
Machine Learning Force Field Parameters from Ab Initio Data

Ying Lia, Hui Lib, Frank C Pickard IVc, Badri Narayanand, Fatih Send, Maria K. Y. Chand,e, 
Subramanian Sankaranarayanand,e, Bernard R. Brooksc, and Benoît Rouxb,e

aLeadership Computing Facility, Argonne National Laboratory, IL 60439, USA

bDepartment of Biochemistry and Molecular Biophysics, University of Chicago, IL 60637, USA

cLaboratory of Computational Biology, National Heart, Lung and Blood Institute, National 
Institutes of Health, Bethesda, Maryland 20892, USA

dCenter for Nanoscale Materials, Argonne National Laboratory, IL 60439, USA

eComputational Institute, University of Chicago, IL 60637, USA

Abstract

Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to explore a 

polarizable force field parameters using only ab initio data from quantum mechanics (QM) 

calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and 

DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density 

and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4,943 

dimers electrostatic potentials and 1,250 clusters interaction energies for methanol. Excellent 

agreement between the training dataset from QM calculations and the optimized force field model 

can be achieved. Better results are achieved by introducing an offset factor during the machine 

learning process to compensate for the discrepancy of the QM calculated energy and the energy 

reproduced by optimized force field, where the offset factor maintain the local “shape” of the QM 

energy surface. Throughout the machine learning process, experimental observables were not 

involved in the objective function, but were only used for model validation. The best model, 

optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better 

than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to 

match liquid properties. The present effort shows the possibility of using machine learning 

techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy 

to optimize force field parameters described here could easily be extended to other molecular 

systems.
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INTRODUCTION

Classical simulations based on detailed atomic models and molecular mechanical (MM) 

potential functions are increasingly playing an important role in physics, chemistry, 

biochemistry, and materials science. To obtain meaningful results, the accuracy of the 

potential function, or force field, underlying such molecular dynamics (MD) simulations is 

of critical importance.1–8 The simple force fields that are widely used for biomolecular 

simulations, in particular, are empirically optimized to reproduce a number of calculated 

quantum mechanics (QM) and experimental properties.4 While such an empirical approach 

can provide atomic models of useful accuracy, they can do so only if the simulated system of 

interest is built from the set of previously parameterized chemical functionalities. This has a 

critical impact on the predictive power of MD simulations in general. For instance, in the 

absence of any prior knowledge from experiment, it is unclear if the properties of a neat 

liquid of a compound comprising previously untreated atom types could be reliably 

predicted. A force field that requires an empirical calibration against experimental data is 

expected to be inherently more limited when applied to systems that depart from a pre-

defined set of chemical functionalities.8

The primary objective of the present study is to test the ability of machine learning (ML) 

techniques with the genetic algorithm (GA) to parameterize a polarizable force field by 

relying exclusively on ab initio QM data. A central question that we are trying to answer 

with the present effort is whether the resulting model can accurately predict neat liquid 

properties of a compound over a range of temperatures from only QM data, without any a 
priori information from experiment. The general idea that one could develop molecular 

potential functions from first principles QM data rests on ideas from early efforts by 

Clementi and co-workers in the 1970’s.9 They constructed an additive force field model by 

fitting the potential energies for the water dimer in various geometrical configurations 

calculated using the QM configuration-interaction method. However, the resulting MCY 

model did not accurately simulate liquid water. In retrospect, a serious limitation was the 

total neglect of many-body (MB) effects. To test our ML/GA strategy, it is important to 

choose a functional form that incorporates a correct physical representation of many-body 
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effects and that provides an accurate description of physicochemical properties of the 

condensed phase. Force fields that explicitly account for induced electronic polarization 

offer a step in the right direction.10–16 While non-polarizable additive force fields used in 

biomolecular simulations, which represent polarization in an average manner with effective 

fixed partial charges, can achieve a reasonably accurate representation of the condensed 

phase, they do so as the result of numerous empirical compromises.4, 17 Consequently, it is 

possible that the functional form of non-polarizable additive force fields might be too limited 

to achieve the desired physical accuracy over a range of thermodynamic states.

Different functional forms of polarizable force fields have been proposed for simulating 

chemical and biomolecular systems. Those polarizable force fields include models based on 

classical Drude oscillators,16, 18–19 the CHARMM charge equilibration (CHEQ) model 

based on fluctuating partial charges,15 the AMBER ff02 based on inducible dipoles,20 and 

the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) 

force field.21–22 While most models remain at the level of atomic point charges, the 

AMOEBA force field further incorporates static field contributions from atomic dipoles and 

quadrupoles. More recently, there has been considerable progress in the design of potential 

energy functions to simulate water by building upon rigorous representations of the many-

body expansion of the interaction energies.23–25 Schmidt and collaborators have advanced a 

strategy on the basis of the symmetry-adapted perturbation theory (SAPT) methodology,
26–27 yielding models with relatively good properties for dense liquid systems. Similarly, the 

latest SAPT models may need to incorporate Axilrod−Teller three-body dispersion and 

exchange to yield accurate models of dense systems.28 Similarly, the MB-pol model 

developed by Paesani and co-workers has demonstrated that it is possible to achieve high 

accuracy across all phases of water through a quantitative and physically correct 

representation of both short- and long-range many-body contributions.25 Of particular 

importance, the MB-pol model incorporates many-body van der Waals interactions. 

Considerations of explicit multi-body van der Waals terms go back to early work by Mezei29 

and Clementi.30–31 However, it is not yet clear whether such a rigorous treatment of many-

body effects could be routinely implemented with more complicated molecules. The present 

effort, we have chosen to work with the AMOEBA functional form because of its relative 

mathematical simplicity and flexibility.

We have chosen the methanol molecule to explore the feasibility of our ML/GA 

parameterization strategy. This choice is motivated by the observation that methanol 

represents a molecule of sufficient complexity comprising both a hydroxyl polar group, able 

to form hydrogen bonds, as well as a bulky non-polar alkyl group.32 The competing nature 

of these interactions makes methanol an excellent test case to explore the feasibility of our 

ML/GA strategy to generate force field parameters that relies exclusively on QM data.

METHODS

The complete functional form of the AMOEBA force field has been described in detail 

elsewhere.21, 33 The present focus is mainly on the non-bonded electrostatic and van der 

Waals (vdW) interaction parameters. Because the internal covalent interaction (bond, angle, 

dihedral and torsional parameters) are not expected to greatly affect the properties of the 
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condensed liquid phase, they remained unchanged from the original AMOEBA force field 

(amoeba09.prm).22 To compute the electrostatic energy (Eelec) between methanol molecules, 

the AMOEBA force field requires 44 independent parameters. Those parameters are 

monopole (q), dipole (μx, μy, μz), quadrupole expressed as a traceless symmetric matrix with 

five independent elements (Qxx, Qyx, Qyy, Qzx, Qzy), atomic polarizability (α) for the four 

methanol atom types (O, C, HC, and HO). A unique Thole damping factor (a) was used for 

all atoms, following the AMOEBA convention. The AMOEBA force field represents the 

vdW interactions as a buffered 14-7 potential.34 To compute the vdW energy (EvdW) 

between methanol molecules, the functional form requires 10 parameters. Eight of those 

parameters are the Rmin, and εmin for the four atoms types of methanol. Finally, two 

additional parameters (the so-called reduction factor λ) are required to scale the position of 

the two hydrogen atoms interaction site along their corresponding covalent bond.14

Force field parameterization, i.e. the determination of the optimal parameters associated with 

a complex functional form, is a challenging optimization problem in a space of high 

dimensionality. Local optimization approaches generally carry out this task by attempting to 

minimize an objective function using a simple gradient-based algorithm (e.g., steepest 

descent, conjugate gradient method),35–36 and are only effective if the starting point is 

sufficiently close to a satisfactory solution. However, even with pre-existing knowledge 

about the objective function and the parameter space, a number of problems can arise. For 

example, the convergence to optimal parameters is not guaranteed when the objective 

function is rugged, non-differentiable, or when the initial value deviates significantly from 

the global minimum. Ultimately, the range of parameter values that must be explored grows 

dramatically as the complexity of the force field functional form increases. Here, to 

overcome the challenge encountered with force field parameterization using ML techniques, 

we have used the genetic algorithm (GA), which is an evolutionary algorithm that mimics 

the process of natural selection.37 Previous successful applications of the genetic algorithm 

in similar contexts include the determination of the parameters for the ReaxFF reactive force 

field,2–3, 5 and various force fields including Morse+QEq charge transfer ionic potential 

(CTIP),6 and a new hybrid bond-order potential (HyBOP) for materials system.2–3, 5–6, 38–39

In the present work, electrostatic parameters were determined in a first stage, and vdW 

parameters were optimized in a second stage (i.e., the electrostatic parameters were kept 

unchanged while the vdW parameters are optimized on the second stage). The optimization 

of the electrostatic parameters of methanol was carried out in two steps. In a first step, the 

value of the atomic multipoles was obtained from the QM electrostatic potential on the 

Connolly surface of a single isolated methanol molecule. The QM electrostatic potential of a 

methanol monomer, ϕQM, was calculated at the MP2 level of theory with various basis sets 

including Pople-style40 and correlation consistent41 basis sets. The results are given in Table 

1. A Distributed Multipole Analysis (DMA)42–44 was carried out using the Gaussian 

Distributed Multipole Analysis (GDMA 2.2) program42, 45–46 for the electronic density 

results from different MP2 basis sets. The multipole parameters of each atomic site were 

identified using the Tinker21, 47–51 package (the Poledit and Potential program). In a second 

step, all 44 electrostatic parameters were refined from the QM electrostatic potential 

calculated from an extensive training dataset of 4,943 methanol dimers using the genetic 

algorithm. This second step differs from the standard protocol used to determine the 
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electrostatic parameters for the AMOEBA polarizable force field from QM calculations,
22, 33 which relies on the unperturbed monomer. By considering dimers in this situation, the 

mutual induced polarization of the two molecules is explicitly taken into account, allowing a 

direct determination of the atomic polarizabilities. The methanol dimer configurations were 

sampled through placing two methanol molecules, where one methanol was sampled over 

shell radius (1- 4 Å) on another methanol’s Connolly surface. In total, 4,943 methanol dimer 

configurations were sampled. These 4,943 configurations of methanol dimers were relaxed 

through MP2 geometry optimization via Gaussian09 program,52 while fixing the position of 

the carbon atoms. The optimization of electrostatic parameters seeks to minimize the 

objective function Δ as the averaged root mean square deviation (ARMSD) between the QM 

result and the parameterized force field calculation, shown in equation (1):

Δ = 1
Ncluster

∑
j = 1

Ncluster
χ2(p1, p2, …pm)

= 1
Ncluster

∑
j = 1

Ncluster 1
ngrid ∑

k = 1

ngrid

ϕk
QM − ϕk

FF p1, p2, …pm
2

(1)

where p1, p2, …pm  represent the electrostatic parameters of the force field and 

Ncluster = 4, 943. It is noteworthy that the static monopole, dipoles and quadrpoles remained 

essentially unchanged during this second step, which primarily affected the optimization of 

the atomic polarizabilies.

In a second stage, the parameters for the vdW interactions were optimized to best-match the 

interaction between a central methanol molecule and its nearest neighbors via 

supermolecular QM computations for a large number of clusters extracted from classical 

MD simulations of liquid methanol using the original amoeba09.prm.22 The idea of 

exploiting simulation-derived ensemble to optimize force field parameters was first 

suggested by. Mezei,.53 The electrostatic parameters optimized in the previous step are kept 

unchanged at this stage. Second-order Møller–Plesset perturbation theory54 (MP2) was 

employed as the QM method to calculate the interaction energy, with basis sets 

superposition error (BSSE) counterpoise correction.55 This level of theory and basis sets has 

been widely verified by previous studies to predict energetics and structural properties.56 

One set of QM calculations was carried out at the MP2/6-31G(d,p) with BSSE level using 

the Gaussian09 program.52 Two additional sets density-fitted MP2 and frozen core 

approximation QM calculations were carried out at the DFMP2(fc)/jul-cc-pVDZ and 

DFMP2(fc)/jul-cc-pVTZ level with BSSE counterpoise corrections using the Psi4 quantum 

chemistry package.57 A total of 1,250 clusters were included in the training set (999 clusters 

of 9 molecules, 157 clusters of 11 molecules, and 94 clusters of 13 molecules). The MD 

simulation system used to generate the snapshots from which the clusters were extracted 

comprises 344 methanol molecules. The MD trajectory was generated under periodic 

boundary conditions (PBC) in the NpT ensemble at constant pressure and temperature using 

the original AMOEBA force field (amoeba09.prm).22 To acquire a wide range of clusters 
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configurations, NpT ensemble simulations were performed on the system at various 

temperatures and pressures, from T = 193.15 K, p = 1.0 atm, T = 293.15 K, p = 1.2 atm, to T 
= 393.15 K, p = 6.293 atm, with final stable density of the system as ρ = 0.933, 0.794 and 

0.627 g/ml, respectively. These MD simulations were generated with an integration time step 

of 1 fs using the GPU dynamics program in the Tinker-OpenMM suite (http://

biomol.bme.utexas.edu/tinker-openmm). Table 3 provides further details about the clusters 

extracted from the different MD simulation systems. The optimization of the vdW 

parameters seeks to minimize the objective function F given by,

F(p1, p2, …pm) = ∑
j

ΔE j
QM − δ − ΔE j

MM(p1, p2, …pm) 2
(2)

where δ is an offset factor and ΔE j
QM and ΔE j

MM are the interaction energies between the 

central molecule and the surrounding molecules for the j-th cluster in the training set 

calculated from the QM and MM force field, respectively. The vdW parameters in the force 

field were optimized using the interaction energy from 1,250 methanol clusters by 

employing the developed ML/GA framework.6–7, 38

A flowchart of the ML/GA optimization protocol is depicted in Figure 1. Briefly, the 

optimization starts with a set of parent parameters, which is defined as the population. For 

parameters optimization of the force field, the parents may have different ranges of settings. 

Some of the individuals in this population present a better fit, which in the context of 

parameters optimization means lower value in the objective function, e.g., Δ and F in Eqs (1) 

and (2). Fit parents survive and are allowed to mate, which is accomplished by crossing 

patterns with other fit individuals. During crossover, random mutations in the genes are also 

allowed to a certain degree to avoid a stagnant gene pool and a better sampling of the 

parameters space. The offspring individuals form the next generation of parents and this 

process continues until some pre-defined criteria are met. For the ML/GA optimization of 

electrostatic parameters, the process was initiated by generating a population of sets of 

parameters randomly, such that their values lie within physically allowable limits, which are 

±1.5 times of value from Tinker Poledit and Potential programs for methanol monomer at 

MP2/6-311G(d,p) level of QM calculations. The searching range of the 44 independent 

electrostatic parameters over which the ML/GA optimization was is given in Table 2.

For the ML/GA optimization of the vdW parameters, the process was initiated by generating 

a population a population of Np = 120 parameters sets randomly, such that their values lie 

within physically allowable limits. The searching range of the 11 independent vdW 

parameters over which the ML/GA optimization was performed is given in Table 4. For each 

set of parameters, we compute the interaction energies for all structures in the training 

dataset using Tinker and evaluate the objective function F given by Eq. (2). Sets of 

parameters were then ranked in ascending order. After the ranking, non-linear roulette wheel 

selection58–59 was performed to select the best 60% members, i.e., the ones with lowest 

values of F, which were then subjected to genetic operations: mutation and crossover with 

crossover-rate 3%. These mutations introduce sufficient diversity into the population, and 
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the non-linear selection scheme helps to avoid premature convergence of the ML/GA run. 

After the genetic operations, both the parent and offspring sets of parameters are ranked by 

their value of F. The best Np parameters sets are then chosen to constitute the next 

generation. Such an optimization routine ensures that only satisfactory parameters sets 

survive after each generation; upon repeating this workflow for sufficient generations and 

sampling viable regions in the parameters space, we performed three separate ML/GA runs 

starting with different random populations. From each of the converged ML/GA run, we 

chose the final parameters set corresponding the lowest value of F. Monitoring the evolution 

of the parameters during the iterations of the GA algorithm shows that they initially vary 

rapidly until they settle down and undergo very small variations (< 0.0001%) around final 

values. The calculated correlation coefficients between the vdW parameters from the GA 

after the initial variations show that some of the vdW parameters are coupled. For example, 

the parameters εmin for HO and HC are anti-correlated, which is expected because the 

decrease in one interaction must be compensated by an increase in the other to match the 

target energy during the GA optimization. This code is freely available for download at 

https://github.com/AmYingLi/GA4AMOEBA.

RESULTS AND DISCUSSION

We successfully generated electrostatic and vdW parameters for the methanol molecule 

consistent with the functional form of the AMOEBA force field by exclusively taking QM 

data of molecular clusters as training datasets and using machine learning techniques. For 

the sake of clarity, we emphasize that the intended objective of the present effort is not to 

offer a re-calibration of the original AMOEBA force field for methanol that could be 

transferable to other systems. Our central goal is to test whether it is practically feasible to 

get parameters for a force field of a physically reasonable functional form without any prior 

experimental data, and to be sufficiently accurate for liquid simulations. For this reason, we 

refer to these results as “optimized force field models”, and reserve the acronym AMOEBA 

only for the original force field: amoeba09.prm.

In the following, we present the results for the electrostatic parameters and the vdW 

parameters from the genetic algorithm optimization by calibrating the electrostatic potential 

and the interaction energy for methanol molecules. Finally, a number of additional classical 

MD simulations were carried out using the set of optimized parameters to calculate the 

density (ρ) and heat of vaporization (ΔHvap) of liquid methanol to verify the accuracy of the 

ML/GA strategy to generate force field parameters. The condensed liquid phase system 

consists of 344 methanol molecules simulated with periodic boundary conditions (PBC) in 

the NpT ensemble at a constant pressure of 1 atm as temperature varies from −5°C to 60°C. 

The density and heat of vaporization were averaged from three different simulations up to 

2.5 ns initiated with different random velocities.

One important methodological question for a machine learning strategy is whether the 

number of clusters included in the training set is sufficiently large to yield a statistically 

meaningful sampling for parameters determination. As a control, to ascertain the validity of 

the ML/GA strategy, we first attempted to recover the vdW parameters using interaction 

energy generated directly from the original amoeba09.prm force field (the original 
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electrostatic parameters from amoeba09.prm were kept unchanged for this test). If the 

ML/GA strategy is functioning properly, then the generated parameters should be very close 

to the original vdW parameters amoeba09.prm. In practice, it was found that a minimum 

dataset of 600 clusters of 9 methanol molecules was necessary to accurately recover the 

amoeba09.prm parameters, where 300 clusters were extracted from MD trajectories 

generated at atmospheric pressure and corresponding density, and 300 clusters were 

extracted from MD trajectories generated at high pressure. The resulting liquid properties 

from MD simulations using the ML/GA generated vdW parameters were essentially 

identical to those of the original amoeba09.prm. This test confirmed that our ML/GA 

protocol was effective, as long as the training set was sufficiently large (more than several 

hundred configurations).

The electrostatic parameters were determined by training the atomic multipoles (q, μ , Q ), 

atomic polarizabilities (α) and Thole’s factor (a) from the QM electrostatic potential on the 

Connolly surface of a methanol molecule using the Gaussian Distributed Multipole Analysis 

(GDMA 2.2) tool42, 45 and the Tinker package.47, 49–50 We then refined the atomic 

polarizabilities and Thole’s factor with a set of methanol dimers using the ML/GA. The 

ML/GA generated electrostatic parameters from the MP2/6-311G(d,p) level are given in 

Table 5. Because the AMOEBA force field adopts a universal Thole’s damping factor, 

during the refinement step, the only varying parameter for each atom type is the 

polarizability. From table 5, we can see what are the change of the polarizability (α) and 

Thole’s factor (a) through learning the electrostatic potential from a monomer to 4,943 

dimers (denoted as →). As shown in Table 6, the electrostatic potential calculated from this 

ML/GA generated force field model closely matches the QM at the MP2/6-311G(d,p) level 

for 4,943 methanol dimers. In fact, the deviations are smaller than those given by the 

original parameterization of the AMOEBA force field (amoeba09.prm).22 The new 

optimized force fields were cross-validated by comparing the MM and QM electrostatic 

potential for 502 clusters of 9 methanol molecules, which were not used in the training 

process. The results, given in Table 6, show that the deviations between the force field with 

ML/GA generated parameters and the QM calculations are smaller than those obtained with 

amoeba09.prm.22 It is important to note that such comparisons with AMOEBA are 

meaningful because essentially the same QM methods [MP2/6-311G(d,p) and MP2/aug-cc-

pVTZ] were originally used to determine the amoeba09.prm electrostatic parameters.22 

Therefore, the discrepancies of the resulting parameters is likely due to sampling 

differences. Because the operational purpose of the permanent electrostatic multipoles 

determined here is to reproduce interaction energies and forces between molecules, they 

may differ slightly from the multipoles determined via a spatial partitioning, scheme, such as 

based on localized Wannier functions.60–62

The current procedure used to determine the electrostatic parameters, which considers the 

mutual induced polarization of the two molecules in methanol dimers, differs from the 

standard AMOEBA protocol.22, 33 In the latter, one commonly fits the permanent 

electrostatic multipoles from a QM electrostatic potential (ESP) map at a series of point 

around the molecule of interest. However, while considering an isolated molecule certainly 

provides the necessary information to fit the static atomic electrostatic multipoles of the 
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unperturbed molecule, it also makes it difficult to determine the optimal set of atomic 

polarizabilities that are needed. To overcome this challenge, we exploited the mutually 

perturbed ESP map for homodimers in the determination of atomic polarizabilites (while 

accounting explicitly for the mutual induced polarization of the molecules from one 

another). In practice, all sets of electrostatic parameters, determined either from the 

monomer of homodimer QM data, remain fairly similar to one another. This overall 

consistency reflects the fact that the electrostatic features of a small molecule like methanol 

are accurately constrained by the QM calculations. In contrast, the determination of the vdW 

parameters without any experimental data is much more challenging. The vdW parameters 

in the AMOEBA force field (amoeba09.prm) were empirically adjusted to yield accurate 

liquid properties. A key question is whether a strategy exclusively based on QM calculations 

has the ability to yield force field models of equivalent accuracy.

The vdW parameters were optimized to best match the interaction between a central 

methanol molecule and the finite polarization response to its nearest neighbors via 

supermolecular QM computations for a large number of clusters representative of the liquid 

phase. This approach is different than formal perturbative approaches that seek to estimate 

intermolecular interactions from the wave function of an isolated monomer such as 

symmetry-adapted perturbation theory (SAPT).26–28, 63–64 In principle, SAPT could be used 

as an alternative route to generate the target data for the ML/GA optimization. A total of 

1,250 methanol clusters of 9, 11 and 13 molecules were considered in the supermolecular 

QM cluster computations. Typical cluster configurations from the training set are depicted in 

Figure 2. The interactions were characterized by considering three different levels of QM 

calculations: MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ. The 

distribution of the interaction energy for 1,250 methanol clusters calculated at the 

MP2/6-31G(d,p) is shown in Figure 2(d). The distribution converging to a Gaussian-like 

shape suggests that the number of the configurations is adequate to provide a sufficient 

sampling of these systems. The ML/GA generated vdW parameters for all force field models 

are given in Table 7.

First we discuss the results from force field models optimized without the offset factor δ in 

Eq. (2). This means that the parameters are generated to match the absolute value of the QM 

interaction energies for the training set. The optimized force field models generated from the 

different QM calculations, MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-

cc-pVTZ, converge reasonably well, with correlation coefficients of 0.974, 0.977 and 0.979, 

respectively. This is confirmed by observing Figure 3 (a), (b), and (c), where the interaction 

energies from QM and the force field models are strongly correlated. However, the ultimate 

test is to verify the ability of the optimized force field model to accurately predict condensed 

phase properties of liquid methanol. Table 8 shows the result of density and heat of 

vaporization from polarizable force fields optimized from QM data at the MP2/6-31G(d,p), 

DFMP2(fc)/jul-cc-pVDZ and DFMP2(fc)/jul-cc-pVTZ levels. Results from the original 

AMOEBA force field (amoeba09.prm)22 are included for comparison. The performance of 

the force field models optimized to match the absolute value of the QM interaction energies 

(offset factor δ set to zero) is disappointing. The liquid density from the model based on 

MP2/6-31G(d,p) is 0.401 g/ml, and the density from the model based on DFMP2(fc)/jul-cc-

pVDZ is 0.568 g/ml, which are in poor agreement with experiment (0.786 g/ml). The heat of 
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vaporization from these two models is also too small. The model based on DFMP2(fc)/jul-

cc-pVTZ performs slightly better, with a density of 0.686 g/ml and a heat of vaporization of 

8.58 kcal/mol.

To address this shortcoming, an offset factor δ was introduced in Eq. (2). The purpose of the 

offset factor is to free the parameter optimization from the absolute magnitude of the QM 

interaction energies.65–67 It should be noted that the offset factor δ is not directly used in the 

force field functional form, but only acting as a hyper-parameter for the GA. In essence, 

when δ is included in Eq. (2), the force field parameters are generated to reproduce the local 

“shape” of the energy surface of the cluster as a function of the atomic coordinates, while 

releasing the requirement to match the absolute magnitude of the QM interaction energies. 

This strategy has some similarities with force-matching methodologies, where a force field 

is optimized on the basis of the local first derivative of the energy function,68 though here 

the emphasis is put on relative interactions energies rather than on trying to match local 

forces. With a non-zero offset factor (δ ≠ 0), the force field parameters generated from 

ML/GA based on the different QM training datasets, MP2/6-31G(d,p), DFMP2(fc)/jul-cc-

pVDZ, and DFMP2(fc)/jul-cc-pVTZ, converges similarly well, with correlation coefficients 

of 0.955, 0.971, and 0.975, respectively. The effect of the offset factor between the 

interaction energies from QM and the force field models is noticeable in Figure 3 (d), (e), 

and (f). However, as observed in Table 8, these force field models clearly produced liquid 

properties that are closer to experiment. While the inaccuracy of force field optimized 

without the offset δ becomes less important with better QM data, the trend in Table 8 

suggests that meaningful information about the overall shape of the energy surface and the 

relative interaction energies is already contained within lower level QM calculations. The 

best parameter set, obtained from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears 

to perform even better than the original AMOEBA force field (amoeba09.prm),22 which was 

optimized empirically to match liquid properties. This force field model is also able to 

reproduce the radial distribution functions of liquid methanol determined from neutron 

scattering,69 as shown in Figure 4.

Figures 3g, 3h, and 3i compare the interaction energies from QM and the original AMOEBA 

force field (amoeba09.prm),22 which signifies that different basis sets of the MP2 method 

give out different accuracy. The original AMOEBA force field (amoeba09.prm)22 is directly 

compared with the QM data in Figure 3 (g, h and i). This comparison leads to an interesting 

observation; there appears to be a shift between AMOEBA and the QM calculations that 

closely reflects the offset factor δ used in the force field models optimization. While the 

vdW parameters of the AMOEBA force field (amoeba09.prm)22 field are empirically 

adjusted to yield accurate liquid properties, the shifts observed in Figures 3g, 3h, and 3i 

essentially mirror the offset factor δ used in the force field models optimization very 

consistently. This observation reinforces the conclusion that seeking to match the absolute 

interaction energies based on MP2/6-31G(d,p) and DFMP2(fc)/jul-cc-pVDZ levels leads to 

inaccurate force field models.

A comparison of the interaction energy from the QM calculations and from the force field 

with the optimized parameters is shown in Figure 3 for the 1,250 clusters. Considering 

Figure 3, one can see that the ML/GA generated hyper-parameters, offset factor δ, decreases 
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with increasingly accurate QM method, equal to 4.4 kcal/mol for MP2/6-31G(d,p), 2.5 

kcal/mol for DFMP2(fc)/jul-cc-pVDZ, and 1.2 kcal/mol for DFMP2(fc)/jul-cc-pVTZ). This 

is also consistent with the observation that DFMP2(fc)/jul-cc-pVTZ is the QM data leading 

to the best force field model optimized to match the absolute value of the QM interaction 

energies (offset factor δ set to zero). By introducing a hyper-parameter in GA, an offset 

factor δ in Eq. (2), we relieve the parameter optimization from the constraint of matching the 

absolute value of the interaction energy. ML in the presence of the offset factor yields force 

field models that try to reproduce the “shape” of the potential energy surface in the multi-

dimensional space of the cluster coordinates. The relative accuracy of the different 

parameters generated by ML/GA for the AMOEBA force field model in Table 8 suggests 

that the relative “shape” of the potential energy surface is more important than matching the 

absolute value of the interaction energies. Ultimately, discrepancies (the offset factor δ) of 

interaction energy calculated from MP2 and the ML/GA generated parameters for 

AMOEBA force field model are likely due to the incompleteness of the basis sets for the 

particular level of QM (MP2) theory and the insufficiency sampling of configurations in 

parameterization of force field.56, 65–67 This might be the reason that higher level QM data is 

able to elucidate some details that are difficult to capture at the lower level. The obvious 

lesson from this is that the QM level must be sufficiently high.

As a final test of the accuracy of the polarizable force field optimized from QM data, 

additional sets of MD simulations were generated to examine the density and heat of 

vaporization of liquid methanol as a function of temperature. For this test, we used the vdW 

parameters optimized from the QM data at the DFMP2(fc)/jul-cc-pVDZ and DFMP2(fc)/jul-

cc-pVTZ levels. Figure 5 shows ρ and ΔHvap as temperature varies from −5°C to 60°C 

calculated from NpT MD simulations. We observe that the polarizable force field optimized 

from QM data accurately predicts the density and heat of vaporization, in excellent accord 

with experiments, over the range of temperatures.

Finally, it is important to emphasize that consideration of many-body dispersion effects, 

even with pair-wise long-range vdW interactions, appears to be crucial to generate accurate 

force field models. For instance, attempts to use ML of the vdW parameters based on the 

training dataset from the interaction energy calculated at the MP2/6-31G(d,p) level for a 

large set of methanol dimers spanning a wide range of carbon-carbon (2 to 10 Å) distance 

failed to yield an accurate ML/GA generated parameters for AMOEBA force field. While 

the force field model with ML/GA generated parameters succeeds in accurately reproducing 

the dimer QM training data, the resulting force field model fails to provide an accurate 

representation of the bulk liquid system. MD simulations (at 25°C and 1 atmosphere) 

showed that such a force field model, with machine learning of vdW parameters only from 

dimers, severely underestimates the liquid density (0.572 g/ml) and heat of vaporization 

(7.32 kcal/mol) compared to experiment. We also used CCSD(T)70–72 to calculate the 

interaction energies of methanol dimers. While a good correlation between the QM target 

data and the interaction energy from the force field model was obtained (R= 0.998), the 

model did not yield accurate condensed matter properties when used in MD simulations. 

This shows that using training data from sufficiently large cluster for the parameterization is 

important. The lesson here is that machine learning of the vdW parameters using QM data 

on clusters larger than simple dimers was essential to incorporate many-body dispersion 
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effects into the force field model. This observation is consistent with previous results from 

McDaniels and Schmidt, who showed that Axilrod-Teller three-body dispersion and 

exchange terms needed to be incorporated in their SAPT force field of methanol to obtain a 

satisfactory model of the liquid phase.28 In force field optimization, it is often tempting to 

put more emphasis on training data obtained from the highest possible level of QM. The 

challenge is that, to remain computationally tractable, one is typically limited to smaller 

systems of a few molecules that are not able to capture all the pertinent information to 

represent the features of a condensed phase system. This example shows that the training 

data must include QM calculations on sufficiently large cluster sizes. Even though the 

functional form for the vdW interactions comprises only pair-wise terms, it appears that 

many-body dispersion effects are “effectively” incorporated during the optimization of the 

vdW parameters based on the cluster QM data. While this may appear surprising, the 

situation is analogous to the fixed charges in an additive non-polarizable force field, which 

are empirically optimized to account for polarization in an effective manner.

CONCLUSIONS

The present study demonstrates the feasibility of predicting the condensed phase properties 

(i.e., density and heat of vaporization) of a substance by optimizing the parameters of a 

polarizable force field using QM data exclusively—without any a priori information from 

experiment. Experimental data was only used for validating the final force field models. This 

idea was tested on methanol, a small yet challenging molecule containing both polar and 

nonpolar moieties. A genetic algorithm was utilized to overcome the challenges of 

parameter optimization in a high dimensional space. For the electrostatic component of the 

force field, we optimized all the multipoles, polarizabilities, and Thole damping factors of 

methanol. The ML/GA based on dimers was able to nearly reproduce the canonical 

AMOEBA electrostatic parameters, the optimized parameters displaying smaller deviations 

relative to the QM electrostatic potential than the AMOEBA original parameters.

The vdW parameters were optimized by attempting to match the interaction energy between 

a central molecule and the surrounding molecules for a large number of methanol clusters. 

These clusters were extracted from snapshots of condensed phase MD simulations to be as 

representative as possible of the liquid phase. Following this protocol, excellent agreement 

between the optimized force field model and the QM calculations could be achieved. 

However, only the QM calculation from fairly high level provides sufficiently accurate vdW 

parameters for MD simulation to get proper condensed phase properties of methanol. 

Consistently better results were obtained by a using a parameterization strategy allowing for 

an offset factor δ between the force field and the QM target data. Through this strategy, 

which bears some similarities with force-matching methodologies,68 the force field is 

optimized to reproduce the local “shape” of the QM energy surface without matching its 

absolute value. Without the offset factor δ, the absolute magnitude of the QM interactions is 

incorporated into the MM force field via the optimized vdW parameters, yielding models 

that appear to be less accurate in simulations of dense liquids.

One of the main difficulties of parameterizing a force field without any experimental input 

stems from the reliability of the QM calculations. Here, we consider three QM methods: 
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MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ and DFMP2(fc)/jul-cc-pVTZ. It is well known 

that MP2 with different basis sets can lead to different accuracy. Furthermore, there appears 

to be an additional issue with the overestimation of interaction energy from MP2 

calculations, when using a small basis set.56, 65–67 The present results show that QM 

calculations relying on more extensive basis sets lead to a more accurate determination of 

the interaction energies. In principle, sampling of larger molecular clusters would also be 

expected to increase accuracy. Nevertheless, the current strategy was able to leverage 

moderate computation resource to tune the force field parameters for reasonable agreement 

between the MD simulated data and experimental values.
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Figure 1. 
Flowchart of the machine learning with genetic algorithm (ML/GA) strategy describing the 

sequence of steps employed in this work.
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Figure 2. 
Illustration of the methanol cluster configurations used for the force field parameterization. 

Typical configurations of the (a) 9 molecules, (b) 11 molecules, and (c) 13 molecules of 

methanol are shown (the H atom is displayed in white, C atom in cyan and O atom in red). 

The interaction energy between the central molecule (circled by a dashed line) and the 

surrounding molecules is used in the optimization of the vdw parameters. (d) Distribution of 

interaction energies from MP2/6-31G(d,p) of 1,250 methanol clusters (999 clusters of 9 

molecules, 157 clusters of 11 molecules, and 94 clusters of 13 molecules).
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Figure 3. 
Comparison of the interaction energy (ΔE) for 1,250 methanol clusters, including 999 

clusters of 9 molecules, 157 clusters of 11 molecules, and 94 clusters of 13 molecules, 

computed from (a) MP2/6-31G(d,p) (b) DFMP2(fc)/jul-cc-pVDZ, and (c) DFMP2(fc)/jul-

cc-pVTZ and the optimized force field model fitted without the offset parameter δ in Eq. (2). 

(d), (e) and (f) are the optimized force field model fitted with the offset parameter δ in Eq. 

(2).
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Figure 4. 
Liquid structure of methanol. The radial distribution function of methanol determined from 

neutron scattering69 compares favorably with the present force field model.73 The O-H 

hydrogen bonding peak is, however, higher than the experiment. This may reflect the neglect 

of quantum effects of the nuclei in the simulations,25 as well as inaccuracies in the 

experimentally determined pair correlation functions.
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Figure 5. 
Density (ρ) and heat of vaporization (ΔHvap) of methanol as a function of temperature from 

MD simulations using the optimized polizable force field optimized from the DFMP2(fc)/

jul-cc-pVDZ and DFMP2(fc)/jul-cc-pVTZ data. For comparison the results from 

experiments and the original AMOEBA force field (amoeba09.prm) are also shown.
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Table 1

The electrostatic potential energy (EESP) for methanol monomer from MP2 calculations using different basis 

sets and from the corresponding fitted multipole parameters, with the corresponding root mean square 

deviation and relative error.

Basis ESP from MP2 (kcal/mol) ESP from fitted multipole (kcal/mol) RMSD (kcal/mol) Relative Error (%)

6-31G(d, p) 4.878 4.865 0.165 0.267

6-31+G* 5.675 5.649 0.172 0.458

6-31G* 5.059 5.046 0.170 0.257

6-311G(d, p) 5.947 5.935 0.172 0.202

6-311G(2df, 2pd) 4.462 4.447 0.154 0.336

6-311G* 5.187 5.172 0.156 0.289

6-311+G* 5.648 5.626 0.167 0.390

6-311++G** 5.307 5.282 0.165 0.471

6-311+G** 5.309 5.285 0.166 0.452

Aug-CC-pvDz 4.758 4.729 0.177 0.609

Aug-CC-pvTz 4.748 4.723 0.165 0.527

Aug-CC-pvQz 4.745 4.720 0.165 0.527
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Table 3

Number distribution of the extracted clusters (9 molecules, 11 molecules and 13 molecules) from different 

liquid MD systems.

MD simulations 9 methanol 11 methanol 13 methanol

ρ = 0.933 g/ml, T = 193.15 K, p = 1.000 atm 372 157 94

ρ = 0.794 g/ml, T = 293.15 K, p = 1.200 atm 502 N/A N/A

ρ = 0.627 g/ml, T = 393.15 K, p = 6.293 atm 125 N/A N/A
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Table 6

Root mean square deviation (RMSD) of electrostatic potential between different force field models and the 

QM calculations at the MP2/6-311G(d,p) level. The force fields include the new optimized electrostatic 

parameters and the original AMOEBA force field (amoeba09.prm). The methanol clusters include 4943 

dimers and 502 nonamers (9 molecules cluster).

RMSD of Eelec (kcal/mol) AMOEBA Optimized force field model

4,943 dimers 0.723 0.305

502 nonamers 0.718 0.495
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