.14 and 0.09) indicating a high var-
iation in the half-lives of proteins featuring the same N-termi-
nal residue. Regarding N-terminal processing, Gawron et al.
also detected a generally higher stability for peptides that
retained the initiator Met residue (iMet) before valine and
proline residues compared with those without it (17). Consist-
ent with this, the proline containing N terminus of 60S ribo-
some subunit biogenesis protein NIP7 was detected to be
less stable after iMet cleavage in our data. Conversely, the
eukaryotic translation initiation factor 3 subunit B (EIF3B) pro-
tein and the mitotic spindle-associated MMXD complex sub-
unit MIP18 (FAM96B), which contain an N-terminal Pro and
Val residue respectively, displayed the opposite behavior with
iMet containing peptides featuring a much higher turnover.
Overall, this indicates that effects of N-degrons do not nec-
essarily need to be consistent across proteins and that addi-
tional, and so far unknown, factors might be involved in N-
terminal regulation of protein stability.

With regard to potentially modified peptides, it needs to be
emphasized that the disappearance of SILAC labeled pep-
tides can either be caused by actual degradation of the pro-
teoform related to this detected peptide or by the peptide
entering another (modification) state. In other words, a higher
turnover rate of iMet containing peptides could also be related
to the rate of N-terminal proteolytic processing. The same
applies to other irreversible post-translational modifications
and in general to all cases where the detected peptide or
protein is lost from the pool of analyzed species as it is the
case, for example, for secreted proteins. Accordingly, it is
conceivable that the high turnover rate of the peptide encom-
passing His715 in EEF2 might also reflect the rate of diph-
thamide modification (51). Similarly, the turnover of peptides
comprising cleavage sites in CTSD and PSAP, might as well
illustrate the proteolytic process itself. In contrast, peptides
that are completely contained in a cleavage product should
represent its actual stability as observed for mitochondrial
transit peptides, the ubiquitin-like part of FAU and also the
light chain of CTSD. Two different products of CTSD which
are likely to be related to the full length protein and the
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product resulting from the cleavage of the secretion signal
peptide have previously been shown to differ in their turnover
rates (20). However, it has never been demonstrated that the
amino-terminal light chain of CTSD is less stable than the
carboxyl-terminal heavy chain. Because both chains are as-
sociated via hydrophobic interactions to form the active site of
CTSD (69), this potentially hints to a hitherto unknown control
mechanism of CTSD activity by regulation of the abundance
of the light chain via its higher turnover. Consequently, a
stabilization of the light chain alone would rapidly increase the
abundance of active CTSD.

A similar principle might underlie the regulation of BLM
activity. This helicase has been proposed to be involved in
DNA double strand repair (70) and described to be phos-
phorylated at Thr766 by the cell cycle regulating kinase CDK1
(48) which in turn has been demonstrated to be degraded on
genotoxic stress (71). Together with our observation of a
much higher stability of the Thr766 nonphosphorylated state,
this suggests that BLM half-life can be increased via dimin-
ished phosphorylation on Thr766 because of reduced CDK1
activity following DNA damage, providing a rapid means to
enhanced helicase activity for DNA repair. This illustrates that
a high “default” protein turnover, which at first sight might
appear to be disadvantageous from an energy efficiency point
of view, can enable a cell to respond more flexibly and rapidly
to altered cellular conditions via a post-translationally regu-
lated stabilization of required proteins and without the need to
induce transcription and translation. With respect to the fur-
ther identification of differentially turned over proteoforms, it
generally needs to be considered that, in bottom-up proteom-
ics, every peptide that is analyzed might include molecules
derived from various proteoforms. As a result, when compar-
ing single peptides to the whole protein, only modifications
which either very potently alter protein stability and/or exhibit
an overall high occupancy can be identified as turnover reg-
ulating PTMs. To overcome the limitation of proteoform-
shared peptides, a direct comparison of modified peptides to
their unmodified counterparts would prove beneficial in the
future.

In general, the transferability of turnover data obtained from
different biological systems remains a subject of debate. Al-
though a high species conservation of protein stability has
been claimed for mammalian proteins (12), we and others (14,
17) have also detected considerable discrepancies across
published turnover datasets. This might to some extent be of
technical nature and for example be related to different meas-
urement strategies, detection of different peptides for the
same protein which display distinct turnover rates, data qual-
ity or analysis approaches further underscoring the challenge
to reproducibly determine protein turnover. However, the
present study found turnover rates published from different
labs but for the same cell line to correlate better among each
other than across different cell lines which indicates some cell
line specific component affecting turnover. This might not be

surprising considering the reported relationships of protein
abundance, localization or interactions with protein stability.
Although features such as amino acid content and structure
will not differ for the same protein between various cell lines,
expression patterns, main splice variants and complex part-
ners might vary considerably and thus influence measured
protein stability. Moreover, it has to be noted that the HeLa
cells used in this study are highly aneuploid. It has already
been shown that proteins derived from amplified gene regions
often feature a higher degradation rate (19), which might
provide a further explanation for the observed discrepancies
across cell lines. In addition, we and others studied the dy-
namic state of the proteome in proliferating cells which might
not resemble protein stability in whole organisms where most
cells reside in a nondividing state. Nevertheless, our turnover
rates correlated well with data derived from arrested HeLa
cells (12). Overall, the degree of conservation of protein sta-
bility still needs to be determined more systematically. This
should also help to further illuminate how protein turnover is
regulated and even if protein turnover may differ to a great
extent across biological systems, some principles of protein
stability control via, for instance, post-translational modifica-
tions might still universally apply.

In summary, our pulsed SILAC-TMT proof-of-concept
study provides, to our knowledge, the most comprehensive
turnover dataset to date with high temporal resolution of
endogenously expressed, untagged proteins in a steady-state
cell system. Observed protein degradation rates spanned
more than four orders of magnitude demonstrating that pro-
tein turnover must be a highly regulated process. Although
multiple protein features were associated with turnover on the
protein level, correlations were often only weak which dimin-
ishes their overall predictive value and underscores the intri-
cacies of the regulatory processes. This is illustrated by an
even higher variation of degradation rates at the peptide level
(more than five orders of magnitude) demonstrating that post-
transcriptional and post-translational processing plays an es-
sential role in the dynamic regulation of protein stability and
thus revealing a new dimension in the functional control of life.
Future efforts should be directed toward the identification of
particularly fast turnover proteins in steady state-systems,
though these might be difficult to study not least because of
their presumed low abundance. However, these proteins
might be of interest considering that short-lived proteins are
enriched in molecules that regulate primary cell functions (like
transcription factors) and that quickly turned over proteins
bear a high chance of being effectively regulated in abun-
dance via post-translational stabilization. Finally, accurate
measurements of protein turnover on disturbing the steady-
state condition of a cell pose a challenge for the future, but
also holds tremendous potential for broadening our under-
standing of how cellular functions are regulated by adaptive
proteostasis.
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Mann, M. (2011) Systems-wide proteomic analysis in mammalian cells
reveals conserved, functional protein turnover. J. Proteome Res. 10,
5275–5284
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