Skip to main content
. 2018 Mar 28;118(8):1056–1061. doi: 10.1038/s41416-018-0027-8

Table 4.

Predictive capability of TiC-Onco and Khorana scores

TiC-Onco (1) TiC-Onco (2) Khorana p (TiC-Onco (1) vs Khorana) p (TiC-Onco (2) vs Khorana)
AUC (95% CI) 0.734 (0.67–0.79) 0.734 (0.67–0.79) 0.580 (0.51–0.65) <0.001 <0.001
Sensitivity, % (95% CI) 49.30 (37.7–60.9) 85.92 (77.8–94.0) 22.54 (12.8–32-3) <0.001 <0.001
Specificity, % (95%, CI) 81.25 (77.0–85.5) 49.06 (43.6–54.5) 81.76 (77.5–86.0) 0.823 <0.001
PPV, % (95% CI) 36.84 (27.1–46.5) 27.23 (21.4–33.1) 21.62 (12.2–31.0) 0.004 0.218
NPV, % (95% CI) 87.84 (84.1–91.6) 94.01 (90.4–97.6) 82.54 (78.3–86.7) <0.001 <0.001
PLR (95% CI) 2.63 (1.89 - 3.65) 1.69 (1.46 - 1.95) 1.24 (0.76 - 2.02) 0.005 0.244
NLR (95% CI) 0.62 (0.49 - 0.79) 0.29 (0.16 - 0.52) 0.95 (0.83 - 1.09) 0.001 <0.001

TiC-Onco (1) shows the predictive capabilities for the default cut-off (see Methods). TiC-Onco (2) shows the predictive capabilities for the cut-off providing the best Youden’s Index.

AUC Area Under the Roc Curve, PPV Positive Predictive Value, NPV Negative Predictive Value, PLR Positive Likelihood Ratio, NLR Negative Likelihood Ratio