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Abstract

Background: Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic
differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism
(SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been applied in livestock,
although few studies have focused on Holstein cattle.

Results: We describe 191 CNV detected using intensity data from over 700,000 SNP genotypes generated with the
BovineHD Genotyping BeadChip (lllumina, San Diego, CA) in 528 Holstein cows. The CNV were used for GWAS analysis
of 10 important production traits of 473 cattle related to feed intake, milk quality, and female fertility, as well as 2
composite traits of net merit and productive life. In total, we detected 57 CNV associated (P < 0.05 after false discovery
rate correction) with at least one of the 10 phenotypes. Focusing on feed efficiency and intake-related phenotypes of
residual feed intake and dry matter intake, we detected a single CNV associated with both traits which overlaps a
predicted olfactory receptor gene OR2A2 (LOC787786). Additionally, 2 CNV within the RXFP4 (relaxin/insulin like family
peptide receptor 4) and 2 additional olfactory receptor gene regions, respectively, were associated with residual feed
intake. The RXFP4 gene encodes a receptor for an orexigenic peptide, insulin-like peptide 5 produced by intestinal L
cells, which is expressed by enteric neurons. Olfactory receptors are critical for transmitting the effects of odorants,
contributing to the sense of smell, and have been implicated in participating in appetite regulation.

Conclusions: Our results identify CNV for genomic evaluation in Holstein cattle, and provide candidate genes, such as
RXFP4, contributing to variation in feed efficiency and feed intake-related traits. These results indicate potential novel
targets for manipulating feed intake-related traits of livestock.
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Background

Apart from single nucleotide polymorphism (SNP), copy
number variation (CNV) is another type of genetic marker
that potentially affects animal phenotype [1]. These CNV
consist of variation of genome sequences ranging from 50
to 5 million base pairs [2]. Compared to SNP, CNV show
more drastic effects on gene expression and function, such
as altering gene dosage, disrupting coding sequence, or
perturbing long-range gene regulation [3]. However, until
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recently, the effective use of CNV as genetic markers for
association with diseases and economic phenotypes has
been impaired by difficulties in accurately detecting CNV
and their boundaries, which vary among individuals [4, 5].
To date, especially within the livestock genomics field,
most studies have focused exclusively on CNV discovery,
and only a few studies and software have attempted to use
comparative genomics methods to detect possible
phenotype-related CNV in livestock using genome-wide
association study (GWAS) [5-7].

Numerous methods have been used to detect CNV,
ranging from traditional cytogenetic approaches, such as
karyotyping and fluorescence in situ hybridization, to
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genome-wide in silico CNV prediction [8, 9]. Substantial
improvements have been made recently to the accuracy
and throughput of CNV discovery. For example, the ap-
plication of microarray and next-generation sequencing
technologies makes it possible to compare CNV among
populations at a whole-genome scale, and sequencing
methods offer opportunities to identify CNV in highly
complex repetitive regions of the genome [10, 11]. How-
ever, neither sequencing methods are economical or
widely used for large population analysis, including
GWAS. Thus, the use of SNP chips is now common-
place for SNP-based GWAS studies, including studies of
large populations of livestock. As a result, software pack-
ages have been developed and published for CNV pre-
diction from SNP chip data, such as the SNP &
Variation Suite (SVS; Golden Helix, Bozeman, MT),
which facilitate a low-cost approach to detect common
CNV within a population for GWAS analysis [5, 6].

Because Holsteins are the largest milk-producing dairy
breed worldwide, GWAS examining reproduction,
growth, milk production, and disease resistance traits
among dairy cattle have been performed often in the
Holstein breed. In these studies, SNP markers were used
almost exclusively, whereas studies using CNV markers
for GWAS are rare. For instance, Xu et al. [6] character-
ized 34 CNV significantly associated with milk produc-
tion traits using a CNV inferred from the BovineSNP50
array (Illumina, San Diego, CA), and Duran Aguilar et
al. [12] applied CNV-based GWAS for milk somatic
score using the BovineHD Genotyping BeadChip (Illu-
mina) containing over 777 K SNP [6, 12]. In a third
study of Spanish Holsteins, 90 segregating CNV were
identified from BovineSNP50 array hybridization signals
and studied for their association with 7 production and
conformation traits [7]. For other cattle breeds and live-
stock species, such as beef cattle and pigs, several
GWAS have been conducted using CNV [5, 13].

Here, we applied CNV detection and GWAS analysis
for 10 important production-related phenotypes of dairy
cattle, including those related to feed intake, milk com-
position, female fertility, and productive life, as well as
net merit. These studies were conducted using geno-
types generated with the BovineHD Genotyping Bead-
Chip (Illumina) from 528 Holstein cows. We identified
191 CNV based on size and frequency, and found 57
CNV associated with at least one of those phenotypes.

Methods

Animals

Cows (n = 528) used in the study were registered Holsteins
from the Beltsville Agricultural Research Center Dairy
Herd located in Beltsville, MD. Genotyping was per-
formed using high-quality genomic DNA extracted from
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white blood cells or hair follicles of cows using Gentra
Puregene DNA extraction kits (Qiagen, Valencia, CA) and
the BovineHD Genotyping BeadChip (Illumina).

Phenotypes and PTA calculations

Phenotypes were available for analysis from 473 of the
genotyped cows. Measurements for estimation of DMI
and RFI were performed as described previously [14].
Production traits of cows were collected by Dairy One
Cooperative Inc. (Ithaca, NY) using ICAR-approved
methods and quality certification standards administered
by the Council on Dairy Cattle Breeding (Bowie, MD).
Conventional PTA for RFI and DMI were calculated as
described in Lu et al. [15], and PTA for milk fat percent-
age, milk protein percentage, cow conception rate, heifer
conception rate, daughter pregnancy rate, somatic cell
score, net merit, and productive life were calculated as
described in VanRaden and Wiggans [16]. De-regressed
PTA (dPTA) were calculated according to the formula:
dPTA =PTA / reliability as described by Garrick et al
[17] and used as the phenotype for further CNV GWAS,
similar to Xu et al. [6]. Although matrix deregression
based on pedigree structure is expected to more accur-
ately remove the contributions of other relatives to the
final deregressed evaluation [18], we used the simpler re-
moval procedure.

CNV segmentation and genotyping

The SNP genotypes generated by the [llumina BovineHD
Genotyping BeadChip assay with a call rate > 90% were
used to detect the common CNV shared among Holstein
cows using methods previously described by Zhou et al.
[5]. Specifically, the DSF file was exported from Geno-
meStudio Software and the Log R Ratios (LRR) were
imported into SVS 8.3.0 ([19]; Golden Helix Inc.). A
total of 735,293 SNP were successfully mapped onto the
29 autosomes of the Bos taurus genome assembly UMD
3.1 [20]. The default GC correction file in the SVS soft-
ware was used to correct the LRR waviness caused by
the GC content. The multivariate method was used to
define the CNV segments, employing the SVS default
settings which are based on the expected CNV density
(count and length) within a genome, as follows: (1) a
maximum of 20 segments per 10 K markers; (2) at least
3 markers per segment; and (3) a maximum pair-wise
segment P-value of 0.005. The 3 states with a compara-
tively strict threshold (segment mean + 0.4) defined the
CNV as 3 types of events (loss [- 1], neutral [0], or gain
[+ 1]) across all of the samples.

PCA-corrected association testing
Multiple linear regression in an additive genetic model
was used to identify the CNV significantly associated
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with 10 traits individually. Both FDR and 10,000 permu-
tations were performed to correct for multiple testing.
The model was as follows:

yi = le]/))] + e;
j=1

where y; is the dPTA of the /™ individual, x; is the
CNV genotype of the /™ individual (gain, loss, and
neutral as represented by 1, -1 and 0), §; is the CNV
effect, m is the number of CNV, and e; is the residual.
To correct for batch effects/stratification, the Principal
Component Analysis (PCA) option was selected,
wherein the SVS software identified the optimum
number of components based on a range from 1 to 20.
See Golden Helix SNP & Variation Suite v8.3.0 Manual
[19] for additional details on methodology. Significant
CNV were identified after false discovery rate (FDR)
correction (P < 0.05) [6].

Evaluation of QTL and genetic overlap of CNV

Gene annotations were downloaded from the Ensembl
database [21] and QTL were downloaded from the ani-
mal QTL database [22] (based on the UMD3.1 bovine
reference genome assembly). The overlaps between
CNV and genes or QTL were detected using R3.3.3 Gen-
omicRanges [23]. To detect potential genes affected by
significant CNV, we define the ‘overlap’ as more than
1 bp in common between the CNV region and the gen-
omic region (including the 5-Kb flanking regions both
up- and downstream) of a given gene transcript. Because
of overly large confidence intervals (reported by the Ani-
mal QTLdb) for some QTL, we filtered out the QTL
with confidence intervals >30 Mb and used a strict
threshold to define the overlap as at least 50% of the
CNV length being covered by the QTL.

CNV validation by qPCR

For each CNV selected for validation, the Illumina Bo-
vine HD SNP chip probe sequences corresponding to
SNP within the CNV region of interest were identified.
The 400-bp genomic DNA sequence surrounding each
targeted SNP (i.e., + 200 bp of the SNP) was selected as
the template sequence for PCR primer design using the
NCBI Primer-BLAST primer designing tool [24]. The
desired PCR product size was specified as 100 to 300 bp
and the best primer pair was selected from the output.
Primer information can be found in Additional file 2:
Table S1. Reactions (25 pL) were performed in triplicate
using SsoAdvanced Universal SYBR Green Supermix
(Bio-Rad, Hercules, CA), 5 ng genomic DNA, and
400 nM each primer on the Bio-Rad CFX96 Touch
Real-Time PCR Detection System. Amplification con-
sisted of 95 °C for 1 min, followed by 45 cycles of 95 °C
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for 10 s, 58.2 °C for 10 s, and 72 °C for 30s. Amplifica-
tion of the expected product size was confirmed by elec-
trophoresis on a 2% agarose gel. Melting curve analysis
following the final PCR amplification step was used to
confirm presence of a single amplicon. Efficiency of PCR
amplification for each target was determined from a 4-
point standard curve using 1.5 to 24 ng of genomic
DNA as template, and ranged from 99.3 to 107.4%. Lin-
earity of all standard curves exceeded 0.995. The BTF3
gene and a common DNA sample from Hereford cow,
L1 Dominette 01449 were used as references for all
gPCR experiments. The 2°%“. method [25] was
employed to analyze qPCR results wherein we defined 0
to 1.5 copies as a copy loss (- 1), >1.5 to 3 copies as
neutral (0), and > 3 copies as gain (+ 1).

Phenotype correlation analysis

Ten diverse phenotypes of RFI, DMI, milk fat percent-
age, milk protein percentage, somatic cell score, cow
conception rate, heifer conception rate, daughter preg-
nancy rate, net merit, and productive life for 473 Hol-
stein cows were selected for correlation analysis to
understand their relationships to one another. Pearson
product-moment correlations were computed between
pairs of dPTA for all of the 10 phenotypes.

Results and discussion

CNV segments and genotyping

We detected 454 CNV from 528 Holstein cows where
the CNV were characterized as 3 types (- 1, 0, and + 1).
We filtered out likely false CNV using the strict thresh-
old criteria of length<1 Mb and frequency > 0.5%. The
resulting 191 common CNV had lengths ranging from
727 to 897,251 bp and frequencies ranging from 1.1 to
98.9% (Additional file 2: Table S2; Fig. 1). These CNV
comprised 0.64% (16.2 Mb) of the whole autosomal
length and were distributed differently among auto-
somes. The chromosome with the highest percentage of
CNV length (3.8%) was Chrl5. Bovine Chrl2 was re-
ported as having the highest percentage of CNV length
in a previous CNV study [11], whereas in the current
study, Chr12 ranked second highest for percentage of
CNV length among all autosomes. We detected 164
genes that overlapped with the CNV (Additional file 2:
Table S2). A total of 47 or 189 of our 191 CNV events
were overlapped with Ben Sassi et al. and Xu et al. (Add-
itional file 2: Table S2) [6, 7]. Gene ontology (GO) ana-
lysis results of genes overlapping with CNV are typically
enriched in functions related to immunity or response to
stimuli [26]. However, in our DAVID analysis using Fish-
er’'s exact test, the CNV were highly enriched in GO
terms related to development and growth, such as: multi-
cellular organismal process, developmental process, and
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Fig. 1 Distribution of CNV and significantly associated CNV on each Bos taurus autosome. Outer circle: distribution of 191 CNV where the height
and color of histograms represent the variant frequency of each CNV (red, > 0.6; yellow, 0.3 to 0.6; and black, < 0.3); Inner circle: distribution of
CNV significantly associated with at least 1 of the 10 production traits evaluated
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multicellular organismal development (Additional file 2:
Table S3).

Phenotype correlation analysis

Figure 2 shows results of the Pearson correlation ana-
lysis between each of the dPTA. As described previously
[27, 28], the 10 dPTA generally showed moderate to
strong correlation coefficients within each phenotypic
category (i.e., feed efficiency and intake [RFI and DMI],
milk composition and quality [fat percentage, protein per-
centage, and somatic cell score], fertility [cow conception
rate, heifer conception rate, and daughter pregnancy rate],
and composite evaluation [net merit and productive life]),
but weaker correlation coefficients between different
phenotypic categories. For example, RFI versus DMI was
moderate (r=0.60, P<0.0001), milk fat versus protein
percentage was moderate to high (r=0.75, P<0.0001),
and the correlation coefficients of the 3 fertility traits were
variable, ranging from 0.27 to 0.89. Net merit and pro-
ductive life were highly correlated (r=0.78, P <0.0001)
with one another, and both were moderately corre-
lated with the fertility phenotypes. Somatic cell score
showed weak correlation with other phenotypes, such
as productive life (r=-0.33, P<0.0001) and net merit

(r=-0.26, P<0.0001), and most coefficients were

negative.

Significant CNV association analysis

Before applying the GWAS analysis, we excluded 2 CNV
because they appeared in fewer than 5 individuals. The
frequency of the remaining 189 CNV among the 473
cows ranged from 1.3 to 98.9%. In total, we detected 57
CNV associated after FDR correction (P < 0.05) with at
least 1 of the 10 phenotypes (Additional file 2: Table S4;
Fig. 3). These significant CNV were distributed among
25 autosomal chromosomes (Fig. 1), wherein no signifi-
cant CNV were identified on Chr13, Chr20, Chr24, or
Chr28. We did not observe strong bias due to the fre-
quency of CNV present on a given chromosome on the
number of significant CNV detected within that
chromosome. Chrl and Chrl2 had the greatest CNV
number for GWAS analysis, but based on CNV density
(i.e., CNV count normalized by chromosome length), we
did not find obvious enrichment of significant CNV on
these 2 chromosomes. However, Chr7 was enriched with
the greatest number (1 =6) of CNV significantly associ-
ated with the production traits of interest. The length of
the 57 significant CNV ranged from 1.2 to 350 Kb and
their frequencies ranged from 4.6 to 98.9%. We selected
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Fig. 2 Pair-wise Pearson correlation coefficients for 10 dairy production-related phenotypes of interest. DPR: daughter pregnancy rate; CCR: cow
conception rate; HCR: heifer conception rate; NM: net merit; PL: productive life; RFI: residual feed intake; DMI: dry matter intake; SCS: somatic cell
score; FatPct: fat percentage; and ProPct: protein percentage
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7 significant CNV associated with multiple traits of highly correlated phenotypic pair of net merit and pro-
interest or overlapping known genes or QTL for valid-  ductive life shared 10 significant CNV (CNV20, CNV40,
ation among 8 animals using qPCR. As most of the CNV43, CNV45, CNV55 CNV62, CNV80, CNV94,
CNV (90%) were deletions, all 7 selected CNV were de- CNV118, CNV121), whereas RFI and DMI shared only 1
letions. For 3 out of 7 cases, the PCR amplicon for CNV  significant CNV (CNV1). The most dissimilar phenotype
validation was within genes: CNV33 (RHOH), CNV46 in the correlation analysis, somatic cell score, was found
(GRIK4), and CNV40 (AP2A2). The result showed 55.4%  to share no significant CNV with any of the other phe-
of the 56 qPCR results were consistent with the in silico  notypes evaluated. The relationships between pheno-
prediction (Additional file 2: Table S5), which is typically  types will help to better define potentially related
in the range of 60 to 70% concordance [29]. Inconsisten-  markers as significant CNV appearing with both or all
cies between qPCR and in silico prediction may occur  highly correlated phenotypes will be more reliable than
due to multiple reasons, such as complex sequence of those CNV associated with only 1 phenotype.
the genome, artificial assembly, probe bias, primer de-
sign, DNA quality, or other factors during array Genes and QTL overlapping with significant CNV
hybridization or PCR amplification. We detected 54 Ensembl gene ID overlapping with 20
As expected, the significant CNV were associated with  significant CNV (Additional file 2: Table S4). Among
phenotypes of different categories, with the number of them, CNV150 (Chr26: 25,719,640-26,013,587) over-
significant CNV associated with a given trait ranging lapped with the greatest number of genes (1 =13) with
from 1 (e.g., dry matter intake) to 19 (e.g., productive all genes located inside the CNV region. There were 11
life; Additional file 2: Table S4). Phenotypes with higher  significant CNV (CNV147, CNV32, CNV33, CNV1S8,
correlation are more likely to share significant CNV. For CNV66, CNV146, CNV151, CNV177, CNV34, CNV150,
example, we found 6 significant CNV (CNV11, CNV23, and CNV40) that overlapped with genes previously re-
CNV29, CNV50, CNVI121, CNV137) associated with ported in cattle, or other species, to harbor deletions or
both cow conception rate and daughter pregnancy rate;  duplications, and several others overlapping known gene
traits which were highly correlated. Similarly, another regions. For instance, ELF3 was identified as a candidate
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Fig. 3 Manhattan plots of the genome-wide association study results for 10 dairy production traits of interest. Negative log,g-transformed P-values
from a genome-wide scan (y-axis) are plotted against genomic coordinates on 29 Bos taurus autosomal chromosomes (x-axis). The solid horizontal
line in each plot represents the threshold for significance based on a P-value < 0.05 after FDR correction. DPR: daughter pregnancy rate; CCR: cow
conception rate; HCR: heifer conception rate; NM: net merit; PL: productive life; RFI: residual feed intake; DMI: dry matter intake; SCS: somatic cell

score; FatPct: fat percentage; and ProPct: protein percentage

gene for somatic cell score in a previous CNV-based
GWAS study [12]. In the present study, CNV151 was as-
sociated with cow conception rate and is overlapping
with the ELF3 gene. The product of the ELF3 gene is a
transcription factor that functions in inflammation and
epithelial cell differentiation, and may be involved in
mammary gland development and involution [30], sup-
porting its potential link to somatic cell score. How its
function may relate to cow conception rate is not
known.

Over half of the significant CNV were overlapping
with at least 1 QTL (Additional file 2: Table S4), of
which some were for traits that support our GWAS re-
sults. For example, CNV46 was significantly associated
with heifer conception rate and it overlaps with a QTL
for the circulating level of the reproductive hormone,
LH. In addition, CNV23 was significantly associated with
cow conception rate and daughter pregnancy rate, and it
overlaps with a QTL for first-service conception rate.
Lastly, CNV66 was significantly associated with RFI
and overlaps with a QTL for average daily weight
gain, and CNV7 was associated with somatic cell
score and overlaps with multiple QTL for somatic cell
score and clinical mastitis. Thus, further evaluation of
these CNV is warranted in additional cattle popula-
tions for their association with these, or similar, pro-
duction traits.

Characterization of shared significant CNV for phenotypes
related to feed efficiency and intake

We focused our study on the 2 phenotypes of RFI and
DMI related to feed efficiency and intake. There were 10
and 1 CNV significantly associated with RFI and DMI,
respectively (Table 1). The CNV shared by RFI and DMI
was CNV1 (Chr4: 108,225,979-108,252,635; P <0.001),
which overlaps predicted olfactory receptor gene OR2A2
(LOC787786). However, only 6 cows were typed for
CNV1 as neutral (0), while the remaining 467 cows were
all typed as loss (- 1). Although the 6 neutral cows had a
greater mean dPTA for both RFI and DMI, we identified
some cows possessing the CNVI1 loss type that had
equal or even higher dPTA than the mean dPTA of the
CNV1 neutral types (Additional file 1: Figure S1). Thus,
particular attention must be given to significant CNV
occurring at very low or high frequency when consider-
ing them as candidate markers for use in animal
breeding.

The CNV32 (Chr3: 14,876,353-14,882,132) associated
with RFI also only showed loss and neutral types in our
population, with a loss frequency of 81.0%. It is located
3.7 Kb upstream of the relaxin/insulin like family pep-
tide receptor 4 (RXFP4; Chr3:14,871,054-14,872,623;
strand: -) gene transcription start site, which is poten-
tially affecting RXFP4 gene expression by altering its
promoter region. Of interest, the ligand for RXFP4 is
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Table 1 Significant CNV from genome-wide association analysis for RFl and DMI traits among Holstein cattle

P-value after
FDR correction

Overlapped Ensemble

CNV Chromosome  Start (bp)  End (bp) DMI RFI Gene ID Gene Symbol  Overlapped QTL
CNV1 4 108,225,979 108,252,635 0.0012 0.0000 LOC787786
(OR2A2)
CNV25 16 79,851,676 79,853,884 0.2802 0.0236
CNV28 16 78,028,784 78035505 09670 0.0367 ENSBTAG00000002291 ZBTB41
CNV31 8 44,934,828 44,944,671 03442 0.0201 LOC101909075
CNV32 3 14,876,353 14,882,132 0.1561 0.0259 ENSBTAG00000046885 RXFP4
CNV38 11 93,188,055 93,190,178 06321 0.0391 Stearic acid content
CNV43 5 9,756,491 9,757,695 04402 0.0027 Infectious bovine keratoconjunctivitis
susceptibility, Cold tolerance, Calving
ease (maternal), Male fertility, Gestation
length, Milk alpha-lactalbumin %,
Retained placenta (DYD), Milk protein %
CNVe6 7 42,745346 42,788,788 04395 0.0274 ENSBTAG00000046318 L[OC787816 Cold tolerance
(OR2T12)
ENSBTAG00000007557 OR2AK2 Average daily gain
CNV84 1 143,922,352 143,945292 0.7750 0.0357
CNV120 14 44862,013  44,868983 03398 0.0025 Subcutaneous fat

Note: See Additional file 2: Table S4 for additional details. P-values < 0.05 are indicated in bold font

insulin-like peptide 5 (Insl5), which is produced by intes-
tinal L cells in response to a reduction in feed intake,
stimulating appetite [31]. In humans, RXFP4 was found
to be significantly associated with obesity and body mass
index [32]. Studies also reported that Insl5-RXFP4 sig-
naling plays a role in glucose metabolism [33]. Thus,
CNV32 may affect feed efficiency of cattle through an
RXFP4-mediated pathway and provides an interesting
candidate gene for further study in cattle.

Another significant CNV associated with RFI, CNV66
(Chr7:42,745,346—-42,788,788), showed both loss and
gain types with a total frequency of 54.6% within our
Holstein population. Similar to CNV1, 2 olfactory recep-
tor genes of predicted OR2T12 (LOC787816) and
OR2AK?2 are located inside CNV66. Olfactory receptors
may influence feeding behavior, such as food preference
and feed intake [34]. The variation of olfactory receptor
gene copy numbers, theoretically, could affect their ex-
pression levels and impact RFI and DMI of Holstein cat-
tle. These olfactory receptor genes serve as additional
candidates for further study in the regulation of feed effi-
ciency and feed intake of dairy cattle.

Conclusions

Our previous study showed that ~25% of CNV did not
have a significant association with SNP; thus the effects
of these CNV probably were not captured by tag SNP
[6]. In this study, we performed a CNV-based GWAS
for 10 important production traits and detected 57 CNV
significantly associated with at least one of these produc-
tion traits. Of particular interest regarding feed intake-

related phenotypes, we detected 2 CNV associated with
RFI located within RXFP4, encoding a G-protein coupled
receptor thought to play a role in regulation of appetite
and metabolism [31, 35], and 2 olfactory receptor gene
regions, respectively. We also identified a single CNV
within predicted OR2A2 strongly associated with both
RFI and DML Our results identify CNV for genomic
evaluation in Holstein cattle, and provide candidate
genes contributing to variation in feed efficiency and
feed intake-related traits.
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