
Pulmonary Endothelial Cell Apoptosis in Emphysema and Acute 
Lung Injury

Eboni Chambers1,2, Sharon Rounds1,2, and Qing Lu2,1

1Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA

2Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, 
USA

Abstract

Apoptosis plays an essential role in homeostasis and pathogenesis of a variety of human diseases. 

Endothelial cells are exposed to various environmental and internal stress and endothelial 

apoptosis is a pathophysiological consequence of these stimuli. Pulmonary endothelial cell 

apoptosis initiates or contributes to progression of a number of lung diseases. This chapter will 

focus on the current understanding of the role of pulmonary endothelial cell apoptosis in the 

development of emphysema and acute lung injury (ALI) and the factors controlling pulmonary 

endothelial life and death.
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4.1. Overview of Cell Death

4.1.1. Apoptosis

Apoptosis is a term first used by Kerr et al. in 1972 to describe a genetically determined 

energy-dependent active form of programmed cellular suicide. Apoptosis is characterized by 

well-ordered morphologic and molecular features including: cell surface exposure of 

phosphatidylserine, plasma membrane blebbing, cell shrinkage, cytoskeletal rearrangement, 

collapse of nuclear membrane, chromatin condensation, DNA fragmentation, and formation 

of membrane bound fragments known as “apoptotic bodies” (Kerr et al. 1972). Cell surface-

exposed phosphatidylserine acts as a chemoattractant for phagocytes to engulf and clear 

apoptotic bodies (Henson and Tuder 2008). Apoptosis serves to eliminate unwanted, aged, 

harmful, injured, or infected cells. Due to limited release of intracellular contents, minimal 

inflammation occurs (Savill et al. 2002). However, if ingestion of apoptotic bodies by 

monocytes, macrophages, and dendritic cells (efferocytosis) is impaired, inflammation and 

autoimmunity may be enhanced (Gaipl et al. 2006). Apoptosis plays an essential role in the 

maintenance of tissue homeostasis and embryonic development. Further, during embryonic 
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development, the timing of apoptosis is genetically determined. Excessive or inadequate 

apoptosis can, however, contribute to the pathogenesis of a variety of human diseases. 

Apoptosis is triggered by external stressors (e.g., death ligands, ultraviolet, and γ radiation) 

and/or internal stimuli (e.g., oxidants, DNA damage, increased Ca2+). Apoptosis is 

processed by two fundamental signaling pathways: the death receptor-mediated extrinsic 

pathway and the mitochondria-dependent intrinsic pathway (Olson and Kornbluth 2001; 

Thorburn 2004). Extrinsic pathway-activated caspase-8 can truncate and activate BID, thus 

activating the intrinsic pathway (Li et al. 1998). The details on regulation of apoptosis have 

been reviewed (Harrington et al. 2007; Subramanian and Steer 2010; Ola et al. 2011). 

Therapies targeting regulators of apoptosis have been used in preclinical and clinical trials 

for a variety of diseases including the treatment of cancers (Goldar et al. 2015).

4.1.2. Necrosis

Necrosis is a passive and caspase-independent cell death, characterized by cell swelling, 

mitochondrial degeneration, impaired ATP generation, lysosomal leakage, early rupture of 

plasma membranes, random fragmentation/degradation of DNA, and leakage of cellular 

contents into the surrounding environment (Henriquez et al. 2008). Necrosis is usually 

induced by nonspecific and non-physiological stress. Further, inhibition of caspases leads to 

necrosis (Henriquez et al. 2008). Due to release of potentially pro-inflammatory and pro-

immunogenic cellular contents into surrounding tissues, necrosis often induces 

inflammation, autoimmune responses, and is often seen concomitant with apoptosis.

4.1.3. Necroptosis

Necroptosis describes a type of active, regulated, and programmed necrosis dependent upon 

the serine/threonine kinase activity of receptor-interacting protein kinase 1 and 3 (RIPK1/3) 

(Linkermann and Green 2014). Necroptosis and apoptosis share several upstream signaling 

elements including death receptors caspase 8 and FLIP. When caspase-8 is inhibited, RIPK1 

is activated and forms an intracellular complex with RIPK3 to assemble the necrosome, 

leading to phosphorylation of mixed lineage kinase domain-like protein (MLKL) and 

ultimately cell death. Unlike apoptosis, necroptosis promotes harmful innate and adaptive 

immunologic responses by releasing damage associated molecular patterns (DAMPs). Thus, 

the reduction of necroptosis might be beneficial by minimizing the release of DAMPs and 

proinflammatory responses. Necroptosis is, however, a defense mechanism against invading 

microbes, including viral infections, and promotes the death and removal of virally infected 

cells. Therefore, blockade of necroptosis may increase susceptibility to viral infections 

particularly in patients with suppressed immunity. A number of inhibitors of necroptosis, 

such as necrostatin (specific inhibitor for RIPK1) and necrosulfonamide (specific inhibitor 

for human MLKL), have been described, providing potential therapeutic tools for treatment. 

Given the complex role of necroptosis, tissue and cell-specific targeting therapy is needed.

4.1.4. Endoplasmic Reticulum Stress-Induced Apoptosis

The endoplasmic reticulum (ER) is the site of posttranslational modifications and folding of 

secreted and membrane proteins. A variety of insults, such as ER Ca2+ chelators, reducing 

agents, glucose starvation, glycosylation antagonists, and protein mutations, can disrupt ER 

protein folding and lead to an accumulation of unfolded or misfolded proteins in the ER, 
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thus initiating ER stress (Schroder and Kaufman 2005). Cells respond to ER stress by the 

unfolded protein response (UPR). The UPR includes three arms: pancreatic ER kinase 

(PKR)-like ER kinase (PERK)/eukaryotic initiation factor 2α (eIF2α), transcription factor 6 

(ATF6), and inositol-requiring enzyme 1 (IRE1) (Schroder and Kaufman 2005). Through the 

UPR, cells attempt to restore ER homeostasis in order to maintain cell survival by inhibiting 

global protein synthesis (to reduce the loading of client protein to the ER for folding), 

enhancing ER protein folding capacity, and promoting ER-associated degradation of 

misfolded or unfolded proteins (Schroder and Kaufman 2005).

Prolonged ER stress causes cell death due to simultaneous activation of multiple apoptotic 

pathways by the UPR (Szegezdi et al. 2006). PERK-induced phosphorylation of eIF2α can 

lead to apoptosis by induction of pro-apoptotic transcription factor, C/EBP homologous 

protein (CHOP), which suppresses expression of anti-apoptotic protein, Bcl-2. Activated 

IRE1 activates c-Jun N-terminal kinase (JNK), which causes apoptosis by phosphorylation 

and thus inactivation of Bcl-2 and by phosphorylation and thus activation of pro-apoptotic 

protein, Bim. In addition, increased Ca2+ in the ER activates the death effector, Bax/Bak in 

the ER membrane, causing movement of Ca2+ from the ER to the mitochondria leading to 

mitochondrial-dependent apoptosis. ER membrane-localized caspase-12 (rodent) and 

caspase-4 (human) have also been implicated in ER-stress-induced apoptosis (Szegezdi et al. 

2003; Kim et al. 2006). Caspase-12/-4 are cleaved and thus activated by the Ca2+-dependent 

protease, m-calpain, by ER stress (Groenendyk and Michalak 2005). However, other studies 

have suggested that ER stress-induced apoptosis depends upon the apoptosome and not 

caspase-12/-4 (Obeng and Boise 2005; Di Sano et al. 2006).

Cell fate determination is not well understood when both survival (adaptive) and apoptotic 

pathways are simultaneously activated. It has been proposed that persistent ER stress causes 

apoptosis due to sustained induction of CHOP and instability of the adaptive pathway (Lin et 

al. 2007). It has also been suggested that cells survive mild ER stress because of the short 

half-life of pro-apoptotic proteins, compared to pro-survival proteins (Rutkowski et al. 

2006). Robust prolonged ER stress causes apoptosis due to the induction of CHOP excessive 

to its degradation (Rutkowski et al. 2006).

4.1.5. Autophagy-Associated Cell Death

Autophagy is a dynamic and continuous process by which cells dispose of damaged or 

unneeded cellular proteins or organelles (mitochondria) by self-digestion to generate 

intracellular nutrients. During physiological conditions, autophagy is suppressed by 

mammalian target of rapamycin (mTOR), thus inhibiting the expression of autophagy-

related genes (ATGs). Upon external or internal stress: including nutrient starvation, growth 

factor deprivation, hypoxia, ischemia, or mitochondrial aging, mTOR is inhibited thus 

initiating autophagy. Autophagy is a multistep sequential process, consisting of the 

formation of double-membrane vesicles that sequester unwanted cargo (proteins or 

mitochondria) in autophagosomes, fusion of autophagosomes with endosomes or lysosomes 

to form amphisomes or autolysosomes, and digestion of cargo by proteases (Hotchkiss et al. 

2009; Choi et al. 2013). Autophagy is an evolutionarily conserved housekeeping process that 

allows recycling of damaged proteins and organelles in order to maintain homeostasis. 
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Impairment in any step of autophagy causes cellular nutrient deficiency and/or accumulation 

of damaged proteins and organelles leading to cell death (Hotchkiss et al. 2009). Whether 

autophagy promotes cell survival or death may depend on cell type and setting (Gustafsson 

and Gottlieb 2008).

4.1.6. Assessments of Cell Death

Based on the unique characteristics of different types of cell death, a variety of assays have 

been developed to assess the specific types of cell death in vivo and in vitro. Different types 

of cell death may share common characteristics at different stages of cell death; therefore, it 

is often necessary to use multiple assays to confirm cell death. The details on the 

assessments of cell death have been extensively reviewed (Harrington et al. 2007; Henson 

and Tuder 2008; Lu and Rounds 2009; Klionsky et al. 2016) and will not be discussed in this 

review.

4.2. Pulmonary Endothelial Cell Apoptosis

Balance of endothelial cell survival and death is crucial for angiogenesis, vessel regression, 

and barrier function. Due to the unique position of endothelial cells (EC) at the interface of 

circulating blood and surrounding tissues, EC may be exposed to various environmental 

stress including: hypoxia, hyperoxia, oxidants, lipopolysaccharide (LPS), and cigarette 

smoke (CS), or internal stress including: adenosine, ceramide, tumor necrosis factor (TNF)-

α, and angiotensin II. Apoptosis is a pathophysiological consequence of these stimuli. 

However, a variety of biomechanical and biochemical factors are involved in the anti-

apoptotic processes. For example, physiological levels of shear stress and cyclic strain, 

vascular endothelial growth factor (VEGF), focal adhesion kinase (FAK), activated protein C 

(APC), and sphingosine 1-phosphate (S1P) protect EC against apoptosis. The pro- and anti-

apoptotic effects of these mediators have been reviewed (Harrington et al. 2007; Lu and 

Rounds 2009); therefore, this review will focus on the current understanding of endothelial 

pro-survival factors (VEGF and FAK) and apoptosis-inducing stress (adenosine, cigarette 

smoke, and LPS) in the lungs.

4.2.1. Vascular Endothelial Growth Factor

EC express abundant VEGF, which promotes EC survival and maintains normal alveolar 

structure (Voelkel et al. 2006). Expression of both VEGF and VEGF receptor type 2 

(VEGFR2) are decreased in lung tissue of patients with chronic obstructive pulmonary 

disease (COPD) (Kasahara et al. 2001). This diminished VEGF/VEGFR2 signaling is 

inversely associated with increased lung EC apoptosis (Kasahara et al. 2001). However, 

lung-targeted inhibition of VEGF or VEGFR2 causes alveolar septal cell apoptosis in mice 

(Kasahara et al. 2000; Tang et al. 2004). Our group has also shown that blockade of 

VEGFR2 causes cultured pulmonary artery EC apoptosis in vitro (Lu 2008). These results 

indicate that VEGF signaling is essential for lung EC survival.

4.2.2. Focal Adhesion Kinase

EC are linked to the basement membrane through binding of cell surface expressed integrins 

to extracellular matrix (ECM) proteins at focal adhesion complexes (FAC) (Hynes 1992). As 
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anchorage-dependent cells, EC undergo detachment-initiated apoptosis, referred to as 

anoikis, upon loss of adhesion to underlying basement membrane. FAK, a non-receptor 

tyrosine kinase and an essential component of FAC, is activated upon integrin engagement of 

ECM (Guan et al. 1991; Guan and Shalloway 1992; Parsons 2003). FAK provides survival 

signaling for anchorage-dependent cells such as cultured fibroblasts (Hungerford et al. 

1996). Similarly, EC isolated from FAK-null embryos undergo apoptosis (Ilic et al. 1995, 

2003). Endothelium-specific deletion of FAK (Cre/FAKflox) is embryonic lethal and causes 

EC apoptosis (Shen et al. 2005; Braren et al. 2006). Guan and colleagues (Guan et al. 1991; 

Guan and Shalloway 1992) have demonstrated that FAK tyrosine kinase activity is essential 

for FAK activity. FAK promotes cell survival by recruiting proteins containing SH2 domain 

including Src and phosphatidylinositol-3-kinase (PI3K) (Schaller et al. 1994). The activated 

PI3K recruits and activates Akt (Khwaja et al. 1997), which promotes cell survival via 

phosphorylation and thus inhibition of pro-apoptotic protein, Bad (Kennedy et al. 1997). 

FAK also promotes survival by activation of NF-κB and ERK signaling pathways (Huang et 

al. 2007). Additionally, FAK can translocate to the nucleus and inhibit p53 transcriptional 

activation and enhance p53 degradation, leading to protection against apoptosis (Ilic et al. 

1998).

4.2.3. Adenosine

Adenosine is generated from adenosine-5′-triphosphate (ATP) and adenosine-5′-

diphosphate (ADP) by extracellular ecto-5′-nucleotidases, CD39 and CD73, and is 

metabolized by adenosine deaminase (ADA). Extracellular adenosine exists in low 

concentrations (40–600 nM) under physiological conditions and is increased due to platelet 

degranulation, cell necrosis, activation of CD39 and/or CD73, or inhibition of ADA 

(Thompson et al. 2004; Eltzschig et al. 2006; Volmer et al. 2006; Eckle et al. 2007). 

Increased extracellular adenosine can interact with cell surface G-protein coupled adenosine 

receptors (ARs) (Feoktistov et al. 2002; Wyatt et al. 2002; Umapathy et al. 2010). Activation 

of adenosine receptors, specifically A3-mediated signaling, has been shown to protect 

against apoptosis and tissue injury (Rivo et al. 2004; Chen et al. 2006; Matot et al. 2006).

However, sustained increased adenosine in ADA-deficient mice enhances alveolar cell 

apoptosis (Zhou et al. 2009). We have also shown that prolonged exposure to adenosine 

causes apoptosis of cultured lung EC (Lu et al. 2013). The injurious effect of adenosine is 

mediated by equilibriative nucleoside transporters. EC predominantly express equilibriative 

nucleoside transporter 1 (ENT1) and ENT2 (Archer et al. 2004). Upon sustained exposure, 

adenosine may be taken up into cells by ENTs. Further, similar to other G-protein coupled 

receptors, prolonged engagement of ARs causes receptor desensitization and internalization 

(Fredholm et al. 2001). This concept is supported by findings that sustained increased 

adenosine in ADA-deficient mice enhances alveolar cell apoptosis via a mechanism 

independent of adenosine receptor, A2BR (Zhou et al. 2009). In addition, sustained exposure 

to adenosine causes endothelial cell apoptosis; this effect is prevented by inhibition of 

ENT1/2 however exacerbated by inhibition of either A2A R or A2BR (Lu et al. 2013). These 

results are consistent with the concept that ENT1/2-facilitated intracellular adenosine uptake 

and subsequent metabolism mediates adenosine-induced EC apoptosis, whereas AR-

mediated signaling limits apoptosis (Simonis et al. 2009).
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Once intracellular, adenosine reacts with homocysteine and generates S-adenosyl-L-

homocysteine (SAH) by inhibition of SAH hydrolase (SAHH). SAH induces endothelial cell 

apoptosis independent of homocysteine (Sipkens et al. 2012). SAH is also a product of 

carboxyl methylation with S-adenosyl-L-methionine (SAM) as a methyl donor. We have 

demonstrated that exogenous adenosine causes lung EC apoptosis via increased ratio of 

intracellular SAH to SAM (Rounds et al. 1998). The increased ratio of SAH to SAM 

suppresses carboxyl methyltransferase activity. Isoprenylcysteine-O-carboxyl 

methyltransferase (ICMT) is a major methyltransferase for carboxyl methylation of small 

GTPase, Ras (Clarke 1992), which is a posttranslational modification essential for 

membrane localization and activation of Ras (Boivin and Beliveau 1995; Fleming et al. 

1996; Kranenburg et al. 1997; Michaelson et al. 2001). We have shown that exogenous 

adenosine causes lung EC apoptosis in part by ICMT inhibition-mediated inhibition of Ras 

carboxyl methylation and activation (Kramer et al. 2003).

SAM is a precursor to glutathione (GSH) and is synthesized exclusively in the cytosol 

(Reytor et al. 2009) and also transported into mitochondria (Agrimi et al. 2004). Exogenous 

SAM has been shown to elevate GSH levels in vivo and prevent alcohol-induced 

mitochondrial oxidative stress and dysfunction as well as liver and lung injury in animal 

models (Holguin et al. 1998; Bailey et al. 2006; Cederbaum 2011). p38 is a redox-sensitive 

protein (Matsuzawa and Ichijo 2008). Reactive oxygen species (ROS)-mediated p38 

activation has been implicated in extracellular ATP-induced macrophage apoptosis (Noguchi 

et al. 2008) and H2O2-induced EC apoptosis (Machino et al. 2003). Activation of p38 has 

also been implicated in homocysteine-induced apoptosis of endothelial progenitor cells (Bao 

et al. 2010) and cardiomyocytes (Wang et al. 2011). We have shown that sustained exposure 

to exogenous adenosine causes mitochondrial defects and endothelial apoptosis via 

mitochondrial oxidative stress-induced activation of p38 (Lu et al. 2012, 2013). Active p38 

causes apoptosis by direct phosphorylation, and thus inhibition of Bcl-2 (De Chiara et al. 

2006; Farley et al. 2006) and by increasing mitochondrial translocation of Bax (Capano and 

Crompton 2006). Future studies are needed to address whether sustained adenosine exposure 

reduces mitochondrial SAM, thus leading to mitochondrial oxidative stress via increased 

ratio of SAH to SAM in the cytosol.

In summary, adenosine displays seemingly paradoxical effects on lung EC life and death. 

Acute exposure protects EC against apoptosis via AR-mediated signaling, whereas 

prolonged exposure causes EC apoptosis via ENT1/2-mediated intracellular adenosine 

uptake and subsequent metabolism and mitochondrial oxidative stress.

4.2.4. Cigarette Smoke

Lung EC apoptosis is significantly elevated in human smokers with emphysema (Kasahara 

et al. 2001) and mice with mild emphysema caused by CS exposure (Sakhatskyy et al. 

2014). We (Sakhatskyy et al. 2014) and others (Tuder et al. 2000; Damico et al. 2011) have 

shown that CS extract (CSE) causes cultured lung macro- and microvascular EC apoptosis in 

vitro. The mechanisms underlying CS-induced lung EC apoptosis are rather complicated and 

involve FAK, p53, UPR, and autophagy.
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FAK is a survival signal for anchorage-dependent cells (Hungerford et al. 1996). Tyrosine 

397 phosphorylation of FAK is essential for its activation (Schaller et al. 1994). CSE 

decreases FAK phosphorylation at tyrosine-397 in an oxidative stress-dependent manner (Lu 

et al. 2011)—essential in CSE-induced EC apoptosis (Sakhatskyy et al. 2014). FAK also 

promotes cell survival via suppression of p53 (Ilic et al. 1998). Further, activation of p53 has 

contributed to CSE-induced pulmonary EC apoptosis (Damico et al. 2011). Thus, we 

speculate that CSE causes lung EC apoptosis via oxidative stress-mediated inhibition of 

FAK and subsequent activation of p53.

The UPR is an important mechanism of the elimination of ER stress and enhanced cell 

survival (Schroder and Kaufman 2005). The UPR is activated in lung tissue of smokers who 

do not have emphysema (Kelsen et al. 2008). The UPR is also activated by CSE in cultured 

human bronchial epithelial cells and 3T3 fibroblasts (Hengstermann and Müller 2008; 

Jorgensen et al. 2008) and cultured pulmonary EC (Sakhatskyy et al. 2014). Using mouse 

models of CS exposure, we have demonstrated a strong link between impairment of eIF2α 
signaling with lung EC apoptosis (Sakhatskyy et al. 2014). Future studies are necessary to 

determine if impaired eIF2α signaling contributes to lung EC apoptosis.

Autophagy is increased in response to deficiencies in extracellular and intracellular 

nutrients. Enhanced autophagy is observed in the lung tissue of smokers with emphysema 

(Chen et al. 2008). Autophagy is also activated by CSE exposure in lung epithelial cells and 

fibroblasts (Kim et al. 2008) as well as lung EC (Sakhatskyy et al. 2014). Increased 

autophagy has contributed to CS-induced alveolar epithelial cell apoptosis in mice (Chen et 

al. 2010). In contrast, increased autophagy has also been shown to protect against pulmonary 

endothelial cell apoptosis induced by cadmium, a component of cigarette smoke (Surolia et 

al. 2015). We have reported that autophagy was not altered in the lung tissue of a mouse 

strain susceptible to CS-induced lung EC apoptosis and emphysema (Sakhatskyy et al. 

2014). The role of autophagy in CS-induced apoptosis may be dependent on cell types and 

stimuli.

Due to open structure and limited repair capacity, mitochondrial DNA is 50 times more 

sensitive to oxidative damage than nuclear DNA (Yakes and Van Houten 1997). Oxidative 

stress-induced mitochondrial DNA damage triggers mitochondrial dysfunction and apoptosis 

of lung EC (Ruchko et al. 2005). The role of mitochondrial DNA damage in CS-induced 

lung EC apoptosis remains to be studied.

4.2.5. Lipopolysaccharide

LPS, also known as lipoglycans or endotoxin, is a component of the outer envelope of gram-

negative bacteria and elicits pro-inflammatory responses. It is well established that LPS-

induced EC activation, dysfunction, and apoptosis play an important role in bacterial sepsis 

and endotoxemia. In the blood circulation, LPS binds to soluble CD14 via LPS-binding 

protein (LBP), followed by engagement of toll-like receptor (TLR)-4. This engagement 

results in the recruitment of adaptor, myeloid differentiation factor 88 (MyD88), and 

subsequent activation of interleukin (IL)-1 receptor associated kinase (IRAK)-1, TNF 

receptor associated (TRAF)-6, NF-kB, and MAPK pathways (Desch et al. 1989; Wang et al. 

2001; Bannerman and Goldblum 2003).
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NF-kB has been shown to transcriptionally upregulate anti-apoptotic genes such as IAP-1, 

IAP-2, and FLIP (LaCasse et al. 1998; Bannerman et al. 2004). However, suppression of 

NF-kB has minimal effect on LPS-induced EC apoptosis (Zen et al. 1999). This is due to 

FADD/MyD88-dependent negative regulation of LPS-induced NF-kB activation (Martin et 

al. 2005; Zhande et al. 2007); Fas is no longer able to activate MyD88, thus stimulating LPS/

TLR4/NF-kB signaling (Martin et al. 2005). LPS also stimulates MyD88-independent 

signaling of endothelial apoptosis (Dauphinee and Karsan 2006). Heterotrimeric Gi/Go 

proteins play a role in LPS-induced TLR signaling independent of the MyD88-dependent 

pathway, leading to MAPK, Akt, and IFN activation of endothelial cells (Dauphinee et al. 

2011). Whether LPS-induced stimulation of heterotrimeric G coupled proteins plays a role 

in EC apoptosis is unknown. LPS can activate the BID-dependent intrinsic pathway of 

apoptosis in lung EC (Wang et al. 2007). Conversely, LPS has been shown to upregulate 

mRNA of anti-apoptotic molecules, thus preventing EC apoptosis (Hu et al. 1998). LPS-

induced intrinsic apoptosis and cytoprotection in disease states are not well understood and 

require further study.

4.3. Pulmonary EC Apoptosis in Lung Diseases

Apoptosis has been shown to ameliorate or exacerbate lung injury. Pulmonary EC apoptosis 

plays an important role in physiological processes including vasculogenesis and 

angiogenesis during lung development. Pulmonary EC apoptosis may also initiate or 

contribute to the progression of a number of lung diseases, as reviewed elsewhere 

(Harrington et al. 2007; Lu and Rounds 2009). In this review, we will focus on the role of 

pulmonary EC apoptosis in development of emphysema and Acute Lung Injury (ALI).

4.3.1. Emphysema

Chronic obstructive pulmonary disease (COPD), a progressive respiratory condition 

consisting of emphysema and chronic bronchitis, is the fourth leading cause of death 

worldwide and may become the third leading cause of death by 2030 based on prediction by 

the World Health Organization (Khaltaev 2005). The prevalence of COPD in the United 

States in 2013 was estimated to be 6.4% (15.7 million adults) (Wheaton et al. 2015). COPD 

is also an important contributor of mortality and disability in the United States (Murray et al. 

2013). Further, COPD-related medical costs were estimated at $32 billion in the USA in 

2010 with an additional $4 billion in costs due to absence from work (Ford et al. 2015). α1-

antitrypsin (AAT) deficiency and other genetic predispositions contribute to the development 

of COPD (Sandford et al. 1997). However, tobacco smoke remains the leading cause of this 

devastating disease. Indoor air pollution (such as biomass fuel used for cooking and 

heating), outdoor air pollution, and occupational dusts and chemicals also increase the risk 

of COPD (Diette et al. 2012). Although the pathology of COPD has been well defined, the 

pathogenesis of the disease initiation and progression is not understood. Currently, there is 

no specific treatment available to reverse COPD.

Emphysema, a common and debilitating manifestation of COPD, is characterized by 

alveolar airspace enlargement, loss of alveolar capillary septa, and resultant impaired gas 

exchange. Several hypotheses have been proposed to explain alveolar wall damage in 
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emphysema. Protease/anti-protease imbalance has been accepted as a major mechanism for 

emphysematous lung destruction (Shapiro 1995, 1999; Shapiro et al. 2003; Taraseviciene-

Stewart and Voelkel 2008). It is believed that neutrophil elastase and macrophage matrix 

metalloproteinases enzymatically degrade elastin in alveolar septa, leading to emphysema 

(Taraseviciene-Stewart and Voelkel 2008). This notion is supported by findings that patients 

with genetic deficiency of the anti-protease, AAT, develop emphysema (No Authors 1997).

Additionally, intra-tracheal instillation of proteases causes an emphysema phenotype in rats 

(Pastor et al. 2006). However, less than 5% of emphysema patients have AAT deficiency. 

Inflammatory cell infiltration is also seen in human emphysema. However, lung 

inflammation in pneumonia or acute lung injury does not usually result in emphysema. This 

suggests that inflammation may not be sufficient by itself for the development of 

emphysema. Oxidant stress and immunological injury also play a role in the pathogenesis of 

emphysema (Taraseviciene-Stewart and Voelkel 2008). Emerging evidence has highlighted a 

role of apoptosis, particularly EC apoptosis, in the initiation and progression of emphysema 

(Kasahara et al. 2000, 2001; Giordano et al. 2008).

Lung tissue from patients with emphysema displays increased apoptosis of both epithelial 

and endothelial cells in the alveolar septa (Kasahara et al. 2001; Imai et al. 2005). Bcl-2 

single-nucleotide polymorphisms have been associated with severity of human emphysema 

(Sata et al. 2007). We have shown that lung EC apoptosis is elevated in a mouse model of 

emphysema induced by CS exposure (Sakhatskyy et al. 2014). Interestingly, induction of 

alveolar cell apoptosis by intratracheal instillation of the active caspase-3 causes emphysema 

in rats (Aoshiba et al. 2003). Additionally, inhibition of VEGF signaling causes alveolar 

septal cell apoptosis and emphysema in mice (Kasahara et al. 2000; Tang et al. 2004). 

Similarly, intra-tracheal instillation of C12 ceramide triggers alveolar endothelial and 

epithelial cell apoptosis and emphysema-like changes in mice (Petrache et al. 2005). Further, 

lung EC-targeted induction of apoptosis led to emphysema and enhanced oxidative stress 

and lung inflammation (Giordano et al. 2008). More importantly, inhibition of apoptosis 

using pan-caspase inhibitors prevented the emphysematous changes induced by either 

ceramide (Petrache et al. 2005) or blockage of VEGF signaling (Kasahara et al. 2000; Tang 

et al. 2004). These results support a central role of lung EC apoptosis in the development of 

emphysema. Anti-protease, AAT, inhibits CSE-induced pulmonary EC apoptosis in vitro by 

direct interaction with caspase-3 (Aldonyte et al. 2008). Overexpression of AAT also inhibits 

lung endothelial apoptosis and attenuates emphysema caused by either active caspase-3 or 

blockade of VEGF signaling (Petrache et al. 2006). These studies suggest that lung EC 

apoptosis is a critical step in the pathogenesis of emphysema.

Inhibition of FAK causes emphysema-like change in rat lungs (Mizuno et al. 2012). We have 

shown that CS exposure for 3 weeks enhanced pulmonary EC apoptosis and decreased FAK 

activity in mice susceptible to CS-induced emphysema (Sakhatskyy et al. 2014). Further 

studies are necessary to address whether reduced FAK activity contributes to CS-induced 

lung EC apoptosis and emphysema in humans in vivo. We have shown that CS exposure 

increases lung tissue adenosine levels in mice, an effect associated with lung EC apoptosis 

and early emphysema (Lu et al. 2013). Sustained increased adenosine in ADA-deficient 

mice also enhances alveolar cell apoptosis and causes emphysema in mice (Zhou et al. 
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2009). ADA expression and activity are reduced in the lung of smokers with COPD (Zhou et 

al. 2010). Whether chronically elevated adenosine contributes to CS-induced lung 

endothelial cell apoptosis and development of emphysema remains to be investigated.

Ceramide is upregulated in emphysematous lungs of patients and animal models, as well as 

in cultured pulmonary EC exposed to CSE (Petrache et al. 2005). This increase in ceramide 

is associated with enhanced alveolar cell apoptosis (Petrache et al. 2005). Interestingly, 

intratracheal instillation of C12 ceramide triggers airspace enlargement and apoptosis of 

alveolar EC and type II epithelial cells (Petrache et al. 2005). Further, inhibition of de novo 

ceramide synthesis significantly attenuated lung cell apoptosis and emphysema induced by 

VEGFR2 blockade (Petrache et al. 2005). These results suggest that ceramide is also an 

important mediator of alveolar cell apoptosis and emphysema (Petrache et al. 2005).

Only 10–15% of smokers develop emphysema. The mechanism underlying increased 

susceptibility to emphysema remains unclear. The UPR is elevated in the lungs of smokers 

without evidence of emphysema (Kelsen et al. 2008). Nrf2, a redox-sensitive, antioxidant 

transcription factor, is activated by eIF2α, a branch of UPR (Digaleh et al. 2013). Nrf2 

knockout mice demonstrate enhanced susceptibility to cigarette smoke-induced emphysema 

in comparison to wild-type mice (Iizuka et al. 2005). We have shown that active eIF2α was 

significantly reduced in the lungs of AKR mice with mild emphysema induced by CS 

(Sakhatskyy et al. 2014). Future studies are needed to address whether Nrf2 is reduced in the 

lungs and whether inadequate induction of Nrf2 contributes to development of emphysema.

Autophagy is significantly increased in lung tissue of patients with COPD; the degree of 

autophagy positively correlates with the clinical severity of disease (Chen et al. 2008). 

Increased autophagy has contributed to CS-induced alveolar epithelial cell apoptosis and 

emphysema in mice (Chen et al. 2010; Mizumura et al. 2014). In contrast, increased 

autophagy protects against pulmonary endothelial cell apoptosis and emphysema induced by 

cadmium, a component of cigarette smoke (Surolia et al. 2015). We have reported that 

autophagy was not altered in lung tissue of a mouse strain with increased lung EC apoptosis 

and mild emphysema induced by CS (Sakhatskyy et al. 2014). Thus, the role of autophagy in 

regulating lung EC apoptosis and early onset of CS-induced emphysema needs further study.

4.3.2. Acute Lung Injury

ALI and its more severe form, acute respiratory distress syndrome (ARDS), are life-

threatening disorders clinically characterized by severe hypoxemia and pulmonary bilateral 

infiltrates. In the United States, ARDS affects approximately 190,000 patients annually 

(Rubenfeld et al. 2005). ARDS accounts for 3.6 million associated hospital days (Rubenfeld 

et al. 2005; Adhikari et al. 2010). The global impact of ARDS has been difficult to assess 

due to varying definitions of the broad clinical phenotypes and limited data. Thus, ARDS 

remains an underreported disease of treated incidence, as opposed to actual incidence, in the 

undeveloped world (Buregeya et al. 2014). Although the mortality rate of ARDS has 

decreased to around 30–40% due to lung protective ventilation strategies (Amato et al. 1998; 

Villar et al. 2006), ARDS remains a deadly syndrome without a specific cure. Currently, 

there are no pharmacological interventions available to reduce the mortality of ARDS.
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Sepsis, bacterial and viral pneumonia, and trauma remain the leading risk factors for the 

development of ARDS. Emerging evidence from epidemiologic studies, animal models, and 

cultured cell models have suggested that both active and passive cigarette smoke exposure 

modifies the susceptibility for development of ALI and ARDS (Iribarren et al. 2000; Calfee 

et al. 2011; Lu et al. 2011, 2013; Hsieh et al. 2014; Borgas et al. 2016).

The pathophysiology of ARDS is characterized by increased permeability of the alveolar-

capillary barrier, influx of protein and inflammatory cell-rich fluid into the alveolar space, 

attenuated gas exchange between alveolar-capillary barrier, and dysregulated inflammation. 

Increased permeability of the microvascular endothelium and alveolar epithelium promotes 

edema formation, and this concept has been accepted as an important mechanism for the 

initiation of ARDS (Matthay et al. 2012). It is well established that polymorphonuclear cells 

(PMN) and immunological injury also play a significant role in the pathogenesis of ARDS 

(Perl et al. 2011). PMN accumulation is observed in the broncheoalveolar lavage fluid 

(BALF) (Pittet et al. 1997) and lung biopsies of early ARDS patients (Bachofen and Weibel 

1977, 1982). Further, neutrophilia has been correlated with exacerbation of sepsis-induced 

ALI (Steinberg et al. 1994). However, ARDS may also develop in neutropenic patients, and 

neutrophil activation and migration may be observed in human lungs without injury (Martin 

et al. 1989; Downey et al. 1999). This suggests that inflammation may not be sufficient by 

itself for the development of ARDS.

Emerging evidence has suggested a role of pulmonary cell apoptosis in the initiation and 

progression of ARDS. The death receptor, Fas, and its ligand, FasL system, is an important 

death receptor-mediated extrinsic pathway of apoptosis. FasL is expressed and released by 

inflammatory cells, including neutrophils and lymphocytes, whereas Fas is expressed on the 

surface of lung EC, alveolar and bronchial epithelial cells, Clara cells, and alveolar 

macrophages. Fas and FasL are increased in pulmonary edema fluid and in lung tissue of 

patients with ARDS (Albertine et al. 2002). Silencing of Fas/FasL reduces lung cell 

apoptosis and ALI in a mouse model of sepsis (Perl et al. 2005, 2007). Soluble FasL (sFasL) 

is a cleaved form of FasL by metalloproteinases and is increased in BAL fluid of patients 

with ARDS (Matute-Bello et al. 1999). sFasL released from inflammatory cells is capable of 

inducing lung epithelial cell apoptosis (Matute-Bello et al. 1999). The role of Fas/FasL in 

lung EC apoptosis is not yet clear. Robust pulmonary endothelial cell apoptosis has been 

observed in patients with severe ARDS (Abadie et al. 2005) and in mice with ALI induced 

by LPS (Fujita et al. 1998). Sepsis-induced ARDS in mice indicates evidence for pulmonary 

microvascular endothelial cell death as a cause of barrier dysfunction and edema (Gill et al. 

2014, 2015). Inhibition of apoptosis using a broad-spectrum caspase inhibitor prolonged 

survival of mice exposed to LPS (Kawasaki et al. 2000). Since apoptosis of alveolar 

endothelial, epithelial, and interstitial inflammatory cells occurs during ALI, future studies 

are needed to address the role of apoptosis of specific cells in initiation of ALI/ARDS.

Apoptosis has been thought of to be a non-inflammatory means of removing injurious cells, 

thus facilitating lung repair. However, there is increasing evidence indicating that Fas/FasL-

mediated lung epithelial apoptosis results in release of pro-inflammatory cytokines (such as 

TNF-α and TGF-β1), leading to inflammation and progression from ARDS to fibrosis 
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(Chapman 1999). Whether pulmonary endothelial cell apoptosis occurs during initiation or 

progression of pulmonary fibrosis is unknown.

The role of necroptosis in development of ARDS is yet to be determined. Of interest, a 

recent study of blood transfusion-related acute lung injury indicates that banked red blood 

cell (RBC) transfusion enhances susceptibility to lung inflammation and ARDS in critically 

ill transfused patients and mice through necroptosis of lung EC and subsequent release of 

DAMPs (Qing et al. 2014).

4.4. Conclusions and Perspectives

Cell life and death are tightly regulated by survival signaling and death inducing programs. 

Pulmonary EC apoptosis significantly contributes to the development of emphysema and 

ALI/ARDS, as depicted in Fig. 4.1. Pan-caspase inhibitors have been used to inhibit lung 

cell apoptosis and prevent emphysema and ALI in animal models. However, use of such 

drugs to treat apoptosis-associated lung diseases may be problematic due to breakdown of 

tissue homeostasis and activation of necroptosis (Linkermann and Green 2014). The 

therapeutic potential of drugs that modulate cell death is dependent upon cell type-specific, 

tissue-specific, and vascular bed-specific actions. Thus, drugs acting locally and with cell 

type specificity are needed. Areas where research is needed include: (1) apoptosis 

susceptibility of different EC (conduit artery versus microvascular versus progenitor); (2) 

role of apoptosis of specific lung cells in initiation and/or progression of lung diseases; (3) 

role of necrosis and necroptosis in development of lung diseases, such as emphysema and 

ALI.
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Fig. 4.1. Signaling pathways to CS-induced pulmonary endothelial cell apoptosis
Multiple signaling pathways are involved in CS-induced pulmonary endothelial cell 

apoptosis. (1) CS reduces VEGF/VEGFR2 signaling, leading to induction of ceramide and 

consequent apoptosis; (2) CS reduces FAK activation, leading to activation of p53 and 

inhibition of PI3K/Akt signaling, which results in apoptosis; (3) CS causes mitochondrial 

oxidative stress and mitochondrial dysfunction, leading to apoptosis; (4) CS elevates 

adenosine levels, leading to inactivation of Ras and mitochondrial oxidative stress, resulting 

in apoptosis; (5) CS impairs unfolded protein response, leading to apoptosis
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