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Abstract

Studies of rare and common ilinesses have led to remarkable progress in the
understanding of the role of telomeres (nucleoprotein complexes at
chromosome ends essential for chromosomal integrity) in human disease.
Telomere biology disorders encompass a growing spectrum of conditions
caused by rare pathogenic germline variants in genes encoding essential
aspects of telomere function. Dyskeratosis congenita, a disorder at the severe
end of this spectrum, typically presents in childhood with the classic triad of
abnormal skin pigmentation, nail dystrophy, and oral leukoplakia, accompanied
by a very high risk of bone marrow failure, cancer, pulmonary fibrosis, and other
medical problems. In contrast, the less severe end of the telomere biology
disorder spectrum consists of middle-age or older adults with just one feature
typically seen in dyskeratosis congenita, such as pulmonary fibrosis or bone
marrow failure. In the common disease realm, large-scale molecular
epidemiology studies have discovered novel associations between ilinesses,
such as cancer, heart disease, and mental health, and both telomere length
and common genetic variants in telomere biology genes. This review highlights
recent findings of telomere biology in human disease from both the rare and
common disease perspectives. Multi-disciplinary collaborations between
clinicians, basic scientists, and epidemiologist are essential as we seek to
incorporate new telomere biology discoveries to improve health outcomes.
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Introduction

Telomeres are the nucleoprotein complex at chromosome ends
with essential roles in maintaining chromosomal integrity.
They shorten with each cell division because of incomplete rep-
lication of the 3" ends of DNA and thus are markers of cellular
aging. Over the last decade, there has been remarkable growth
in the breadth and depth of understanding the multiple roles of
telomere biology in human disease. At one end of the spec-
trum, very rare pathogenic germline genetic variants in telomere
biology genes cause exceedingly short telomeres, resulting in
dyskeratosis congenita (DC) and its related telomere biology
disorders. The other end of the spectrum consists of large-scale
population-based studies seeking to determine associations
between telomere length human disease, environmental exposures,
or common genetic variants as well as the interactions between
these factors.

The complexity of these interactions requires an integrated
understanding of telomere basic science, clinical medicine,
and epidemiology (Figure 1). Each of these topics is worthy

F1000Research 2018, 7(F1000 Faculty Rev):524 Last updated: 01 MAY 2018

of an in-depth critical review beyond the scope of this article.
Instead, I will highlight some key findings and methodologic
considerations and discuss where additional research is needed
to aid in understanding the contribution of telomere biology to
both rare and common human diseases.

Dyskeratosis congenita — a direct connection between
germline telomere biology and human disease

DC was first described in a 1906 case report of males with the
mucocutaneous triad of abnormal skin pigmentation, nail dys-
trophy, and oral leukoplakia (Figure 2)'. Additional similar
cases were reported, including the first female case in 1963°.
Patients with DC also have very high rates of bone marrow
failure; stenosis of the esophagus, urethra, or lacrimal ducts (or a
combination of these); head and neck squamous cell carcinoma
(HNSCC); myelodysplastic syndrome (MDS); acute myeloid
leukemia (AML); pulmonary fibrosis; liver disease; avascular
necrosis of the hips; and other medical problems (Table 1)°.
DC is inherited in X-linked recessive, autosomal dominant, or
autosomal recessive patterns.

Aging

]—{ Genetics H Environment

variants

Rare Common
Variants

Epigenetics

Figure 1. Factors associated with human disease are integrally connected to telomere biology. This schematic illustrates the complex
relationships between telomere biology, disease, aging, genetics, and environmental exposures, all of which should be considered in studies

of telomeres and human disease.

Figure 2. Mucocutaneous features of dyskeratosis congenita of an adult male whose disease is due to a DKC1 mutation. (A) Dystrophic
and ridged fingernails. (B) Hyper- and hypo-pigmented skin of neck and upper chest. (C) Irregular leukoplakia of the tongue.
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Table 1. Clinical features of telomere biology disorders.

Disorder
Dyskeratosis congenita (DC)

Revesz syndrome

Hoyeraal Hreidarsson
syndrome

Coats plus

DC-like

Aplastic anemia
Myelodysplastic syndrome

Acute myeloid leukemia
Pulmonary fibrosis

Liver fibrosis

Familial melanoma

Familial lymphoproliferative
disease

Li-Fraumeni-like syndrome

Key clinical features®

Mucocutaneous triad of nail dysplasia, abnormal skin pigmentation (hyper/hypopigmented, lacy,
reticular pigmentation), and oral leukoplakia. BMF, PF, PAVM, liver disease, avascular necrosis

of hips or shoulders (or both), urethral stenosis, lacrimal duct stenosis, esophageal stenosis,
HNSCC, MDS, AML, and/or developmental delay. Traditional diagnosis of DC: classic triad or one
of the triad, BMF, and two other findings’.

Features of DC plus bilateral exudative retinopathy. Intracranial calcifications and developmental
delay also reported.

Features of DC plus cerebellar hypoplasia. Immunodeficiency has been reported as presenting
problem.

Bilateral retinopathy, intracranial calcifications, leukodystrophy, anemia, osteopenia, and poor
bone healing

BMF, AA, MDS, or PF occurring in presence of at least one other DC-associated feature or family
history suspicious of DC

Progressive multi-lineage cytopenias, non-immune mediated. May occur in the absence of DC-
associated features.

Cytopenias with cellular dysplasia or clonal chromosomal translocations or both. May occur in the
absence of DC-associated features.

May progress from MDS or aplastic anemia. May occur in the absence of DC-associated features.
May occur in the absence of DC-associated features.

Non-alcoholic, non-infectious liver disease. May occur in the absence of DC-associated features.
Multiple family members with melanoma, often early age at onset

Multiple-affected family members with chronic lymphocytic leukemia, or non-Hodgkin lymphoma

Cancer family history notable for angiosarcoma and other cancers

“Key references are noted in Table 2. AA, aplastic anemia; AML, acute myeloid leukemia; BMF, bone marrow failure; DC, dyskeratosis
congenital; HNSCC, head and neck squamous cell carcinoma; MDS, myelodysplastic syndrome; PAVM, pulmonary arteriovenous

malformation; PF, pulmonary fibrosis.

The first DC genetic locus was mapped to Xq28 in 1996 and
specifically to mutations in dyskerin (encoded by DKCI) in
1999%°, The seminal work by Mitchell and Collins was the
first to show a connection between telomere biology and human
disease through aberrant dyskerin function and the resultant
very short telomeres now well known in patients with DC'.
Currently, DKC! mutations account for about 25% of classic
DC cases. A combination of candidate gene sequencing, genetic
linkage studies, and whole exome sequencing occurring over
the last 15 years has since identified at least 14 telomere
biology genes associated with DC or DC-like phenotypes:
telomerase holoenzyme complex (DKCI, TERC, TERT, NOPI0,
and NHP2), shelterin telomere protection complex (ACD, TINF2,
and POTI), telomere capping proteins (CTCI and STNI), and
other proteins that directly or indirectly interact with these key
cellular processes (RTELI, NAF1, WRAP53, and PARN) (Figure 3
and Table 2) (reviewed in 0).

The germline mutations in DC-associated telomere biology
genes result in very short telomere lengths for age (Figure 4).
This knowledge made it possible to develop a diagnostic test
for DC, flow cytometry with fluorescent in sifu hybridization
(flow FISH), in leukocyte subsets'”. Lymphocyte telomeres less
than the first percentile for age are more than 95% sensitive and

specific for differentiating patients with DC from their unaffected
relatives or patients with other inherited bone marrow failure
syndromes'*'*. In addition to aiding diagnosis, using telomeres
less than the first percentile for age has greatly added in
discovering the genetic causes of DC".

Telomere biology disorders — many names

connected by pathophysiology

The discovery of the multiple genetic causes and modes of
inheritance has led to a growing appreciation that there is a wide
range of clinical phenotypes associated with mutations in tel-
omere biology genes. This started with the identification of TERT
and TERC mutations in patients with apparently isolated aplastic
anemia or pulmonary fibrosis'*'®. As defined above, classic DC
is a complex multi-system disorder, but variable penetrance
and expressivity of the clinical manifestations have identified
a growing number of patients with one or a few features of
DC as well as germline mutations in telomere biology genes
and short telomeres (Table 1 and Table 2). This spectrum of
illnesses has been termed telomeropathy, short telomere syn-
dromes, or telomere biology disorders (TBDs)®'"’. The last
of these, TBD, was proposed and is favored because it is more
descriptive and reflective of the underlying biology that unites
these disorders®*.
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Figure 3. Proteins encoding key components of telomere biology associated with disease. Protein names are noted in the figure.
Associated disease and mode(s) of inheritance are shown in Table 1. The asterisk indicates proteins encoded by genes with single-nucleotide
polymorphisms associated with cancer. The pound sign indicates proteins encoded by genes with single-nucleotide polymorphisms
associated with telomere length.

Table 2. Germline genetics of telomere biology disorders.

Gene

DKC1
TERC

TERT

NOP10

NHP2

TINF2

WRAP53

crct

RTEL1

TERF2IP

PARN

ACD

STN1
POT1

NAF1

AA, aplastic anemia; AD, autosomal dominant; AML, acute myeloid leukemia; AR, autosomal recessive; CP, Coats
plus; DC, dyskeratosis congenita; FLPD, familial lymphoproliferative disease; FM, familial melanoma; HH, Hoyeraal-
Hreidarsson syndrome; LD, liver disease; LFL, Li-Fraumeni-like syndrome; MDS, myelodysplastic syndrome; PF,

Protein name(s)

DKCH1, dyskerin

hTr, telomerase RNA component
(encodes an RNA)

TERT, telomerase

NOP10, NOLA3, nucleolar protein
family A, member 3

NHP2, NOLA2 nucleolar protein
family A, member 2

TIN2, TERF1 (TRF1)-interacting
nuclear factor 2

TCABT, telomere cajal body
associated protein 1

CTCA1, conserved telomere
maintenance component 1

RTEL1, regulator of telomere
elongation helicase 1

RAP1, TERF2-interacting protein
PARN, poly(A)-specific
ribonuclease

TPP1, telomere protection protein 1

STN1, CST-complex subunit
POT1, protection of telomeres 1

NAF1, nuclear assembly factor 1
ribonucleoprotein

Disorder(s)

DC, HH
DC, AA, PF

DC, AA, MDS, AML,
PF LD, FM

HH
DC

DC

DC, HH, RS
DC, HH
CP,DC

PF, AA

DC, HH

FM

PF

DC, HH
AA, FM, FLPD
HH

CcP

FM, FLPD, LFL
cP

PF

pulmonary fibrosis; RS, Revesz syndrome; XLR, X-linked recessive.

Mode of
inheritance

XLR
AD

AD

AR
AR

AR

AD

AR

AR

AD
AR
AD
AD
AR
AD
AR
AR
AD
AR
AD

Year gene first associated
with any disease, relevant

reference(s)
1998*
2001 16.18.24

200516,17,25727

20077
2008%
2008
201130
2012:%

201340

2015%
20154245

20'1 441,46,47
2016
2016
201 447,50—52
2016%
2016%
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Figure 4. Schematic representation of the connections between age, telomere length, and human disease. Clinically significant
telomeres associated with telomere biology disorders are generally at or below the first percentile for age (blue shape). Many association
studies of telomere length and human phenotypes, including cancer, have identified statistically significant, but perhaps not clinically
significant, differences in telomere length between cases and controls (represented by yellow and red). Some studies have identified rare
families with germline mutations in components of the shelterin telomere protection complex as associated with longer telomeres (green
shape). AA, aplastic anemia; CLL, chronic lymphocytic leukemia; CP, Coats plus; DC, dyskeratosis congenita; FM, familial melanoma; HH,
Hoyeraal Hreidarsson syndrome; LD, liver disease; LFL, Li-Fraumeni-like syndrome; MDS, myelodysplastic syndrome; PF, pulmonary fibrosis;

RS, Revesz syndrome.

The most complex TBDs are those disorders presenting very
early in childhood, namely Hoyeraal Hreidarsson syndrome
(HH), Revesz syndrome (RS), and Coats plus®“". In addition
to having features of DC, patients with HH have cerebellar
hypoplasia and immunodeficiency, whereas those with RS also
have bilateral exudative retinopathy. Coats plus, a disorder
characterized by retinal and gastrointestinal vascular abnor-
malities, poor bone healing, leukodystrophy, and cerebellar
calcifications, joined the TBD spectrum when its primary cause
was identified as autosomal recessive CTCI mutations™***”.

The other end of the clinical spectrum includes patients with
middle or later age at onset of pulmonary fibrosis, liver disease,
or bone marrow failure and heterozygous germline mutations
in NAFI, TERT, TERC, PARN, or RTELI"'**¢' Additionally,
it is important to note that most patients do not have all of the
DC-associated medical complications. The mucocutaneous
triad is diagnostic but varies with the age of onset and is
usually progressive over time. Many patients, even members

of the same family, may present with just one feature but
develop more over time because of variable penetrance and
expressivity of germline telomere biology defects.

There is also a growing role of mutations in the shelterin com-
plex and cancer-prone families without DC-related clinical
manifestations. Heterozygous rare, pathogenic variants in POTI
resulting in longer telomeres have been reported in familial
melanoma, familial chronic lymphocytic leukemia (CLL), and
a Li-Fraumeni-like syndrome family’~. POTI somatic muta-
tions in CLL have also been associated with CLL outcomes®.
Familial melanoma has also been associated with germline
mutations in ACD (TPP1) and TERF2IP (RAPI1)*. These
studies suggest an interesting dichotomy in clinical phenotypes
resulting from long versus short telomeres.

Telomeres and cancer
Telomeres are closely connected to cancer biology because
of the role they play in chromosomal stability. There is a
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detailed body of work in this realm and only a few of the key
features will be highlighted herein as they have been reviewed

66-73

in detail elsewhere®*"".

The primary hypotheses connecting telomeres and cancer are
based on the fact that telomeres shorten with each cell divi-
sion”. In general, cellular senescence or apoptosis is triggered
when telomeres reach a critically short state. It likely takes just
one critically short telomere on one chromosome arm to trigger
these events as suggested in a TERC mouse model by Hemann
et al.”. A cellular survival advantage is gained through bypass-
ing apoptosis or senescence through the upregulation of
telomerase, inactivation of TP53 or RB or both, initiation of
alternative lengthening of telomeres (ALT), and other key bio-
logical pathways’®*. The continued division of cells originally
destined for death is hypothesized to lead to continued
accumulation of mutations, and sticky chromosome ends due to
abnormal telomeres can contribute to chromosomal aneuploidy.
Unchecked cellular growth can occur if these genetic aberrations
result in a growth advantage.

Activating somatic mutations in the TERT promoter have been
described in melanoma, bladder, thyroid, and some central
nervous system cancers’ ™. These somatic mutations in the
TERT promoter result in increased telomerase expression and
suggest that this activation could convey a growth advantage as
cancer cells continue to divide despite the presence of aberrant
telomeres.

Patients with DC/TBD have significantly increased risks of
MDS, AML, HNSCC, and other malignancies*~*°. The 2017
update of cancer in the National Cancer Institute Inherited Bone
Marrow Failure Syndrome cohort reported that cancer in patients
with DC occurs at an approximately four fold higher incidence
and a younger age than the general population®’. MDS and
AML occurred at 578- and 24-fold greater incidence, respec-
tively, than the general population. There was also an excess
of solid cancers in patients with DC with observed/expected
ratios of 74 for any HNSCC and 216 for tongue HNSCC®". The
mechanisms by which cancer develops in patients with DC/TBDs
is unknown and represents an important research opportunity.

F1000Research 2018, 7(F1000 Faculty Rev):524 Last updated: 01 MAY 2018

Cells of patients with TBD already have a “first hit” in a key
component of telomere biology. Studies of the next steps in
carcinogenesis in patient-derived cells could lead to important
insights into the carcinogenic process.

The advent of telomere molecular epidemiology
Telomere molecular epidemiology has emerged with the
development of high-throughput telomere length measure-
ment methods, genome-wide genotyping platforms, and keen
interest in the role of telomere biology in human disease™*.
These large, often population-based studies seek to determine
(1) whether telomere length is associated with disease,
(2) whether common genetic variants (that is, single-nucleotide
polymorphisms, or SNPs) are associated with telomere length,
(3) the degree to which SNPs contribute to telomere biology,
and (4) interactions between telomere length, SNPs, and disease
or phenotypes (Figure 1 and Table 3). Although a great deal of
excitement has been generated by these studies, it is important
to point out that differences in telomere length between cases
and controls in large population-based studies may be statisti-
cally significant but not clinically relevant. “Short telomeres”
in a large case-control or cohort study are still within the clini-
cally “normal” range and not nearly as short as telomeres
of patients with TBDs (Figure 4).

Robust and accurate telomere length measurement is at the
crux of all telomere length association studies. Blood or
buccal cell DNA telomere length has been evaluated in a wide
array of association studies, including cancer, cardiovascular
disease, mental health, inflammatory diseases, environmental
exposures, and many other settings. There are numerous meth-
ods to determine telomere length in tissues, single cells, and
DNA preparations, each appropriate for different applications and
reviewed extensively’’”'. Quantitative polymerase chain reaction
(qPCR) is amenable to large studies because it uses very small
amounts of DNA and can be scaled up rapidly””. However,
gPCR telomere assays generate a relative telomere length and are
very sensitive to DNA extraction methods and storage™. These
challenges have led to significant challenges in reproducing
data in case-control or cohort studies of qPCR relative telomere
length and phenotypes™. The telomere restriction fragment

Table 3. Features of robust telomere length association studies.

e Strong a priori hypothesis of why telomere biology might be important in disease of interest

e Comprehensive clinical phenotyping
e Accurately measured exposure of interest
e |Large sample size with power calculations reported

e Collection of samples prior to disease onset

e Detailed information on how samples were collected, processed, and stored

e Telomere length measurement methods described in detail, especially if any adaptations to published methods

e Accurate and reproducible telomere length measurement

e Strong statistical justification of association findings
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method uses restriction enzymes to cut the subtelomeric ends
of chromosomes in a DNA preparation and is most widely used
in basic science laboratories, although a few groups use it in
population-based studies””'.

Blood or buccal cell telomere length association studies
This section highlights just a few key topics within the grow-
ing literature of telomere length association studies. For
example, individuals of African ancestry have longer telom-
eres than those of European ancestry and thus ancestry should
be accounted for in analyses” . Since self-reported ancestry
can be quite variable, genomic approaches may be helpful in
classifying cases and controls in order to appropriately adjust for
ancestry.

There is also a growing understanding of associations between
environmental exposures and telomere length. Smokers have
shorter telomeres than non-smokers and thus it is important
to adjust for smoking in association analyses”. Associations
between prenatal exposures to smoking and air pollution as
well as exposure to certain occupational chemicals have also
been explored but with varying results'”~'®>. In each of these
studies, it is essential to precisely quantify the exposure of inter-
est in addition to using a robust and reproducible telomere
length measurement.

Early cancer-telomere length association studies suggested shorter
telomeres as a cancer risk factor'’'"” but studies of other can-
cers were not consistent'”*"'">, Meta-analyses found that most
studies with blood or buccal cell DNA collected prior to can-
cer diagnosis were null but that case-control studies were more
likely to find associations''*'"*. Similarly, a direct comparison
of prospectively and retrospectively collected DNA samples
from patients with breast or colorectal cancer reported that
telomere shortening occurred primarily after cancer diagnosis'®.
Many of these inconsistencies have been attributed to reverse
causation bias due to the presence of cancer, underlying inflam-
mation, or prior therapy at the time of sample collection''*''°.
Currently, the most consistent studies are those of longer
telomeres in pre-diagnostic samples of patients with lung
cancer and melanoma'’""’. Interestingly, shorter leukocyte
telomeres were associated with overall cancer mortality but not
with cancer in a large prospective study of 64,637 individuals
who developed 2,420 cancers'”.

There is a growing body of telomere length association stud-
ies and different aspects of mental health, including measures of
perceived stress in caregivers, exposure to early life adversity,
and in patients with schizophrenia, bipolar disorder, and
depression'”'='*°. The biological mechanisms underlying these
findings are unknown but current hypotheses include stress
responses inducing oxidative stress, resulting in DNA damage
and telomere shortening. Notably, abnormalities in brain devel-
opment are present in patients with HH (cerebellar hypoplasia),
RS (intracranial calcifications), and Coats plus (leukodystrophy
and intracranial calcifications)®. The only study to date of neu-
ropsychiatric complications in DC found higher-than-expected
occurrence of developmental delay and psychiatric disorders'”’.
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Studies of DC/TBD patients by psychiatrists and neurobiol-
ogists constitute an unstudied area highly likely to generate
important insights into telomere biology and brain development.

There is also a great deal of interest in using telomere length as
a measure of biological age and even in modulating telomere
length through lifestyle interventions. Numerous studies suggest
associations between lifestyle, exercise, and telomere lengths'>*-1%,
However, a recent review suggests that telomere length
in and of itself is not sufficient as a specific aging biomarker'**.

Current data consistently report shorter leukocyte telomeres
in individuals with atherosclerotic cardiovascular disease than
in unaffected controls'*~'*". The biology underlying this asso-
ciation is thought to be related to chronic inflammation and
oxidative stress coupled with aging of the vasculature. This
prompted Aviv et al. to propose a model whereby age-dependent
telomere shortening varies on the basis of the replicative needs
of the specific tissue'**'*. They hypothesize that skeletal mus-
cle (a minimally replicative cell type) may represent telomere
length closer to the time of birth and that the gap between
skeletal muscle and leukocyte (a rapidly dividing cell type) tel-
omere length attrition could serve to aid understanding of the
associations between telomere length and human disease with
each patient, in effect, serving as their own control. The first
such study testing this hypothesis showed that increased attrition
of telomeres in leukocytes was associated with atherosclerotic
cardiovascular disease'*".

Single-nucleotide polymorphisms, telomere biology genes,
and disease

The advent of genome-wide association studies (GWAS) opened
the door to understanding associations between common genetic
variants (that is, greater than 1% minor allele frequency, SNPs)
and human disease or phenotypes (Figure 5) (reviewed in
141). GWAS genotype hundreds of thousands of SNPs in thou-
sands of cases and controls and use methods to fine-tune risk
estimates through large-scale replication studies and polygenic
risk score computation'*’.

Numerous GWAS of cancer etiology have identified variants
in telomere biology genes as being associated with cancer risk
or outcomes. SNPs in the TERT-CLPTMIL locus on chromo-
some 5p15.33 are associated with multiple cancer types, includ-
ing lung, pancreatic, breast, bladder, ovarian, prostate, and
testicular germ cell cancers as well as glioma, melanoma, and
non-melanoma skin cancers'*~'“. There are specific regions
of this locus associated with different cancers, but these variants
do not specifically encode deleterious coding alleles in TERT.
They do, however, appear to be connected to telomere length
through long-range regulation of this locus'*’.

SNPs in RTELI are associated with glioma in large GWAS of
this rare brain cancer. The glioma-associated RTELI SNPs are
intronic, but functional studies have not yet been completed to
understand their potential functions'**-'*>. These findings are
intriguing because patients with DC or HH due to autosomal reces-
sive RTELI mutations often have abnormal brain development
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Figure 5. Relationship between telomere length, variant allele frequency, and human disease. The majority of genetic variants associated
with common disease have a minor allele frequency (MAF) greater than 1% and telomeres in the “normal” range (that is, between the 1st
and 99th percentiles for age). In contrast, genetic variants associated with rare and more highly penetrant disease are rare with MAF often
much less than 1% and the extremes of telomere length. AA, aplastic anemia; CLL, chronic lymphocytic leukemia; CP, Coats plus; DC,
dyskeratosis congenita; FM, familial melanoma; HH, Hoyeraal Hreidarsson syndrome; LD, liver disease; LFL, Li-Fraumeni-like syndrome;
MDS, myelodysplastic syndrome; PF, pulmonary fibrosis; RS, Revesz syndrome.

in the form of cerebellar hypoplasia®~"'*. Although the
specific genetic loci are different, it is intriguing to speculate
that there could be an important biological connection between
these findings.

In addition to GWAS of cancer or other illnesses, several GWAS
have been conducted to identify novel loci associated with
telomere length. SNPs in known telomere biology genes,
including TERT, OBFCI (encodes STNI1), CTCI, TERC,
NAFI, and RTELI, as well as genes not previously known to be
associated with telomere biology have been discovered'** '’
These studies illustrate the complexities of telomere length
regulation by showing that even common genetic variants, and
especially combinations of common genetic variants, are associ-
ated with telomere length in the general population.

The existence of telomere length GWAS in various popula-
tions set the stage for even larger studies using Mendelian
randomization methods in which telomere length—associated
SNPs serve as surrogates for telomere length'*®. One such study
used nine telomere length—associated SNPs to create a telomere
length surrogate score and found longer telomere length scores
associated with lung adenocarcinoma but not the other cancers'”.
Renal cell carcinoma, one of the cancers with reproducible

telomere length association data, was also studied using
nine telomere length surrogate SNPs and it was found that
genetically longer telomeres were associated with renal cell
carcinoma'®.

In 2017, a Mendelian randomization study of 16 telomere
length—associated SNPs from 103 GWAS with summary data
on 35 cancers and 48 non-neoplastic diseases found that geneti-
cally longer telomeres associated with elevated risk of many
cancers, including glioma, ovarian cancer, lung cancer, neurob-
lastoma, bladder, skin, testicular germ cell cancer and kidney
cancer, and endometrial cancer'®’. That study also found an
association between genetically shorter telomeres and the
risk of interstitial lung disease, celiac disease, abdominal
aortic aneurysm, and coronary heart disease but not of other
inflammatory or psychiatric diseases'®'.

Although several studies suggest that telomere length is associ-
ated with depression, one study using Mendelian randomization
and three SNPs—one each in TERT, TERC, and OBFCI—as
surrogates for telomere length in 67,000 individuals did not
find an association between depression and genetically shorter
telomeres'®>. These investigators used the same three SNPs to
investigate genetically predicted telomere length and risk of
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ischemic heart disease'®. They found small but statistically
significant associations in a dataset of 60,837 ischemic heart
disease cases compared with controls.

The studies briefly described above have generated a great
deal of enthusiasm but are not without limitations. In many
instances, qPCR was used to measure the telomere lengths in
GWAS and this assay can be variable between studies. The
sensitivity of the assay telomere length measurement and rela-
tively small contributions of SNPs to telomere length should be
considered in interpreting large-scale telomere length Mendelian
randomization studies.

The way forward

The connections between telomere biology and human disease
are complex and myriad and require a multi-disciplinary
approach to truly understand the clinically relevant data, impor-
tant basic science questions, and implications of epidemiologic
analyses (Figure 1). As protectors of chromosome ends, tel-
omeres are clearly integral to all aspects of cell biology. They
are markers of biological aging and are regulated by a wide range
of proteins.

Both very rare and very common germline genetic variants
in telomere biology genes are associated with human disease,
although the specific clinical phenotypes comprise a wide-
ranging disease spectrum. Inheritance of telomere length inher-
itance and epigenetic regulation are also important aspects of
telomere biology and should be incorporated into collaborative
studies of rare and common telomere phenotypes. Additionally,
optimization of telomere length measurement methods and
improved understanding of environmental factors contribut-
ing to telomere biology will be essential in order to thoroughly
understand these complexities. It is of the utmost importance
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for clinicians, epidemiologists, and basic scientists, all of whom
study telomeres for a wide variety of different yet important
reasons, to work together to build upon the expertise they each
possess and incorporate that into improved understanding of
telomere biology in human disease. This multi-disciplinary
approach will enable the discovery of therapeutics and disease
prevention modalities effective for patients with TBDs
and for the general population.
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