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Abstract

During an acute infection, antigenic stimulation leads to activation, expansion, and differentiation 

of naïve CD8 + T cells, first into cytotoxic effector cells and eventually into long-lived memory 

cells. T cell antigen receptors (TCRs) detect antigens on antigen-presenting cells (APCs) in the 

form of antigenic peptides bound to major histocompatibility complex I (MHC-I)-encoded 

molecules and initiate TCR signal transduction network. This process is mediated by 

phosphorylation of many intracellular signaling proteins. Protein O-GlcNAc modification is 

another post-translational modification involved in this process, which often has either reciprocal 

or synergistic roles with phosphorylation. In this study, using a chemoenzymatic glycan labeling 

technique and proteomics analysis, we compared protein O-GlcNAcylation of murine effector and 

memory-like CD8+ T cells differentiated in vitro. By quantitative proteomics analysis, we 

identified 445 proteins that are significantly regulated in either effector- or memory-like T cell 

subsets. Furthermore, qualitative and quantitative analysis identified highly regulated protein 

clusters that suggest involvement of this post-translational modification in specific cellular 

processes. In effector-like T cells, protein O-GlcNAcylation is heavily involved in transcriptional 

and translational processes that drive fast effector T cells proliferation. During the formation of 

memory-like T cells, protein O-GlcNAcylation is involved in a more specific, perhaps more 

targeted regulation of transcription, mRNA processing, and translation. Significantly, O-GlcNAc 

plays a critical role as part of the “histone code” in both CD8+ T cells subgroups.
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Graphical Abstract

CD8+ T cells are central players in cell-mediated immunity. Following an acute infection, 

antigenic stimulation leads to activation, expansion, and differentiation of naïve CD8 + T 

cells into effector cells. Armed effector cells secrete cytotoxins, such as perforin and 

granzymes which are stored in specialized lytic granules, and cytokines (e.g., IFN-γ and 

TNF-α),1,2 to provide effective pathogen control. The T-cell response peaks around days 

7-10 after a high proliferation phase largely driven by interleukin-2 (IL-2). A contraction 

phase follows this response peak, after which only a small fraction of CD8+ T cells survive 

(5–10% of the antigen-specific cells present at the peak of the effector response) leading to 

long-lived memory cells.3,4 Memory CD8+ T cells are maintained via homeostatic 

proliferation driven by cytokines IL-7 and IL-15.5–8 For these reasons, IL-2 or IL-7/IL-15 is 

often used in in vitro activation assays to generate effector- or memory-like CD8+ T cells, 

respectively.

T-cell activation via the engagement of the TCR results in a cascade of phosphorylation 

events on lymphocyte protein tyrosine kinase (Lck), immunoreceptor tyrosine-based 

activation motifs (ITAMs), or the zeta-chain associated protein kinase (ZAP-70), which 

promote recruitment and phosphor-ylation of the downstream adaptor or scaffold proteins 

that trigger T cell phenotypic changes.1 Having a reciprocal or synergistic relationship with 

protein phosphorylation, protein O-GlcNAc modification is another dynamic modulator of 

cellular signaling pathways.9,10 O-GlcNAcylation adds β-D-N-acetylglucosamine to serine 

or threonine residues of nuclear and cytoplasmic proteins.11 The addition and removal of 

this monosaccharide is a reversible process catalyzed by two enzymes, O-GlcNAc 

transferase (OGT) and O-GlcNAcase (OGA), respectively.12 Being dynamic in nature, 

coupled with its ability to quickly respond to metabolic changes, and its interplay with 

phosphorylation, positions this form of glycosylation to integrate environmental information 

and participate in multiple regulatory pathways. Functional roles identified for O-GlcNAc 

modification include nutrient sensing, protein stabilization, and transcriptional regulation.13 

Aberrant O-GlcNAc modification has been implicated in pathologies of metabolic14 and 

neurodegenerative diseases,15,16 as well as in cancers17 and autoimmunity.18

However, the role of O-GlcNAc in the immune system has barely been explored. Early 

studies using in vitro activated splenocytes and T cell hybridomas with Concanavalin A and 

Phorbol 12-myristate 13-acetate revealed an increase in O-GlcNAcylation upon T-cell 

activation.19 Notch, TCR, and c-Myc were later found to be key regulators of T-cell protein 

O-GlcNAcylation via regulation of glucose and glutamine transport.20 It is also known that 

OGT is essential for T cell activation.21 A current model proposes that activation of T cells 
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through the TCR leads to the association of transcription factors, the nuclear factor of 

activated T cells (NFAT) and the nuclear factor-κB (NF-κB), to OGT, resulting in their 

modification by O-GlcNAc. Glycosylation enhances their nuclear translocation, leading to 

increased transcriptional activation of many genes including IL-2.21–23

Despite the clear relevance of protein O-GlcNAcylation in T-cell biology, we have identified 

only one published study reporting the profiling of O-GlcNAcylated proteins in T cells. In 

2016, using tetraacetylated N-Azidoacetyl galactosamine (Ac4GalNAz) as the metabolic 

substrate, the Davis laboratory characterized O-GlcNAcylated glycoproteins in in vitro 
activated human T cells.24 This study confirmed that T-cell activation resulted in a global 

elevation of O-GlcNAc levels, and in the absence of O-GlcNAc, IL-2 production and 

proliferation were compromised.24 Although this study identified more than 200 O-GlcNAc 

modified proteins, many of which have functional relevance to T-cell activation, 

identification was by no means exhaustive. Importantly, metabolic labeling using 

Ac4GalNAz as a substrate is complicated by nonspecific incorporation of this unnatural 

sugar into other sectors of glycans, as well as competition with the natural pool of UDP-

GlcNAc, leading to an inaccurate representation of abundance based on the different 

activities of OGT and OGA for different substrates.25,26 In addition, to the best of our 

knowledge, no comprehensive profiling of protein O-GlcNAcylation in memory T cells has 

ever been reported in the literature.

In this study, we used a combination of chemoenzymatic glycan labeling and proteomic 

techniques to compare protein O-GlcNAcylation in in vitro differentiated murine effector- 

and memory-like CD8+ T cells. By qualitatively and quantitatively comparing protein O-

GlcNAcylation from effector- and memory-like T cells, we found a few highly regulated 

protein clusters and pathways that are involved in the formation of T-cell effector or memory 

functions.

RESULTS AND DISCUSSION

In Vivo Activated Effector CD8+ T Cells Elevate the O-GlcNAc Glycosylation Level

We used the well-established murine model of Listeria monocytogenes (LM) infection to 

study changes in O-GlcNAcylation upon activation of CD8+ T cells.27 Wild type C57BL/6J 

mice were infected with LM, and 7 days later, at the peak of T cell activation, we analyzed 

O-GlcNAcylation patterns in spleen sections using a two-step chemoenzymatic labeling 

method. This method is a slight modification of the protocol originally developed by Hsieh-

Wilson and co-workers;28 it exploits a β1–4 galactosyltransferase mutant (GalT1 Y289L) to 

incorporate an N-(4-pentynoyl)-alkyne galactosamine (GalNAl) to the GlcNAc motif in O-

GlcNAc modified proteins. The alkyne tag is then derivatized via the ligand accelerated 

copper(I)-catalyzed alkyneazide cycloaddition (CuAAC) with an azide-biotin probe for 

detection (Figure 1A).29–31 Applying this method to histological samples,32 we found that 

LM infection led to a significant elevation in O-GlcNAc expression in the spleen, and the 

increased O-GlcNAc was primarily found in the white pulp, a region which contains mainly 

lymphocytes such as T cells and B cells (Figure 1B, costained with B220 antibody for B-

cells). Next, CD8+ T cells were enriched from spleens of naïve or infected mice, fractioned, 

and probed with an O-GlcNAc-specific antibody (RL2). Infection with LM led to an 
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upregulation of global O-GlcNAc levels, and protein O-GlcNAcylation was primarily found 

and enriched in the nuclear fraction of CD8+ T cells (Figure 1C).

O-GlcNAc Levels Are Elevated for in Vitro Differ-entiated Effector and Memory-like CD8+ T 
Cells

We subsequently assessed changes in protein O-GlcNAcylation status upon in vitro 
differentiation of naïve CD8 + T cells into effector- and memory-like cells using TCR 

transgenic OT-1 T cells that recognize the chicken ovalbumin (OVA) derived epitope 

OVA257-264 (SIINFEKL) in the context of the MHC class I H-2Kb.33 Splenocytes from OT-1 

mice were incubated with OVA257–264 for 3 days. CD8+ T cells were then enriched and 

subjected to cytokine-mediated differentiation. IL-2 was used to generate effector-like T 

cells, whereas IL-7 and IL-15 exposure was used to yield memory-like T cells (Figure 2A).5 

Activation and differentiation into effector- and memory-like T cells were confirmed by cell-

surface activation marker staining and flow cytometry analysis (Figure S1). In naïve T cells, 

protein O-GlcNAcylation was only detectable in the nuclear fraction. Upon activation, an 

increase in O-GlcNAcylation was observed and became detectable in both cytoplasmic and 

nuclear fractions with higher levels of O-GlcNAcylation found in the nucleus. In effector-

like CD8+ T cells, O-GlcNAc exhibited similar patterns of upregulation (Figure 2B) as 

reported for T-cell hybridomas and for in vitro anti-CD3/CD28 activated primary murine and 

human T cells.19,20,24 Interestingly, higher levels of cytoplasmic and nuclear O-GlcNAc 

were observed in memory-like CD8+ T cells compared to naïve untreated or effector-like 

CD8+ T cells, despite the fact that memory T cells are known to return to a more resting 

state similar to naïve cells.3 Memory-like CD8+ cells also expressed high levels of protein 

O-GlcNAcylation with high molecular weight (>130 kDa), which were less abundant in 

effector-like cells. These observations may suggest a permanent change that is unrelated to 

transient activation and may be related to the memory T cell priming that allows them to 

respond faster to new immune challenges.

Identification of Protein O-GlcNAcylation Differences between Effector- and Memory-like 
CD8+ T Cells

We then proceeded to enrich O-GlcNAc-modified proteins from these in vitro differentiated 

effector and memory-like CD8+ T cells using chemoenzymatic glycan labeling with a 

similar procedure as shown in Figure 1A in which UDP-GalNAz was used as the nucleotide 

donor since it has been proved to be more effective for protein labeling in solution (Figure 

S2). The ligand-assisted CuAAC was used to introduce a biotin tag to O-GlcNAc modified 

proteins, followed by enrichment with immobilized streptavidin and on-bead digestion with 

trypsin. Tryptic digested peptides from both effector and memory-like T cell pull-downs 

were labeled by either a light or heavy dimethyl tag using previously published methods.34 

Negative controls for both effector-like and memory-like cells were prepared in the same 

manner, except the GalT1 enzyme was omitted during the chemoenzymatic labeling step. To 

set the threshold of background signals, negative controls were labeled with a medium 

dimethyl tag. Effector (labeled with heavy dimethyl tag), memory (labeled with light 

dimethyl tag), and negative control peptides were analyzed simultaneously by mass 

spectrometry using previously published protocols.34 In total, six analyses, three biological 

replicates in technical duplicates, were performed. Acquired mass data were searched 
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against the Uniprot mouse (Mus musculus) reference database (2016-01-01) using 

ProLuCID.35 The identified results were filtered by 1% protein level FDR and then 

quantified by comparing heavy, medium, and light signals. Each protein identification was 

assigned a calculated confidence score. We detected a total of 1904 proteins and then refined 

our results by removing 1459 proteins that were not significantly (p > 0.05) enriched in 

memory- and effector-like samples when compared to negative controls.

Our analysis identified 445 unique proteins; 116 proteins of these were identified with two 

or more quantitation values and thus assigned to the high-confidence group. Table 1 shows a 

selection of relevant proteins from this group. The full list and analysis of identified proteins 

can be found in the Supporting Information Tables S1 and S2, and raw data can be found in 

the SI spreadsheet). Within the high confidence group, two proteins were found with higher 

abundance in effector-like T cells. Nineteen were found primarily in memory-like T cells, 

and the rest were found in both groups without significant enrichment for one or the other. 

Table 1 also shows the cellular location and protein function assigned to each protein, as 

well as relevant pathways the proteins are part of as reported in the Ingenuity Knowledge 

Database. On the basis of the known cross-talk between O-GlcNAc and phosphorylation, we 

have included a report on whether each protein is known to be phosphorylated according to 

UniProt records. Remarkably, 81% (94/116) of the high confidence identified proteins and 

72% of the total identified (219/445) are known to be phosphorylated.

An efficient way to validate our results is to cross-reference our identified proteins with 

published reports. We compared our results with six publications of O-GlcNAc 

glycoproteomics including the data set from the aforementioned human CD8+ T cell report,
24 as well as data obtained from brain extracts,37,38,40 osteoblasts,39 and HEK 293 cells.36 

These reports compile O-GlcNAc enriched proteins and directly O-GlcNAc modified 

peptides prepared using various enrichment protocols including immunoprecipitation, lectin 

enrichment, and metabolic labeling followed by either direct click-on resin or click reaction 

to an affinity probe for avidin enrichment. Greater than 65% (76/116) of the identified 

proteins with high confidence and 55% of total proteins (243/445) have been previously 

reported in other studies, further validating our data.

Our experiment recognized proteins that have been positively identified and particularly 

studied for their O-GlcNAc modification such as Sp1,41 which is also a critical element for 

the activation of lymphocytes,42 or Hcfc1, which acts as a key regulator of 

gluconeogenesis43 and has also been implicated in the progression of viral infections via its 

interaction with OGT.44 We also identified previously unreported proteins with critical roles 

such as the protein disulfide-isomerase (P4hb), which participates in the unfolded protein 

response pathway and has been shown to be differentially expressed in activated T cells with 

different functional phenotypes.45,46 Another example is the cytoplasmic serine tRNA 

synthetase (Sars), which is involved in tRNA charging; while the role of Sars has not been 

specifically explored in T cells, other tRNA synthetases have been implicated in immune 

diseases such as idiopathic inflammatory myophaty, interstitial lung disease, or rheumatoid 

arthritis. Furthermore, alternative functions for some tRNA synthetases have emerged in 

critical pathways to T cell biology such as the ERK signaling pathway or glucose 

metabolism.47

Aguilar et al. Page 5

ACS Chem Biol. Author manuscript; available in PMC 2018 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We further performed gene ontology enrichment analysis on the list of proteins identified 

with high confidence using both Panther48 and Enrichnet49 (Figure 3). Results from 

enrichment analysis are shown in Figure 3A with a plot displaying the protein clusters by the 

different categories (molecular function, biological processes, or cell compartment) 

according to the confidence of identification and the fold enrichment compared with the 

whole genome. The breakdown for the first two hierarchical levels of gene ontology analysis 

for each category can be seen in Figure 3B. Regarding cellular component localization of O-

GlcNAc-enriched proteins, a large number of proteins belong to the organelles, particularly 

the nucleus, or to macromolecular complexes, primarily protein-DNA complexes or 

ribonucleoprotein complexes, as expected from previous publications. For molecular 

function, a large portion of proteins are classified as catalytic or binding function; while the 

former is evenly distributed among enzyme categories, most of the binding function is 

related to nucleic acid binding, in a similar fashion to the findings from human T cells 

proteomics results.24 The primary category for biological processes is related to metabolism; 

however, there are a significant number of proteins related to the organization of cellular 

components, cell cycle, and cell communication.

While confident assignment of higher abundance to effector or memory groups could only 

be done for 21 of the reliably identified proteins, the majority of proteins were detected in 

both groups. Figure 4A shows the percentage distribution for signal intensity between 

effector-like (blue) and memory-like (orange) groups when normalized to 100%. We 

performed a K-mean clustering based on the STRING-DB correlation scores of each protein 

pair and identified protein clusters in each group that begin to suggest relevant functions of 

protein O-GlcNAcylation for effector-like T cells, memory-like T cells, or for both cell types 

(Figure 4B). Several protein clusters were found to be specifically enriched in effector T 

cells, including the ribosomal protein cluster (Rps2, Rps10, Rpl15, Rpl18a, and Rpl7), 

minichromosome maintenance (MCM) protein complex cluster (Mcm3, Mcm5, and Mcm6), 

and the 14-3-3 protein family (Ywhae, Ywhag, and Ywhab). The MCM protein complexes 

are known to be involved in initiating genome replication,50,51 and both ribosomal and 

MCM clusters possibly reflect the fast proliferation rates of effector T cells. The 14-3-3 

protein family is known for multiple cellular functions including cell cycle regulation, 

signaling, and possibly T cell activation.52 While the regulation of activity by O-GlcNAc 

modification of 14-3-3 ligands has been explored,53,54 there is still no evidence on how the 

direct modification of these proteins affects their activity.

One of the predominant clusters found in memory-like T cells contains several tRNA 

synthetases (Sars, Eprs, and Vars). While the main function of these proteins is tRNA 

charging with their respective amino acids for use during protein synthesis, new studies have 

found that some members of the tRNA synthetase family have secondary, nontranslational 

functions that are critical for cellular processes such as protein synthesis and signaling, and 

that the switch between functions is mediated by phosphorylation.55,56 While unravelling 

the role of O-GlcNAc modification for these proteins in the context of memory T cell 

formation will require targeted research, the potential impact of this post-translational 

modification is quite clear. Another memory-related cluster involves splicing factor (sf1), 

cell division and apoptosis regulator protein 1 (ccar1), and splicing factor 3A subunit 1 

(sf3a1), a network that suggests regulation of mRNA processing.
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The main cluster identified for equal contributions between effector- and memory-like T 

cells consisted primarily of histones, perhaps unsurprisingly since O-GlcNAc is considered 

now part of the histone code that helps regulate higher-order chromatin structure and 

epigenetic memory.57 Overall, the analysis depicted in Figure 4 suggests that protein O-

GlcNAcylation specifically enriched in effector-like CD8+ T cells are heavily involved in the 

transcription and translation processes that drive fast proliferation. It also suggests that the 

O-GlcNAc modification has a more specific, perhaps more targeted regulation of 

transcription, mRNA processing, and translation during memory T cell formation, while 

maintaining its critical role as part of the “histone code” in both T cell subgroups.

Conclusion

In this study, we have compared the O-GlcNAc modification of murine effector- and 

memory-like CD8+ T cells differentiated in vitro using chemoenzymatic glycan labeling and 

proteomics analysis. We have identified 445 unique proteins, of which >70% are known to 

be phosphorylated and 45% of which have not been previously reported in O-GlcNAc 

enrichment studies. By comparing identified proteins from both effector and memory-like T 

cells qualitatively and quantitatively, we have found some highly regulated protein clusters 

that suggest involvement of this post-translational modification in particular processes for 

different types of CD8+ T cells, such as mRNA processing for memory T cells and 

transcription and translation for effector T cells. To the best of our knowledge, this is the 

first comprehensive profiling of O-GlcNAc-enriched proteins in memory-like T cells. 

Overall, our findings confirm the importance of O-GlcNAc modification in T cell biology 

and identify new modified proteins in CD8+ T cell subsets that can begin unravelling the 

specific mechanisms by which O-GlcNAc affects T-cell biology.
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Figure 1. 
Elevated O-GlcNAc levels for in vivo activated T cells. (A) Schematic representation of a 

two-step chemoenzymatic O-GlcNAc detection. Transferring of alkyne bearing galactose 

from UDP-GalNAl donor using GalT1(Y289L), followed by CuAAC using the BTTP-Cu(I) 

catalyst and an accelerated biotin-azide probe.29–31 (B) Chemoenzymatic staining of O-

GlcNAc in 5 μm spleen FFPE tissue sections from naïve or 7-dpi with LM mice. Red = 

chemoenzymatic O-GlcNAc detection, cyan = B220 antibody B-cell detection, blue = DAPI 

nuclear stain. Scale bar = 100 μm. (C) Cell fractions from CD8+ T cells isolated from 

C57BL/6 naïve or 7-dpi with LM mice were probed for O-GlcNAc expression using 

antibody RL2. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and Poly (ADP-

ribose) polymerase (PARP) were used as loading controls for the cytoplasmic and nuclear 

fractions respectively.

Aguilar et al. Page 11

ACS Chem Biol. Author manuscript; available in PMC 2018 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Expression of elevated levels of O-GlcNAc by in vitro differentiated CD8+ T cells. (A) 

Workflow for in vitro CD8+ T cell differentiation. Total splenocytes from OT-1 mice are 

exposed to SIINFEKL peptide for 3 days, followed by CD8+ T cell enrichment and 

treatment with either IL-2 to generate effector-like T-cells or IL-15 and IL-7 to generate 

memory-like T cells. (B) Cell fractions from OT-1 CD8+ T cells, naïve or in vitro activated 

and differentiated into effector-like or memory-like T cells, analyzed for O-GlcNAc 

expression with RL2 antibody.
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Figure 3. 
Gene ontology analysis of reliable O-GlcNAc-enriched proteins. (A) Plot of identification 

confidence vs fold-enrichment by gene ontology for protein clusters according to molecular 

function (red), biological processes (blue), or cell component (green). (B) Gene ontology 

with first two levels of analysis for reliably O-GlcNAc-enriched proteins according to 

cellular component, molecular function, or biological process.
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Figure 4. 
Contributions from memory/effector groups and network analysis of high-confidence 

identified proteins. (A) Plot of high-confidence identified proteins sorted by normalized 

signal contribution from highest effector-like sample percentage to highest memory-like 

contribution. Overlaid dots reflect normalized confidence of identification as defined by x 
axis. (B) STRING network analysis. Color of nodes defined by their percentage of memory 

(orange)/effector (blue) detection. Node size is proportional to the abundance, and connector 

thickness reflects strength of the known interaction. Main networks identified for primarily 

memory, effector, or both groups.
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