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Abstract

Objective—A traditional goal of neural recording with extracellular electrodes is to isolate action 

potential waveforms of an individual neuron. Recently, in brain–computer interfaces (BCIs), it has 

been recognized that threshold crossing events of the voltage waveform also convey rich 

information. To date, the threshold for detecting threshold crossings has been selected to preserve 

single-neuron isolation. However, the optimal threshold for single-neuron identification is not 

necessarily the optimal threshold for information extraction. Here we introduce a procedure to 

determine the best threshold for extracting information from extracellular recordings. We apply 

this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity 

in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary 

visual cortex (V1).

Approach—We record extracellularly from multi-electrode arrays implanted in M1 or V1 in 

monkeys. Then, we systematically sweep the voltage detection threshold and quantify the 

information conveyed by the corresponding threshold crossings.

Main Results—The optimal threshold depends on the desired information. In M1, velocity is 

optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower 

than are typically used in BCI applications. In V1, information about the orientation of a visual 

stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model 

explains these results as a consequence of cortical topography.

Significance—How neural signals are processed impacts the information that can be extracted 

from them. Both the type and quality of information contained in threshold crossings depend on 

the threshold setting. There is more information available in these signals than is typically 

extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should 
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improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping 

the detection threshold, one can gain insights into the topographic organization of the nearby 

neural tissue.
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Introduction

Brain–computer interfaces (BCIs) extract information about motor intentions from 

recordings of neural signals to control an external device, with the goal of assisting patients 

with paralysis or other sensory–motor deficits. The recorded signals have taken the form of 

EEG, MEG, and intracortical signals (Schwartz et al 2006). A promising class of BCIs 

extracts information directly from action potentials, or ʻspikesʼ, identified from the voltage 

traces recorded from chronically implanted extracellular electrodes. To identify these spikes, 

the voltage trace is typically band-pass filtered, thresholded to identify transients in the 

voltage signal, and then sorted based on the shape of the transient waveform into clusters 

corresponding to individual neurons. This final preprocessing step, ʻspike sortingʼ, has 

received considerable attention because it is time consuming, prone to inaccuracies, and 

difficult to perform in clinical settings (Lewicki 1998, Rey et al 2015). Fortunately, it 

appears that accurate spike sorting may not be necessary for good BCI performance (Ventura 

2008, Fraser et al 2009, Chestek et al 2011, Malik et al 2014). Rather, a threshold can be set, 

and all voltage transients that exceed that threshold (that is, ʻthreshold crossingsʼ) can be 

counted, regardless of the waveform shape. Evidence is accumulating that there is 

information in such non-spike signals recorded from microelectrodes. In one example, Stark 

and Abeles (2007) used a multiunit activity signal, processed by computing the root mean 

square of the voltage signal in the 300–6000 Hz frequency band, to predict reach direction 

and grasp with better accuracy than either spike activity or local field potentials. With this 

knowledge, some researchers have investigated the possibility of moving away from using 

sorted units as inputs to BCI decoders and instead using threshold crossings (Fraser et al 
2009). Many studies agree that BCI performance is substantially degraded when the non-

spike parts of the signal are discarded (Kloosterman et al 2014, Todorova et al 2014, Deng et 
al 2015), raising the intriguing possibility that the threshold could be adjusted to maximize 

BCI performance.

Here we assess how the voltage detection threshold setting (ʻthresholdʼ) affects the encoding 

of movement parameters in primary motor cortex (M1). We then assess the generality of this 

approach by using it to examine the information present in recordings from primary visual 

cortex (V1). To interpret our observations, we reason that the choice of threshold impacts the 

effective sampling radius of the electrode. For example, choosing a more permissive 

threshold presumably enlarges the effective sampling radius of the electrode and, thus 

increases the number of neurons contributing to the threshold crossing signal (Martinez et al 
2009, Pedreira et al 2012). At high detection thresholds, threshold crossings comprise the 

spikes from individual neurons close to the electrode. At low detection thresholds, threshold 

crossings comprise multi-unit activity from smaller neurons or neurons farther from the 
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electrode. How the detection threshold is chosen impacts the neural contributions to the 

signal, and potentially, what information is contained in the signal.

Traditionally, thresholds have been chosen to maximize spike-sorting performance. 

However, the optimal threshold for single-neuron identification is not necessarily the 

optimal threshold for information extraction. We hypothesized that the optimal threshold 

would depend on the parameter of interest. We assessed the impact of the detection 

threshold by systematically sweeping the detection threshold and evaluating the information 

content of threshold crossings about two different parameters of interest, velocity and speed, 

recorded from primary motor cortex (M1). We find that the type of information encoded by 

threshold crossings depends strongly on threshold, and the optimal threshold depends on the 

parameter of interest. In particular, we find that velocity, a directional parameter, is better 

represented at higher thresholds, whereas speed, a scalar quantity, is better represented at 

lower thresholds. Additionally, we show that optimal thresholds are surprisingly low, 

considerably below the thresholds commonly used in closed-loop BCI studies. This means 

that the optimal thresholds for extracting information are not typically the best thresholds for 

isolating single neurons.

We can understand these results in the context of the topographical representation of speed 

and velocity in M1. The scale of the topographic organization and the homogeneity of a 

parameter’s representation across cortical tissue influence the optimal threshold. This 

observation could generalize to other areas of cortex, such that knowledge of the 

topographic representation of different parameters should predict the choice of threshold for 

maximizing the information available in neural recordings. We tested this hypothesis with 

recordings from V1, a cortical area with a distinctly different topographical representation of 

its relevant parameters. By applying our method of sweeping the threshold, we were able to 

predict the relative optimal thresholds for the parameters orientation and contrast of a visual 

stimulus. We conclude that the type and quality of information that can be extracted from 

extracellular signals depends on the threshold setting; there is more information present in 

extracellular voltage recordings than is typically extracted.

Methods

All animal procedures complied with the National Institutes of Health Guide for Care and 

Use of Laboratory Animals, and were approved by the University of Pittsburgh’s Animal 

Care and Use Committee. To assess the generality of our predictions, we analyzed data 

collected from two different cortical areas in two monkeys each, and in the context of two 

different behaviors.

M1 task and recordings

Two male monkeys (Macaca mulatta, 11.6 and 7.3 kg) were trained to perform an 8-target 

center-out reach task (figure 1(a)). The position of an LED marker attached to the fingertip 

of the reaching hand was tracked at 120 Hz (<1 mm resolution; Phasespace Inc., San 

Leandro, CA). The position of the marker was visible to the monkey as a cursor on a 

frontoparallel screen. The hand was not visible to the monkey, because it moved in the space 

behind the screen. At the start of each trial, the monkey had to move the cursor to a central 
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target and hold for 200–400 ms. Then, one of eight peripheral targets (arranged at 45° 

intervals and spaced 9 cm from the center) appeared, and he had ∼800 ms to acquire it with 

the cursor. After holding the cursor on the peripheral target for 200–500 ms (randomized) he 

received a liquid reward. A failure at any point caused the trial to terminate without reward, 

and there was a 1.5 s timeout before the next trial began.

When the monkey was proficient at the task, we implanted a 96-electrode array (Blackrock 

Microsystems) in the arm area of M1 (as determined intraoperatively via cortical landmarks) 

contralateral to the reaching hand (figure 1(a)). As the monkey performed the task we 

recorded neural data from M1 using a Tucker-Davis Technologies RZ2 system. During each 

recording session, we streamed the filtered broadband signal (700–3000 Hz band-pass, 

Kaiser window) from 4 to 10 different channels directly to disk at a 24 kHz sampling rate. In 

some cases we streamed an unfiltered broadband signal at a 24 kHz sampling rate and 

applied a 700–3000 Hz bandpass filter offline. Because of system limitations, we could not 

record broadband signals from all 96 channels each day. In total, we recorded 20 unique 

channels over 5 experimental sessions from monkey J (26 months post-implant) and 53 

unique channels over 9 experimental sessions from monkey L (2 weeks to 9 months post-

implant).

In this data set, we analyzed the representation of two kinematic parameters—velocity and 

speed—which are known to correlate well with neural firing in M1 (Moran and Schwartz 

1999, Churchland and Shenoy 2007, Golub et al 2014).

V1 stimuli and recordings

Two different male monkeys (Macaca mulatta, 9.25 and 8.0 kg) were trained to fixate on a 

central spot while visual stimuli were presented peripherally (figure 1(b)). The animals had 

been trained to perform an orientation change detection task over the course of several 

months and were able to stably maintain fixation for 3–5 s. Before electrophysiological 

recording, the animals were implanted with a custom titanium head post, and a 96-electrode 

array (Blackrock Microsystems) in V1 (as determined by cortical landmarks, figure 1(b)). 

Eye position was monitored using an infrared optical recording system (Eyelink, SR 

Research) sampling at 1 kHz.

To begin each trial, the monkey would acquire fixation on a central spot. After 200–400 ms 

of stable fixation within a 1 degree window, stimulus presentation began. A total of seven 

stimuli were flashed for 200 ms each with an interstimulus interval of 100 ms. If the animal 

maintained fixation for the duration of the stimulus presentations, he was rewarded with a 

drop of juice. If the animal’s eye position left the fixation window during stimulus 

presentation, the trial was aborted and no reward was given. Stimuli were presented on a 

mean gray luminance screen (1024 × 768; 27.9 pixels/degree; 120 Hz refresh rate) placed 

635 mm in front of the animal. The stimuli were drifting oriented Gabor patches that varied 

in contrast (contrast values = 0.06, 0.12, 0.25, 0.5, 1) or orientation (orientation values 

ranged from 0° to 330° in 30° intervals). When orientation was varied, contrast = 1. When 

contrast was varied, orientation = 90° for monkey B and 180° for monkey G. The receptive 

fields of the V1 neurons recorded on the array were located approximately 3.5° eccentric 

from fixation, in the lower right visual field, and they spanned approximately 2° of visual 
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angle. Spatial dimensions of the stimuli were selected to envelop the receptive fields of all 

V1 neurons recorded by the array. In the initial frame of each stimulus, the grating had odd 

spatial symmetry. The phase velocity of the stimulus was selected so that upon presentation 

of the final frame, the stimulus had drifted one complete cycle.

Electrophysiological recordings were performed 2.5 months (monkey B) and 2 weeks 

(monkey G) post-implant. Data were collected with a Grapevine system (Ripple, Inc.). 

Broadband signals were recorded on all 96 channels on one day. Each channel was sampled 

at 30 kHz and raw signals were bandpass filtered (highpass filter: 0.3 Hz; lowpass filter: 7.5 

kHz, 3rd order Butterworth) and streamed to disk. The saved signals were subsequently 

filtered offline in the same way that the M1 signals were, using a Kaiser window with a 700–

3000 Hz passband.

In this task, we analyzed the neural representation of the orientation and contrast of the 

drifting Gabor patch stimulus. Both of these parameters are known to drive neural firing in 

V1 (Hubel and Wiesel 1959).

Threshold crossings

Our central analysis assesses the information content present in neural recordings at varying 

voltage thresholds. To do this, we systematically swept the level of the voltage detection 

threshold to extract threshold crossings (figure 1(c)). At each threshold we evaluated the 

signal-to-noise ratio (SNR) of the information about movement or stimulus parameters 

encoded by the corresponding threshold crossings. We defined threshold settings with 

respect to the standard deviation of the filtered signal (σ), computed as the average standard 

deviation of the recording over 100–200 trials. We considered threshold settings ranging 

from 0 (mean) to −10σ for the M1 data and −6σ for the V1 data, at intervals of 0.5σ. These 

negative threshold settings correspond with the depolarizing phase of the action potential. 

Results from positive-going thresholds were comparable, and thus we use only the negative 

thresholds in our analyses. We defined a threshold crossing as the time at which the recorded 

signal crossed the threshold voltage in a negative-going direction, with 100 μs resolution. 

For clarity, figures and the following text will refer to the absolute value of the multiplier of 

the threshold setting (e.g. 3σ).

Quantifying information content with SNR

We use signal-to-noise ratio (SNR) to quantify the information content conveyed by the 

threshold crossings. Intuitively, SNR can be thought of as the ratio of useful information to 

irrelevant information. Formally, ʻsignalʼ is defined as the variance in the data that is 

explained by a parameter of interest (e.g. velocity, speed, orientation or contrast), and ʻnoiseʼ 
is defined as the residual, unexplained variance after accounting for that parameter. Here, 

our recorded data, Yθ, is the number of threshold crossings recorded at a particular threshold 

θ. We can decompose the variance in our data, Var [Yθ], into a component explained by a 

stimulus X and a component remaining after accounting for X. This decomposition is exact, 

and is given by the Law of Total Variance:
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Var Yθ = Var E Yθ X + E Var Yθ X , (1)

where Var(E [Yθ∣X]) is the variance of the expected value of Yθ conditioned on X, and 

E(Var[Yθ∣X]) is the expected value of the variance of Yθ conditioned on X. The first term 

quantifies the variation in Yθ that is explained by X (i.e., the signal variance); the second 

quantifies the residual variation in Yθ that remains after accounting for X (i.e., the noise 

variance). The SNR is the ratio of these two quantities:

SNRθ ≡
Var E Yθ X
E Var Tθ X

. (2)

For the M1 studies, the parameters of interest are velocity and speed, which both vary in a 

continuous fashion over the range of natural reaching movements. To compute the SNR in 

this case, we first fit linear tuning curves by regressing neural activity against kinematics, 

and then quantified how well these linear fits accounted for the variance of the threshold 

crossings with the SNR. We considered a separate encoding model for velocity (equation 

(3)) and speed (equation (4)), and fit an ordinary linear regression at each threshold setting:

yθ t = b0 + bxvx t + byvy t + εv t , (3)

yθ t = b0 + bss t + εs t , (4)

where yθ(t) is the number of threshold crossings for a given threshold in a 100 ms bin 

centered at time t, vx(t) and vy(t) are the x- and y-components of the velocity of the cursor 

averaged over a 100 ms bin, s(t) is the speed of the cursor averaged over a 100 ms bin, and 

ε(t) is an error term that captures deviations from the model. These models can be fit at 

varying temporal offsets between the neural and kinematic data. We used a 100 ms offset 

(neural activity leading kinematics) because we have found this offset yields the best 

correlation with behavior for the data sets analyzed here (Perel et al 2015). For each 

encoding model, we used the model estimates to compute the signal variance and the 

residuals of the regression to compute the noise variance. As an example, for speed the 

signal variance is the variance of b0 + bss(t) over all recorded speeds, and the noise variance 

is the variance of εs(t). Graphical depictions of these quantities are provided in figure 2(c).

For the V1 studies, the parameters of interest are orientation and contrast. Each of these 

varied over discrete levels in our experiments, and firing rates were measured for multiple 

repetitions of each particular orientation or contrast. In this case E[Yθ|X] and Var[Yθ|X] can 

be measured directly from the data (as depicted in figure 8(a)), without the need for linear 

regression.
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Although SNR is not a common metric in either M1 or V1 studies, it provides a simple, 

intuitive metric of information content, it is relatively straightforward to compute, and it 

allows for relatively direct comparisons across brain areas even when the parameters of 

interest are quite different. A more common metric of goodness of fit in motor 

neurophysiology is the coefficient of determination (R2) (e.g., Georgopoulos et al 1982), 

which is a statistical measure of how well a model approximates the data. Qualitatively our 

M1 results are the same with either measure. However, since neurons in V1 do not respond 

in a linear fashion to stimuli of different orientations, the R2 would have been less 

appropriate for those data. Another possibility would have been to compute the mutual 

information between threshold crossings and parameters directly. However, comparisons of 

mutual information across different stimulus sets are difficult to interpret when those sets are 

not entropy-matched (Chase and Young 2008, Golub et al 2014). For these reasons, we favor 

the SNR metric for this study. Finally, we note that SNR values less than one are not 

uncommon in neural responses, especially when analyzed at fine temporal resolution, and 

low SNR values still signal the presence of meaningful information.

Exclusive windows approach to spike sorting

We reasoned that the small-amplitude fluctuations of the voltage trace might contain 

information that was distinct from the information contained in the high-amplitude 

fluctuations. To this end, we performed an ʻexclusive windowʼ analysis. In this analysis, a 

threshold crossing was registered only if it crossed a defined threshold in the negative 

direction and recrossed it in the positive direction before crossing another more-negative 

threshold (figure 1(e)). With this definition, a given excursion of the voltage trace is 

exclusively categorized as crossing only one threshold. This is in contrast to our basic 

threshold analysis in which a threshold crossing that crossed a given threshold was counted 

at all smaller thresholds as well. To differentiate these choices in the text, we refer to 

exclusive threshold crossings as xTCs. The exclusive windows can act as a crude approach 

to spike sorting (Todorova et al 2014), when large thresholds are selected. Here we examine 

two exclusive thresholds: a low threshold at 1σ to select the small voltage fluctuations, and a 

high threshold, which captures the large voltage fluctuations associated with spikes. We 

considered two possible high thresholds, 3σ or 4.5σ. Using these xTCs, we repeated the 

SNR analysis as described above.

Results

Our central finding is that in extracellular recordings the detection threshold can be tuned to 

maximize information about parameters of interest, with different parameters exhibiting 

different optimal thresholds. Further, the threshold setting that maximizes information is 

usually not the setting that yields the best spike sorting. We show this in two cortical areas, 

with two parameters of interest for each area. Our main focus is on primary motor cortex 

(M1), where we consider the selection of optimal thresholds for the neural encoding of 

velocity or speed. To examine the generality of this approach, we also apply it to neural 

recordings from primary visual cortex (V1), where the parameters of interest are orientation 

and contrast. In both cases, recordings are collected with 96-electrode arrays. Broadband 

data are saved, and analyses are conducted offline. For each recorded channel, we swept the 
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voltage detection threshold, and measured the number of threshold crossings at each 

threshold. At each threshold, we quantified the amount of information about the parameter 

of interest as a SNR.

Information content depends on threshold

Figure 2(a) shows the density of threshold crossings at a low threshold (θ = 1σ) and a high 

threshold (θ = 5σ) during reaches to eight different target directions for an example M1 

channel. It can be seen that different information is manifested in the tuning at different 

threshold settings. At θ = 5σ (cool color scale), this channel shows velocity tuning, with a 

preferred direction (PD) up and to the right. At θ = 1σ (warm color scale), this channel 

modulates similarly for all eight reach directions. The velocity tuning is weak at this 

threshold, but, instead, the signal reflects speed (gray lines): it is active during the reach 

regardless of direction. This is an exemplary channel which visually highlights our central 

finding: by adjusting the threshold setting, we differentially extract information about each 

parameter (not just different amounts of information about a given parameter) from the 

neural signal. Separately for each threshold setting, we modeled the relationship between 

threshold crossings and each kinematic parameter with linear regression. We quantified the 

information content with the SNR. As an example, figure 2(b) shows the linear regressions 

for speed at θ = 1σ and θ = 5σ. As defined in Methods, the signal is the variance of the 

estimated threshold crossings and the noise is the variance of the residuals, as shown by the 

histograms in figure 2(c). We calculated the signal and noise for each threshold setting from 

0 to 10σ in 0.5σ increments (figures 2(d) and (e)). Importantly, the SNR depends on the 

threshold setting (figure 2(f)). Specifically, this channel has more speed information at low 

thresholds and more velocity information at high thresholds. Perhaps a more familiar metric 

of goodness of fit in motor neurophysiology is the coefficient of determination (R2) (e.g., 

Georgopoulos et al 1982). Figure 2(g) plots the dependence of R2 on threshold. 

Qualitatively, we see the same dependence of information content on threshold regardless of 

which measure of goodness of fit we choose. This reassures us that quantification of 

information with SNR is an appropriate measure for neural recordings from M1, and it has 

the advantage that it can be applied more broadly to neural recordings from other brain 

areas.

Figure 3 shows the SNR dependence on threshold for three representative M1 channels. The 

curves for both speed and velocity show an inverted-U shape with respect to threshold. The 

lowest SNR values occur at θ = 0, when there are so many threshold crossings that the signal 

does not provide clear information about the reach kinematics. Similarly, we see low values 

of SNR at high values of θ, when there are not enough threshold crossings to provide a clear 

relationship between neural events and the velocity or speed of the reaches. The peak SNR is 

between these extremes.

From the SNR dependence on threshold we can extract the optimal threshold for velocity 

and speed information. We computed SNRs for the 73 M1 channels we recorded. We only 

included a channel in subsequent analyses if it exhibited a statistically significant regression 

(α = 0.05) for at least one threshold setting for at least one of the kinematic parameters. This 

resulted in 0 discarded channels from monkey J and 6 from monkey L, leaving a total of 20 
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channels from monkey J and 47 channels from monkey L. The normalized average SNR 

relationship with threshold for those 67 channels is plotted in figure 4(a). Each channel was 

normalized to its maximum SNR and then averaged. Normalization emphasizes the relative 

thresholds at which the peaks occur, regardless of differences in the absolute SNR values 

across channels. The deviation of the normalized peak from a value of one reflects the 

variability in the peak threshold across the population. The peak SNR varies for speed and 

velocity: speed is optimally encoded at a low threshold setting (θ = 2σ), while velocity is 

optimally encoded at higher thresholds (θ = 2.5σ). The optimal threshold depends on the 

information one wishes to extract, and is often lower than the threshold that is typically 

applied to isolate the activity of a single neuron.

Optimal SNR thresholds are lower than typically used for recording

In multi-electrode systems where it is possible to adjust the threshold independently for each 

channel, even more information can be extracted. Figure 4(b) shows histograms for the 

optimal thresholds for velocity (left) and speed (middle). The distribution of optimal 

thresholds for speed is narrow with relatively low thresholds. The distribution of optimal 

thresholds for velocity is broader than is the distribution of optimal thresholds for speed and 

it includes channels with higher optimal thresholds. The distributions have statistically 

different means (t-test, p = 10−7). The mean pairwise difference between the optimal 

velocity threshold and the optimal speed threshold is 1.28σ ± 0.18σ, and the distribution is 

shown in the histogram in figure 4(c). The optimal velocity threshold is higher than the 

optimal speed threshold for 48 of 67 (72%) channels.

Using exclusive thresholds to highlight information content of low amplitude fluctuations

It is conceivable that large-voltage ʻspikesʼ are the sole source of information in an 

extracellularly recorded signal, and lower thresholds are just capturing these spikes with 

greater reliability. Alternatively, the lower amplitude fluctuations which are not readily 

attributable to the spiking of nearby neurons may contain information that is distinct from 

that carried by the high-amplitude events. We addressed this through an exclusive threshold 

analysis. We ask whether single-unit activity and the residual multi-unit hash contribute 

differently to the speed and velocity encoding models. Figure 5 shows how setting two 

exclusive thresholds can act as simple spike identifier, using the channel depicted in figure 2 

as an example. The black circles identify exclusive threshold crossings (xTCs) for thresholds 

of 1σ and 3σ. Setting the threshold high has a similar effect as spike sorting, in that it 

captures single unit activity, whereas the low threshold captures non-single unit activity that 

might typically be discarded under a sorting paradigm, as evidenced by the waveform 

snippets shown in figure 5(b). The SNR for the xTCs from this example channel at θ = 1σ 
shows that there is speed information contained in the non-single unit activity (figure 5(c)). 

The single unit activity captured by θ = 3σ shows better velocity encoding. This supports the 

idea that low-voltage events contain information that is distinct from the information present 

in spiking activity.

The mean exclusive threshold SNR for all channels is shown in figure 6. On average (figure 

6(a), left), the non-spike parts of the signal represented by the xTCs at θ = 1σ encode speed 

better than the xTCs at θ = 3σ. Velocity is better encoded at more restrictive (higher) 
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thresholds. To highlight the impact that the choice of threshold has on the information 

content of the threshold crossings, we repeated the exclusive threshold analysis for M1 at θ 
= 1σ and θ = 4.5σ. Such a high threshold should isolate single units and is thought to obtain 

better encoding of kinematic information. However, we found that this threshold is quite 

restrictive and misses some of the available information (figure 6(b)). The exclusive window 

analysis highlights that there is information contained in the low-amplitude fluctuations of 

the signal that is often discarded as noise.

Information content in V1

To test the generality of our finding that the optimal threshold depends on the parameter of 

interest, we examined recordings from primary visual cortex (V1). We selected V1 for 

comparison in part because its function is markedly different from M1, and also because the 

topography of V1 is well-established. In V1, nearby neurons are tuned similarly to stimulus 

orientation, with orientation tuning changing in a systematic way across the cortical surface 

(Hubel 1982). However, all V1 neurons are tuned similarly to contrast, showing increased 

firing rates with increasing stimulus contrast (Albrecht and Hamilton 1982). The 

topographic organization of V1 led us to predict that the optimal threshold for contrast 

information would be lower than the optimal threshold for orientation information.

We recorded from two monkeys with multi-electrode arrays implanted in V1 while they 

viewed drifting gratings, and investigated how information about orientation and contrast 

depended on threshold. The channels were tuned to different orientations, but all channels 

showed a similar response to contrast, wherein the maximal response was for contrast = 1. 

Figure 7 plots tuning curves for contrast and orientation at three thresholds for an example 

channel. Each point in the tuning curve is the number of threshold crossings occurring 

during a single presentation of a stimulus with a particular orientation or contrast. The mean 

is plotted to help visualize the tuning.

To test our prediction that orientation and contrast show different optimal thresholds, we 

calculated the SNR at each threshold to quantify the information content of the threshold 

crossings. We break down this calculation into its components in figure 8. For orientation, 

signal is the variance of the mean number of threshold crossings over each orientation 

(figure 8(a), orange). Noise is the mean of the variance in threshold crossings at each 

orientation (figure 8(a), black). As shown for this example channel in figure 8(c), orientation 

and contrast SNR depend on threshold, with both curves showing an inverted-U shape. For 

this channel, contrast shows a peak SNR at θ = 2σ, and orientation shows a peak SNR at θ = 

2.5σ.

We calculated how SNR depends on threshold for a population of 49 channels (figure 9(a)). 

Only channels which were well-tuned to orientation (SNR > 0.75) were included in this and 

subsequent analyses. Every channel that showed a response to the stimulus demonstrated an 

SNR greater than 0.75 for contrast, and thus we chose the significant channels 

conservatively, based on orientation tuning. Like the individual channel example, there is an 

inverted-U shaped curve with the peak occurring between the extremes of too many 

threshold crossings and too few threshold crossings. The SNR curves for both orientation 
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and contrast depend on threshold similarly, with contrast optimally represented at θ = 2σ 
and orientation optimally represented at θ = 2.5σ on average for the population.

The optimal threshold histograms for orientation and contrast are plotted in figure 9(b). Both 

distributions of optimal contrast thresholds and optimal orientation thresholds are narrow 

with primarily low thresholds. However, the optimal threshold for orientation is higher than 

the optimal threshold for contrast for 26 of the 49 (53%) channels and the distributions have 

statistically different means (t-test, p = 0.004). The mean pairwise difference between the 

optimal orientation threshold and optimal contrast threshold is 0.35σ ± 0.11σ (figure 9(c)).

Discussion

We assessed the information content of extracellular recordings from M1 and V1 by 

systematically sweeping the voltage detection threshold, counting the number of threshold 

crossing events at that threshold setting, and evaluating how much information those 

threshold crossings provided about external parameters of interest. We found that optimal 

threshold depends on the parameter of interest. Specifically, directional parameters, like 

velocity and orientation, have higher optimal thresholds than scalar parameters, like speed 

and contrast. Regardless of the parameter of interest, the optimal thresholds for information 

were lower than the thresholds typically used in closed-loop BCI studies in which threshold 

crossings are used in lieu of spike sorting. We can make sense of these observations with a 

consideration of cortical topography. These results have pragmatic implications for the 

optimal decoding of neural signals.

Cortical topography can explain optimal thresholds

How a stimulus parameter is represented in an extracellular voltage trace will depend in part 

on how the topographic scale of tuning to that parameter in the cortex relates to the effective 

sampling radius of the electrode, as determined by the detection threshold. At high detection 

thresholds, threshold crossings reflect the tuning of individual neurons. At low detection 

thresholds, threshold crossings comprise multi-unit activity and tuning likely reflects the 

homogeneity of the tuning of local neurons. Modeling studies have suggested that single unit 

activity arises from neurons within 50 μm of an extracellular electrode and multi-unit 

activity arises within 50–140 μm of the electrode (Martinez et al 2009, Pedreira et al 2012). 

Thus, it is reasonable to expect that the topographic scale at which a stimulus parameter is 

represented impacts threshold crossing tuning, particularly at low thresholds.

Figure 10 schematizes a putative explanation for the effects of threshold selection that we 

observed. As the detection threshold of an electrode is moved toward 0, its effective 

sampling radius increases (figure 10(a)). (Note that while the relationship between detection 

threshold and effective sampling radius is probably not linear, it is likely to be monotonic). 

As the threshold is lowered, the number of threshold crossings increases, as does the 

variability in the waveform shapes. A strict threshold, like θ = 5σ (blue), yields waveforms 

that likely originate from a single neuron. On the other hand, if we relax the threshold to θ = 

1σ (orange), the waveforms are almost certainly not from a single unit.
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A schematic example of parameters with different topographic scales relative to the 

ʻlistening sphereʼ of an electrode is shown in figure 10(b). Here the black arrows represent a 

directional parameter that has a small tuning scale relative to the listening sphere of the 

electrode, meaning the correlation in tuning among neurons falls off relatively quickly with 

distance. The light and dark gray regions represent a parameter that has a large tuning scale 

relative to the listening sphere of the electrode, meaning the correlation in tuning falls off 

relatively slowly with distance. The topographic scale of the stimulus parameter impacts the 

information present in the extracellular recording at different thresholds. At low detection 

thresholds, threshold crossings comprise multi-unit activity and tuning should better reflect 

those parameters that are homogeneously encoded among the population of neurons local to 

the electrode (figure 10(c), gray). In contrast, we expect parameters that are more 

heterogeneously encoded to be better represented at high detection thresholds, where 

threshold crossings reflect the tuning of individual neurons (figure 10(c), black). 

Accordingly, in M1 we observed that velocity has a higher optimal threshold than speed.

The influence of topographic scale on information encoding by threshold crossings

We introduce a conceptual model based on the topographic scale of information encoding to 

explain our results (figure 10). If we apply that model to V1’s pinwheel organization of 

orientation preference, we should expect a change of <30° for neurons within the putative 

sampling radius of our electrode at the lowest detection threshold. So, the topographic scale 

of orientation is on the order of the sampling radius. The topographic scale of contrast is 

larger than for orientation: nearly all V1 neurons increase their firing with increases in 

contrast. In accordance with this understanding of V1 topography, we found the optimal 

orientation threshold to be similar to but slightly larger than the optimal contrast threshold. 

Additionally, the optimal thresholds in V1 were relatively low, suggesting that including 

threshold crossings from more neurons provides more information than does a single 

neuron.

The heterogeneity of the local M1 PD map is in stark contrast to the large-scale topography 

of V1 orientation columns (Schieber and Hibbard 1993). However, in an effort to make 

sense of the structure of M1, a columnar organization similar to that observed in V1 has 

been proposed (Amirikian and Georgopoulos 2003). This hypothesized structure of M1 

consists of mini-columns of neurons with similar PDs 30 μm in width and repeating every 

240 μm (Georgopoulos et al 2007). Such structure would lead to a nearly complete set of 

PDs represented by neurons within the ∼200 μm sampling radius of an electrode. This is a 

far less homogeneous local structure than that seen in V1. Consistent with this model, at 

high detection thresholds, velocity is encoded well by threshold crossings. This recapitulates 

the well-known PD tuning of individual neurons in M1 (Schwartz et al 1988). However, 

within the larger effective sampling radius specified by a low threshold, the diversity of PDs 

of the contributing neurons weakens the measured velocity tuning. On the other hand, most 

M1 neurons tune monotonically to speed (Moran and Schwartz 1999). Thus, speed encoding 

is strongest at low thresholds, since many neurons contribute to the threshold crossings. This 

can explain our observation of higher optimal thresholds for velocity than for speed.
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The information available at low voltage threshold settings is not just a watered-down 

version of the information available at higher thresholds. Although speed may be thought of 

as a less specific version of velocity (speed can be derived from velocity, but velocity is not 

uniquely specified by speed), speed and direction are independent quantities, and when we 

repeat our analyses using movement direction, we find direction and velocity have similar 

optimal thresholds (data not shown). Further, contrast cannot be derived from orientation, 

and we find the best threshold for orientation information is higher than for contrast. The 

primary characteristic influencing the optimal threshold of a parameter is whether it is 

represented homogeneously by the cortical population, or heterogeneously. The directional 

quantities, velocity and orientation, are heterogeneously represented, while the scalar 

parameters, speed and contrast, are homogenously represented.

Our results imply that even single electrodes might be useful for inferring the topography of 

tuning properties in brain areas where it is not known. By sweeping the event detection 

threshold and computing the SNR to various parameters of interest, some notion of the 

relative homogeneity of tuning to different parameters can be gained. Parameters that drive 

neurons in a heterogeneous, uncorrelated way over short spatial scales should be best 

represented at relatively high thresholds. In contrast, parameters whose tuning correlates 

over larger spatial extents should be better represented at lower thresholds. This knowledge 

could be critical in designing more effective extracellular recording experiments to reveal the 

nature of the information present in a given brain area.

Implications for online decoding

In many successful BCIs to date, information is extracted directly from sorted spikes 

recorded from chronically implanted extracellular electrodes. Although BCIs based on 

sorted spikes have shown impressive performance both in the lab (Wessberg et al 2000, 

Taylor et al 2002, Velliste et al 2008, Ethier et al 2012, Gilja et al 2012, Ifft et al 2013) and 

in controlled clinical trials (Simeral et al 2011, Collinger et al 2013), spike-sorting is widely 

acknowledged to be time-consuming, and hard to automate (Lewicki 1998). Because of 

these challenges, the spike-sorting step, once thought to be critical to BCI performance, may 

actually inhibit the translation of BCIs from the lab to the clinic. Here we add to that 

perspective by showing that better information extraction might be possible if thresholds are 

tuned for the parameter of interest, rather than set as if for spike sorting. The benefits should 

be especially salient for electrode channels where no identifiable single neuron is present.

The use of threshold crossings is becoming more prevalent in online decoding studies. This 

is not surprising given that in offline analyses multiunit activity and threshold crossings have 

yielded decoding performance and encoding fidelity that is comparable to or better than 

sorted spikes or local field potentials (Stark and Abeles 2007, Ventura 2008, Chestek et al 
2011, Kloosterman et al 2014, Malik et al 2014, Todorova et al 2014, Christie et al 2015, 

Perel et al 2015). Recently, we and others have begun to recognize the need to investigate 

threshold setting in a principled way. Christie and colleagues (Christie et al 2015) found 

optimal thresholds for decoding performance to be between 3–4.5 times the rms voltage 

(Vrms). Importantly, they only considered threshold settings from 3–18 × Vrms; they did not 

consider threshold crossings at lower threshold settings. A separate study by our team 
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included lower voltage fluctuations in their threshold crossings by using an approach similar 

to the exclusive windows analysis presented here, and found that threshold crossings at θ = 

3σ actually improved decoding as compared to only well-sorted spikes (Todorova et al 
2014). This result corroborates our finding that the low voltage fluctuations are not noise, 

but rather, they do contain useful information: speed-related information that is distinct from 

the velocity information present at higher thresholds. For the thresholds and parameters we 

considered, the optimal thresholds were lower than typically used in online decoding studies 

(Gilja et al 2012, Hochberg et al 2012, Sadtler et al 2014), suggesting that there is 

information available in extracellular recordings that is being discarded, and could be useful 

for improving BCI performance. Ideally, the detection threshold would be customized for 

each channel. In fact, each channel’s signal could be duplicated and thresholded separately 

for each parameter used in a BCI.

Notably, the thresholds that we found to be optimal are lower than thresholds typically 

reported in published studies. In M1, particularly for online BCI experiments using 

threshold crossings, a fixed threshold of θ = 4.5σ is commonly chosen (Gilja et al 2012, 

Hochberg et al 2012) presumably because it approximates spike sorting. Some of the best 

online BCI control has been achieved with this commonly chosen threshold. However, we 

observed only 14 of 67 (20%) channels that showed optimal velocity thresholds greater than 

or equal to θ = 4.5σ. This was even more apparent for speed, where only three channels had 

optimal thresholds at the level commonly chosen. Optimal thresholds are likely to depend on 

many factors, including recording quality and the age of the implant. It stands to reason that 

even better BCI decoding may be possible if the threshold is chosen with information 

content in mind.

Conclusions

Historically, neurophysiologists have processed extracellular voltage recordings to extract 

action potentials from isolated single neurons, essentially ignoring small amplitude voltage 

fluctuations. This makes sense if the focus is on a careful characterization of the properties 

of single neurons. However, if the goal is to get as much information as possible from a 

recorded signal, processing can only reduce available information (Cover and Thomas 

1991). Accordingly, we have shown that non-spike parts of the recorded signal, in particular 

the low voltage fluctuations, include useful information about some parameters, and should 

not be discarded as noise. Our results suggest that signal preprocessing in neurophysiology 

experiments deserves careful consideration: one approach does not necessarily fit all 

applications. For recordings from a given brain area, it would be advantageous to sweep a 

range of thresholds to find the optimal choice for the desired information and planned 

experiment. For applications that do not require real-time processing, there is value in 

streaming the entire raw voltage signal to disk for offline analysis, and then considering the 

information content at different threshold settings. The practice of adjusting the detection 

threshold to the parameter of interest may improve our ability to determine how the brain is 

organized to encode sensory information, and it may improve our ability to accurately 

decode motor intentions.
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Figure 1. 
Schematic of tasks and neural recordings. (a) During the M1 recordings, a monkey 

performed an 8-target center-out reaching task. An LED marker (red) was attached to the 

monkey’s finger tip to track his movements, which were displayed as a cursor on the screen 

(blue). The monkey made reaches from the center of the screen to one (green) of eight 

peripheral targets (gray). The array placement in M1 is shown by the green square. (b) 

During the V1 recordings, a monkey fixated on a central spot (white) while drifting Gabor 

patches were presented peripherally. The array placement in V1 is shown by the blue square. 

(c) Voltage trace from M1 during a single reach trial with detection threshold settings from θ 
= 10σ to −10σ. θ = 1σ (orange) is permissive, capturing low voltage transients. θ = 5σ (light 

blue) is more restrictive, capturing only high voltage transients which likely correspond to 

spikes from a single neuron. (d) Waveform snippets for threshold crossings of 1σ, 3σ, and 

5σ in C. As the threshold becomes more permissive (1σ, orange) there are more threshold 

crossings. As the threshold becomes more selective (5σ, light blue) the waveform becomes 
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more consistent. (e) Using the exclusive window categorization method, threshold crossings 

for the channel are identified when the voltage trace passes into and out of the window 

defined by a particular threshold without passing into higher-threshold windows. A 1σ 
window (orange) and a 3σ window (yellow) are shown in this example. If the voltage trace 

crosses the 1σ threshold but not the 3σ threshold, it is classified as a 1σ crossing. As 

indicated with the black circles, we can successfully select the larger voltage fluctuations 

with the exclusive θ = 3σ and we capture the smaller fluctuations with the exclusive θ = 1σ.
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Figure 2. 
SNR quantifies information content in M1. (a) Single channel example of threshold crossing 

activity as a function of reach. Each plot shows the number of threshold crossings in 100 ms 

bins for one of eight reach directions. The color indicates the number of threshold crossings, 

where the red scale is for θ = 1σ and the blue scale is for θ = 5σ. Each row is a trial. The top 

plots are for a permissive threshold (θ = 1σ) and the bottom plots are for a selective 

threshold (θ = 5σ). Average speed profiles for each reach direction are plotted in gray for 

reference. Note the strong directional tuning for θ = 5σ (with an upwards preferred 
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direction), and the strong speed modulation for θ = 1σ. Panels (b)–(f) step through the SNR 

calculation which we use to quantify this. (b) The observed number of threshold crossings 

(gray) is plotted against the corresponding reach speed for a permissive (left) and selective 

(right) threshold. In black, we show the linear regression. (c) We take the variance of Yθ (as 

described in equation (4), black in (b)) to be the signal and the variance of the residuals (εs 

as described in equation (4)) to be the noise. The histograms show the distributions of these 

measurements from which the variance is calculated. The signal (d) and noise (e) arising 

from these variance calculations vary with threshold. (f) Combining signal and noise, 

velocity and speed SNRs show an inverted-U shaped relationship with threshold with peaks 

at different thresholds. (g) A common metric of tuning in M1 is R2, plotted here for 

comparison.
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Figure 3. 
SNR in M1 depends on threshold. SNR dependence on threshold for three representative M1 

channels. At each threshold, SNR is computed separately for velocity tuning (green) and for 

speed tuning (black).
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Figure 4. 
Optimal thresholds for a given parameter differ across channels. (a) Normalized mean ± SE 

of SNR dependence on threshold for all 67 M1 channels with significant tuning. Velocity 

(green), speed (black). (b) Optimal thresholds for velocity (green) and speed (black). The 

arrows point to the channel shown in figure 2. (c) The per-channel difference between the 

optimal thresholds for velocity and speed. The mean ± SE is indicated by the dot with the 

line through it above the histogram. The mean is significantly different from zero (t-test, p < 

10−7).
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Figure 5. 
An exclusive window analysis reveals substantial information in small voltage fluctuations. 

(a) Using the exclusive window categorization method, threshold crossings for the channel 

depicted in figure 2 are identified when the voltage trace passes into and out of the window 

defined by a particular threshold without passing into higher-threshold windows. A 1σ 
window and a 3σ window are shown in this example. If the voltage trace crosses the 1σ 
threshold but not the 3σ threshold, it is classified as a 1σ crossing. As indicated with the 

black circles, we can successfully select the larger voltage fluctuations with the exclusive θ 
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= 3σ and we capture the smaller fluctuations with the exclusive θ = 1σ. (b) Waveform 

snippets corresponding to the xTCs for exclusive thresholds θ = 1σ (left) and θ = 3σ (right) 

for the channel shown in (a). (c) The SNR for velocity and speed at exclusive thresholds θ = 

1σ and θ = 3σ for the channel shown in (a). Note that the speed SNR is higher at θ = 1 than 

θ = 3 even though those waveforms look like noise.
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Figure 6. 
Distinct information is encoded by small and large voltage fluctuations. (a) SNR as a 

function of exclusive threshold (mean ± SE). Different information is contained in putative 

spikes classified with θ = 3σ and in the low voltage fluctuations at θ = 1σ. (b) The exclusive 

window SNR for exclusive windows of θ = 1σ and θ = 4.5σ (a threshold commonly chosen 

in BCI studies.) It is important to note that because of the exclusive nature of the thresholds, 

adjusting the high threshold also impacts the xTCs at the low threshold. Thus, the SNR at 1σ 
changes when the high threshold is different. This is not true for the inclusive thresholds 

used in the other analyses. (Data are from M1, n = 67.) Significant differences are indicated 

with * for p < 0.01 and ** for p < 10−4.
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Figure 7. 
A single V1 channel example of how contrast and orientation tuning change with threshold. 

(a) Each data point represents the number of threshold crossings from one representative 

electrode recorded during a single trial. For visualization purposes, the data points are 

jittered with respect to orientation angle or contrast, respectively. To highlight the tuning, the 

mean threshold crossings to each orientation are connected and plotted using the color 

scheme in figure 2 (orange = 1σ, yellow = 3σ, light blue = 5σ). These curves are overlaid on 

the same plot in (b). Note the log scale on the TC axis.
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Figure 8. 
SNR quantifies information content in V1. (a) The total number of threshold crossings is 

plotted against orientation angle for a single channel at a threshold of θ = 1. (For 

visualization purposes, the data points are jittered around the true orientation angle.) Signal 

is defined as the variance of the mean number of threshold crossings across each orientation 

(orange). Noise is defined as the mean of the variance of the number of threshold crossings 

across each orientation (black). (b) The calculations are performed at each threshold for 

orientation (blue) and contrast (red). Signal and noise both vary with threshold setting. The 
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orange dot highlights the values that come from the tuning curve in A. (c) Combining the 

relationships in B shows that SNR exhibits an inverted-U shaped relationship with threshold.
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Figure 9. 
SNR in V1 depends on threshold. (a) SNR dependence on threshold for orientation (blue) 

and contrast (red) for all V1 electrodes with significant tuning, n = 49 (normalized mean ± 

SE). (b) Optimal thresholds for encoding orientation and contrast. (c) The per-channel 

difference between the optimal thresholds for orientation and contrast. The mean ± SE is 

shown above the histogram. The mean is significantly different than 0 (t-test, p = 0.004), and 

significance still holds when the outlier at Δθ = 4σ is removed (p = 0.0045).
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Figure 10. 
Information content depends on the voltage detection threshold and the topographic scale of 

the parameter of interest. (a) A change in the detection threshold might change the effective 

sampling radius of the electrode. As we decrease the detection threshold of an electrode 

(move from blue to yellow to orange), we increase its effective sampling radius. (b) The 

relationship between effective sampling radius and the topographic scale of an encoded 

parameter. The black arrows represent a parameter that is encoded on a small scale. The gray 

regions represent a parameter that is encoded on a larger scale. The color scheme of the 

sampling radii is the same as above. (c) The information content of a signal depends on the 

threshold setting and the local topography such that a parameter encoded on a large scale 

(gray) has a lower optimal threshold than a parameter encoded on a small scale (black).
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