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It was demonstrated recently that isolated tonoplast vesicles
derived from plants of a Zn-tolerant ecotype of Silene vulgaris
accumulate more Zn than vesicles derived from a Zn-sensitive
ecotype. We have now characterized the tonoplast-transport sys-
tem that causes this uptake difference and demonstrated its genetic
correlation to Zn tolerance using plant crosses. We conclude that
the tonoplast Zn uptake system of the tolerant ecotype differs
greatly in its characteristics from that of the sensitive one, with the
most prominent differences being its insensitivity to protonophores
and ortho-vanadate and its stimulation by Mg-GTP. These differ-
ences in characteristics are most likely due to the fact that Zn can
be taken up by two or more parallel pathways, which are not
present in the same proportions in both ecotypes. In both ecotypes,
Zn is actively transported across the tonoplast (temperature coeffi-
cient > 1.6), most likely as a free ion, since citrate does not
accumulate in vesicles. Most importantly, the uptake difference
found using the ecotypes was also found between homozygous
Zn-tolerant and Zn-sensitive F; plants, proving the genetic correla-
tion between increased tonoplast Zn transport and naturally se-
lected Zn tolerance in S. vulgaris.

Silene vulgaris has many natural populations (ecotypes),
some of which grow on soils that are enriched in various
heavy metals (Ernst, 1974). These populations have
evolved increased resistance to the metals present in the
soil (Verkleij and Schat, 1990). Although the details of the
genetic basis for the tolerance mechanisms are not yet clear
(Schat and Vooijs, 1997), much is known about the physi-
ological mechanisms of tolerance, especially in the case of
Zn and Cd.

It has been demonstrated that enhanced Zn tolerance is
not due to reduced uptake. Uptake studies have shown
that roots of tolerant plants accumulate more Zn than those
of sensitive plants (Mathys, 1975; Harmens et al., 1993b).
Alternatively, detoxification of heavy metals could be
achieved by intracellular binding to phytochelatins (Grill et
al., 1987). However, this mechanism has not only been
rejected as the mechanism underlying differential Cd tol-
erance in S. vulgaris (De Knecht et al., 1992), but its signif-
icance in the Zn-tolerance mechanism is also rebutted,
since Zn is a poor inducer of phytochelatin sythase (Grill et
al., 1989), and only low amounts of phytochelatins are
produced upon Zn exposure in S. vulgaris (Harmens et al.,
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1993a). Moreover, the accumulation of phytochelatins
upon exposure to Zn is higher in the roots of sensitive
plants than in those of tolerant plants (Harmens et al.,
1993a). These findings support the hypothesis that natu-
rally selected Zn tolerance might be based on enhanced
compartmentation in the vacuole (Ernst, 1969; Mathys,
1975), as was suggested for Cd tolerance in S. vulgaris by
De Knecht et al. (1995) and Chardonnens et al. (1998). This
hypothesis is further supported by other reports showing
elevated levels of heavy metals in vacuoles upon exposure
of intact plants (Vogeli-Lange and Wagner, 1990; Brune et
al., 1995).

As demonstrated by means of a split root experiment
(Harmens et al., 1993b), the Zn-tolerance mechanism oper-
ates in root cells. Recently, we demonstrated that isolated
tonoplast vesicles derived from roots of a Zn-tolerant
ecotype of S. vulgaris take up 2 to 3 times more Zn than
vesicles derived from Zn-sensitive plants when Zn is sup-
plied as Zn citrate in the presence of Mg-ATP (Verkleijj et
al., 1998). In the present paper, this tonoplast transport of
tolerant plants is further characterized using both direct
filtration assays and fluorescence spectroscopy. The effect
of incubation temperature, several known inhibitors of
transport proteins, and Mg-GTP on the Zn uptake rate are
studied in ecotypes with different Zn sensitivity. Addition-
ally, a comparison is made between the uptake of Zn and
the uptake of citrate to determine whether Zn is taken up as
a cation or as a Zn citrate complex.

To demonstrate the significance of increased tonoplast
Zn uptake in the mechanism of naturally selected Zn tol-
erance, we attempted to genetically link tonoplast Zn up-
take with Zn tolerance. Previous experiments using crosses
between Zn-sensitive and Zn-tolerant ecotypes have
shown that tolerance in S. vulgaris is based on two major
genes (Schat et al., 1996); therefore, it is possible to select
homozygous tolerant and sensitive plants derived from
crosses of a tolerant and sensitive ecotype. Replicating
results obtained in uptake experiments using these selected
lines would not only eliminate the possibility that any
differences found were due to variations in the purity or
protein content of the vesicle preparations of the different
ecotypes, but, more importantly, it would very strongly
link these results to Zn tolerance.

Abbreviation: ABC, ATP-binding cassette.
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MATERIALS AND METHODS
Plant Material

Seeds of Silene vulgaris (Moench) Garcke were collected
from a Zn-sensitive population at the campus of the Vrije
Universiteit (Amsterdam, The Netherlands) and from a
Zn-tolerant population at a mine spoil near Plombieres,
Belgium. Plants were germinated and grown hydroponi-
cally as described by Verkleij et al. (1998). After 2 weeks,
plants were used for tonoplast vesicle isolation.

Tonoplast Vesicle Isolation

Tonoplast vesicles were isolated from roots of nonex-
posed plants according to the method of Schumaker and
Sze (1986), with slight modifications as described by Verk-
leij et al. (1998).

Assays of ATP Hydrolysis

Several assays of ATP hydrolysis were performed to
determine the purity of the vesicle preparations and the
percentage of right-side-out vesicles using a spectrophoto-
metric measurement of phosphate, as described by Mur-
phy and Riley (1962). The standard incubation was con-
ducted as follows: 130 uL of a buffer containing 130 mm
mannitol, 0.5 mm DTT, 1.3 mm Hepes/bis Tris propane, pH
7.4, and 7 mm KCI; 20 pL of a tonoplast protein sample (=5
png of vesicle protein) was added, followed by 150 uL of
Mg-ATP to a final concentration of 2 mm. The vesicles were
incubated for 30 min at 37°C, after which time the reaction
was terminated by adding 4 mL of a reagent containing 2%
(w/v) SDS, molybdate, and ascorbate (Murphy and Riley,
1962).

To determine the percentage of right-side-out vesicles,
an incubation with 0.03% (w/v) Triton X-100 was com-
pared with a standard incubation as described above.

To assess the purity of the vesicle preparation, the stan-
dard incubation was compared with incubation in a me-
dium to which sodium molybdate and sodium vanadate
were added to a final concentration of 0.26 mm, and NaNj,
was added to a final concentration of 2.63 mm.

The inhibition of V-type proton ATPases was assayed by
adding 5 mm KNO; and 0.03% (w/v) Triton X-100 to the
incubation medium and comparing this incubation with a
standard incubation without KNO, but with Triton X-100.

Differences between the sensitive and the tolerant
ecotype were tested using one-way analysis of variance.

Determination of ApH and Ays

Prior to all direct filtration experiments, the effect of the
concentration of chemicals used was tested with fluores-
cence spectroscopy. It was assessed that 5 mm NH,CI and
0.4 pg mL ™' gramicidin-D effectively dissipated the ApH
of vesicles. Vesicles incubated with 5 mm KNO; were not
able to generate a proton gradient upon the addition of
Mg-ATP.
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The effect of 0.5 mm Zn citrate, 50 um ortho-vanadate, 5
mMm NH,C, or 0.4 pg mL~' gramicidin-D on the mainte-
nance of the proton gradient of isolated tonoplast vesicles
was monitored using acridine orange quenching in fluo-
rescence spectroscopy, as described by Verkleij et al. (1998).
The effect of substances was expressed as the percentage of
maximal proton gradient formation. Additionally, the ef-
fect of 0.5 mMm Zn citrate on Ay was monitored in similar
experiments using 3 um oxonol-V quenching (Scherman
and Henry, 1980). Mg-ATP was added immediately after
adding the vesicles to the incubation medium, and Zn
citrate was added after 400 s. After another 100 s, grami-
cidin was added to dissipate the gradient. The effect of Zn
was expressed as the percentage of change in fluorescence.

All experiments using fluorescence spectroscopy con-
sisted of at least three replicates.

Uptake of Zn

All uptake experiments were performed according to the
method of Verkleij et al. (1998), with one exception. Instead
of loading the vesicles with K™ to form an artificial proton
gradient using nigericine, the vesicles were washed with
resuspension buffer. A proton gradient was allowed to
form in the presence of 3 mm Mg-ATP. Zn was supplied as
Zn citrate. The uptake assay was started by the addition of
Zn. In a pilot experiment, Zn uptake was shown to be
optimal after 90 s, and was therefore measured after 90 s in
all experiments. In direct filtration assays, the correction
for aspecific binding of Zn to the outer side of the mem-
brane was made by subtracting the Zn concentration mea-
sured in a simultaneous incubation of vesicles without ATP
(Verkleij et al., 1998). In all experiments, Zn was measured
using a flame atomic absorption spectrophotometer (model
1100B, Perkin-Elmer). All experiments were performed
several times; each replicate is the average of a number of
measurements made from a single vesicle isolation.

By adding 0.05% Triton X-100 to a vesicle incubation, it
was tested whether Zn was actually transported into the
lumen of the vesicles.

The proton gradient dependence of Zn uptake was mea-
sured by adding a protonophore to the incubation medium
in direct filtration assays. NH,Cl (5 mMm) or gramicidin-D
(0.4 pg mL ') was provided to the vesicles after 100 s, just
prior to the addition of Mg-ATP. In other experiments, 50
uM ortho-vanadate was supplied to the vesicles. Zn was
added 400 s after the addition of tonoplast vesicles, at
which time the formation of the proton gradient was max-
imal. After 90 s of incubation, the vesicles were filtered and
Zn uptake was measured using atomic absorption spectro-
photometry. The effect of substances was expressed as
the percentage of uptake in a reference situation, which
was a simultaneous incubation with Zn in the presence of
Mg-ATP.

The effect of substitution of ATP by GTP and the omis-
sion of Mg from the incubation medium were measured in
similar experiments. The effect of each change in incuba-
tion circumstances was again expressed as a percentage of
the reference situation.
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In some experiments the incubation temperature was
lowered from 24°C to 4°C, and the temperature coefficient
(Qq0) for both ecotypes was calculated.

Uptake of Citrate

The uptake of citrate was measured using GC (model
5890 chromatograph, Hewlett-Packard) to determine the
chemical species of Zn taken up by the tonoplast vesicles.
Vesicles were incubated with either 0.1 or 0.5 mm Zn
citrate, both in the presence and in the absence of 3 mm
Mg-ATP.

After filtration over a 0.45-um nitrocellulose filter
(Schleicher & Schuell), vesicles were disrupted with 2 mL
of 0.1% (v/v) trifluoroacetic acid. After measuring the Zn
concentration of the samples using atomic absorption spec-
trophotometry, the volume was determined and 30 uL of
15 mm glutaric acid was added as an internal standard,
followed by lyophilization of the samples.

The lyophilized samples were dissolved in 1.5 mL of
water and mixed with 50 mg of Dowex anion-exchange
resin (200-400 mesh, formate form; AG 1-X8, Bio-Rad).
After sedimentation of the resin, the organic acids were
released by adding 1.5 mL of 50% (v/v) HCOOH. Subse-
quently, 1.3 mL of the solution was supplied to 50 mg of
Dowex cation-exchange resin (200-400 mesh, hydrogen
form; AG 50W-X8, Bio-Rad). One milliliter of the superna-
tant was air-dried overnight in a vial (Chrompack, Raritan,
NJ). The dried samples were resuspended in 1 mL of 96%
ethanol, and this solution was evaporated with N, for 1.5 h.
The dried samples were derivatized in two steps. First,
they were oximated by adding 0.2 mL of CHCI; and 0.2 mL
of Stox reagent (49805, Pierce), followed by a 30-min incu-
bation at 75°C. Second, samples were sililated by adding
0.2 mL of bis-(trimethylsilyl)-trifluoroacetamide containing
1% trimethylchlorosilane (8251, Chrompack) and incubat-
ing for 5 min at 75°C. The concentration of organic acids in
the samples was determined using the GC method de-
scribed by Harmens et al. (1994).

RESULTS
Properties of Vesicles

The results of the assays of ATP hydrolysis (Table I)
show that the vesicle preparations of different ecotypes
have identical purity and inhibition rates by NO;, al-
though the tolerant ecotype has a slightly lower percentage
of right-side-out vesicles than the sensitive ecotype (36.2%
and 44.5%, respectively). Differences between ecotypes in
the percentages of right-side-out vesicles, inhibition by
nitrate, and purity were tested using one-way analysis of
variance and found not to be significant (P > 0.05) in all
cases.

Effect of Zn on ApH and Ay

The formation and maintenance of the proton gradient
by isolated tonoplast vesicles of both ecotypes were mon-
itored using acridine orange quenching. Upon addition of

Table I. Assays of ATP hydrolysis performed with tonoplast vesi-
cles derived from a tolerant and a sensitive ecotype of S. vulgaris

Values are means = st of four to five replicates.
ATPase Activity

Treatment

Sensitive Tolerant

wmol Pi mg~" vesicle protein h™'

No Triton X-100 13.5 +2.03 16.8 = 4.3
Plus 0.03% Triton X-100 30.7 £ 0.8 46.4 = 0.9
No inhibitors 13.5 =2.03 16.8 = 4.3
Plus molybdate, vanadate, 12.1 £ 0.6 19.4 £ 2.8
and NaN,

No NO,~ 13.5 £ 2.03 16.8 = 4.3
Plus NO,~ 8.7 £0.7 11.15 £ 0.9

Mg-ATP the formation of a proton gradient was observed
in both ecotypes (Fig. 1A). The addition of 0.5 mMm Zn
citrate led to a slight decrease in ApH, which was similar in
both ecotypes. Upon addition of either NH,Cl or gramici-
din, the proton gradient of the vesicles diminished (Fig.
1A). The addition of ortho-vanadate did not affect the
proton gradient in either ecotype.

In both ecotypes the formation of an electrical gradient
was observed upon addition of Mg-ATP using oxonol-V
fluorescence quenching (Fig. 1, B and C). When Zn citrate
was added, fluorescence in the sensitive ecotype recovered
by 19% (Fig. 1B), indicating that net positive charge was
moving out of the vesicles. The fluorescence in the tolerant
ecotype did not recover at all, but was increased by 8%
(Fig. 1C), indicating that net positive charge was moving
into the vesicles.

Differential Sensitivities of Zn Transport to
Inhibitors and lonophores

The results of the Zn-uptake experiments are shown in
Table II. At a concentration of 0.5 mm Zn citrate in the
incubation medium, and in the presence of Mg-ATP, iso-
lated tonoplast vesicles from the sensitive ecotype took up
1.85 = 0.12 pmol mg ! vesicle protein. Uptake by vesicles
from the tolerant ecotype was 3.68 = 0.79 umol mg !
vesicle protein. In the presence of 0.05% Triton 0.70 * 0.08
and 0.69 = 0.21 umol mg~"' vesicle protein was measured
in sensitive and tolerant plants, respectively, which proves
that Zn is indeed taken up by the vesicles.

The uptake of Zn by isolated tonoplast vesicles derived
from tolerant plants was not influenced by the addition of
a protonophore, whereas the uptake of vesicles from sen-
sitive plants was strongly reduced in all experiments: by
52% with NH,Cl and by 22% with gramicidin. The addition
of ortho-vanadate did not affect the Zn uptake in the
tolerant ecotype, but the uptake of the sensitive ecotype
was reduced to 42%.

When ATP was replaced by GTP, a 59% increase in Zn
uptake was found in the tolerant ecotype, whereas the
sensitive ecotype was inhibited by 39%. The omission of Mg
diminished the Zn uptake in both ecotypes by over 80%.

Lowering the incubation temperature from 24°C to 4°C
eliminated the Zn uptake in vesicles of both ecotypes. From
the uptake rates found at both temperatures the Q,, value
for the Zn uptake process was calculated. The Q,, of the
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Figure 1. The effect of 0.5 mm Zn citrate on the ApH and Ay of S.
vulgaris tonoplast vesicles. Fluorescence (F) of acridine orange and
oxonol-V were measured in arbitrary units. A, Effect of 0.5 mm Zn
citrate on the ApH of tonoplast vesicles of a sensitive and tolerant
ecotype of S. vulgaris, measured using acridine orange quenching
(this graph is similar for both ecotypes). B and C, Effect of 0.5 mm Zn
citrate on the Ay of tonoplast vesicles of a Zn-sensitive (B) and a
Zn-tolerant (C) ecotype was measured using oxonol-V fluorescence. In
all cases, Mg-ATP was added immediately after adding the vesicles,
and Zn citrate was added after 400 s. After another 100 s, NH,Cl or
gramicidin was added to disrupt the gradient.

tolerant ecotype was 2.4, and that of the sensitive ecotype
was 1.6.

Uptake of Citrate

Tonoplast vesicles were incubated with either 0.1 or 0.5
mM Zn citrate in the presence or in the absence of Mg-ATP.
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After measuring Zn with flame atomic absorption spectro-
photometry, the citrate concentration of the samples was
determined using GC. The Zn concentration in the vesicles
increased with the external Zn concentration, and was
higher in the presence of Mg-ATP for both ecotypes (Fig.
2). At 0.5 mm Zn citrate in the presence of Mg-ATP, vesicles
derived from tolerant plants took up significantly more Zn
than vesicles derived from sensitive plants (2.9 versus 0.9
umol mg’1 vesicle protein). However, the uptake of citrate
by the vesicles of either ecotype was independent of both
the amount of citrate present in the incubation medium
and the presence of Mg-ATP. The discrepancy between Zn
uptake and citrate accumulation was demonstrated most
clearly by vesicles of tolerant plants incubated with 0.5 mm
Zn citrate in the presence of Mg-ATP (Fig. 2B). In these
plants the amount of Zn in the vesicles was strongly in-
creased (2.9 pmol mg ' vesicle protein), whereas the
amount of citrate remained very low (0.6. umol mg !
vesicle protein).

Plant Crosses and Selection for Zn Tolerance

To unambiguously link Zn tolerance to differences ob-
served in tonoplast vesicle Zn uptake, plants of the tolerant
and the sensitive ecotype were crossed. To obtain homozy-
gous Zn-sensitive and Zn-tolerant genotypes of Amster-
dam X Plombieres plants, sets of F, plants were numbered
and crossed in pairs, resulting in F, families designated as
1X2,3X4,and 7 X 8. Of these, 200 plants per family were
tested for Zn tolerance according to the method of Schat et
al. (1996).

Table Il. Properties of Zn uptake. The uptake of Zn in the pres-
ence of test compounds is expressed as a percentage = st of up to
12 replicates of the Zn uptake in the reference situation at 90 s,
incubation of vesicles at room temperature (24°C), with 0.5 mm Zn
citrate, in the presence of MgATP

The average net uptake for vesicles in the reference situation was
1.85 = 0.12 and 3.68 = 0.73 umol mg™" vesicle protein for the
sensitive and the tolerant ecotype, respectively. All values were
corrected for the amount of Zn measured without the addition of
Mg-ATP (0.61 = 0.03 pwmol mg™~" vesicle protein for both ecotypes)
prior to the calculation of percentages.

Zn Uptake
Treatment
Sensitive Tolerant
%

Mg-ATP (24°C) 100 100
Mg-ATP (4°C) 45.5 +12.2 18.7 £ 3.0
Mg-GTP 61.4+83 159.0 £ 13.3
ATP 183 £55 11.7 £ 1.6
Mg-ATP + ortho-vanadate 42.4 £ 4.6 101.0 £ 6.9
Mg-ATP + NH,CI 48.0 = 3.5 87.1 =125
Mg-ATP + gramicidin 77.9 £ 5.0 98.9 = 36.0
Mg-ATP + NH,CI + bafilomycin 58 132.7 £10.2
Mg-ATP + Triton X-100 9.8 +7.0 229 * 1438
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F, plants showing complete inhibition of root growth
below 700 uM ZnSO, in the test solution (<6% of the
amount of plants tested) were qualified as homozygous
sensitive; plants that continued growing at concentrations
over 4000 uMm ZnSQO, in the test solution (also <6% of the
amount of plants tested) were qualified as homozygous
tolerant. The homozygous plants were transferred to fresh
nutrient solution (without additional Zn) to form new
roots, put on soil, and intercrossed to obtain enough seeds
to preculture plants for tonoplast vesicle isolation and Zn
uptake experiments, as described above.

The results of the uptake experiments using selected
lines are shown in Table III. Increased uptake of Zn by
tonoplast vesicles cosegregated with Zn tolerance. Vesicles
derived from tolerant F; plants took up more Zn than those
derived from sensitive plants at all concentrations of Zn
citrate. These results were found using different sensitive
and tolerant F; lines. This cosegregation of Zn uptake with
tolerance proves that enhanced uptake of Zn across the
tonoplast is genetically correlated with naturally selected
Zn tolerance.

- MgATP

+ MgATP

0.1 0.5 0.1

[Zn-citrate] (mM)

Figure 2. The concentration of Zn and citrate in isolated tonoplast
vesicles derived from sensitive (A) and tolerant (B) plants. Tonoplast
vesicles were incubated with either 0.1 or 0.5 mm Zn citrate in the
presence or absence of Mg-ATP. After measuring Zn with flame
atomic absorption spectrophotometry, the citrate concentration of
the samples was determined using GC (see “Materials and Meth-
ods”). Bars represent means of three to six samples. Error bars rep-
resent se values. White bars, Zinc (wmol/mg vesicle protein); shaded
bars, citrate (umol/mg vesicle protein).

Table I1l. Zn uptake by homozygous sensitive and tolerant F;
plants of Amsterdam X Plombiéres

Values are means = st of three to five replicates for F, family 3 X
4, and the results of a single isolation for the other lines. Results were
corrected for nonspecific binding of Zn to the vesicles by subtracting
the Zn concentration (0.3, 0.5, or 0.8 mm) measured in a reference
incubation without Mg-ATP.

Zn Uptake
Fy Family
0.3 mm 0.5 mm 0.8 mm
wmol mg~" vesicle protein
3 X 4 (sensitive) 0.39 £ 0.1 1.10 = 0.1 1.94 = 0.5
3 X 4 (tolerant) 1.00 = 0.2 211 =09 326 £1.0
1 X 2 (sensitive) 0.82 1.28
7 X 8 (tolerant) 1.35 3.67
DISCUSSION

Our results provide the first direct evidence, to our
knowledge, for an important role of tonoplast transport in
naturally selected heavy metal tolerance. Although other
authors have reported transport of heavy metals into iso-
lated tonoplast vesicles (Salt and Wagner, 1993; Salt and
Rauser, 1995; Gries and Wagner, 1998), we were to our
knowledge the first to report differences in heavy metal
uptake rate between tonoplast vesicles derived from
ecotypes of one species showing differential heavy metal
tolerance (Verkleij et al., 1998). This finding strongly sup-
ported the hypothesis that the tonoplast plays an essential
role in naturally selected Zn tolerance, as was recently also
strongly suggested for Zn hyperaccumulation in Thlaspi
caerulescens (Lasat et al., 1998). However, this is the first
time (again, to our knowledge) that enhanced tonoplast
transport has been found to be genetically correlated with
tolerance. Therefore, it is of great interest to characterize
the transport system that causes this uptake difference in S.
vulgaris.

The uptake of Cd by tonoplast vesicles derived from oat
roots demonstrated by Salt and Wagner (1993) and Gries
and Wagner (1998) is due to H"-coupled antiport activity.
In our experiments a very small decrease in the ApH of
vesicles of both ecotypes was observed upon addition of
Zn (Fig. 1A), suggesting that one pathway for Zn uptake in
both sensitive and tolerant plants is via a H"-coupled Zn
antiport. Although this is a major pathway in vesicles from
sensitive plants (Table II), most of the Zn uptake in tolerant
plants was not sensitive to the ApH. These results suggest
that in tolerant plants an additional uptake system must be
present. This is further supported by measurements of the
Ay across the tonoplast (Fig. 1, B and C). In contrast to the
sensitive ecotype, the tolerant ecotype did not show efflux
of positive ions upon addition of 0.5 mm Zn (Fig. 1B) and
was not reconcilable with high H*-coupled Zn antiport
activity in the tolerant ecotype. We conclude that H™-
coupled Zn antiport activity is most certainly not the major
mechanism underlying increased Zn tolerance in S.
vulgaris.

It is highly unlikely that Zn is associated with the mem-
brane, as is the case for Ni in oat (Gries and Wagner, 1998),
since almost no Zn is found in vesicles incubated without
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Mg-ATP (Verkleij et al., 1998). The dependence of Zn trans-
port on the presence of Mg-ATP could be due to binding of
ATP to the transporter or to ATP hydrolysis. Since we
found that ApH is not responsible for Zn transport, ATP
hydrolysis by the transporting protein is likely to be the
driving force of Zn transport. Indeed, Zn uptake was
strongly reduced, both when the cofactor Mg was omitted,
and when the incubation temperature was reduced from
24°C to 4°C. The Q,, values of the Zn uptake process
calculated for both the sensitive and the tolerant ecotype
(1.6 and 2.4, respectively) suggest biological activity rather
than an nonspecific physical process as the cause of Zn
accumulation.

Citrate concentrations in vesicles incubated with Zn ci-
trate did not increase with the Zn concentration (Fig. 2),
which strongly indicates that Zn is most likely taken up as
Zn*". Further support for this hypothesis was obtained in
experiments in which Zn and citrate were supplied to
vesicles in a ratio of 1:2. In these experiments, Zn uptake
was strongly reduced, whereas the replacement of citrate
by malate in another experiment increased the uptake rate
(data not shown).

It is plausible that the tonoplast of both ecotypes contains
many cation transporters that are able to transport Zn
when it is the most abundant substrate, as was the case in
our assays. These transporters probably have a variety of
characteristics that might account for some of the variation
found in transport, especially in the sensitive ecotype. In
the tolerant ecotype this variation was smaller, possibly
because transport may have been dominated by one spe-
cific Zn transporter that might effectuate Zn tolerance. It is
possible that the Zn-tolerant ecotype shows increased Zn
uptake because it contains more units of a Zn-transport
system constitutively present in all ecotypes. However, the
transport system responsible for the increased uptake in
vesicles of tolerant plants may also be due to an additional
or a modified system not present on the tonoplast of sen-
sitive plants.

The transport protein responsible for enhanced Zn trans-
port across the vacuolar membrane of Zn-tolerant S. vul-
garis might belong to the ABC superfamily of membrane
transporters, which are directly energized by Mg-ATP and
are able to transport a large number of substances, such as
sugars, peptides, and inorganic ions (Rea et al., 1998). For
instance, the YCF1 (yeast Cd factor) protein from Saccharo-
myces cerevisiae, which confers Cd resistance in this species,
is a Mg-ATP-dependent, uncoupler-insensitive ABC pro-
tein (Li et al., 1996). However, this protein is inhibited by
ortho-vanadate, as is the transport of chlorophyll catabo-
lites in oilseed rape (Hinder et al., 1996), in which ATP
could be partially replaced by GTP. ABC-protein-mediated
transport with specificity for GTP hydrolysis is known
from Escherichia coli (Zhong and Tai, 1998). Hwang et al.
(1997) described two types of Ca”>*-pumping ATPases in
carrot, one of which can hydrolyze GTP nearly as well as
ATP, and is present on vacuolar membranes. In our exper-
iments, however, Zn uptake by vesicles from the tolerant
ecotype was strongly stimulated (59%) by the replacement
of ATP by GTP. The latter finding, together with the insen-
sitivity of Zn uptake to vanadate, suggests that transport in
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this case is not mediated by an ABC protein. Alternatively,
the Zn-transport system in Zn-tolerant S. vulgaris might be
related to one of several GTP-binding proteins present on
the tonoplast of spinach, which have a molecular mass of
20 to 55 kD (Perroud et al., 1997).

We conclude that tonoplast vesicles derived from Zn-
tolerant S. vulgaris possess a transport system that probably
actively transports ionic Zn into the vesicles. The fact that
increased Zn uptake by isolated tonoplast vesicles coseg-
regates with Zn tolerance in crosses very clearly demon-
strates the importance of root tonoplast Zn transport in
naturally selected Zn tolerance. The transport process in
the tolerant ecotype is dependent on incubation tempera-
ture and the presence of Mg-ATP or Mg-GTP, and is not
due to Zn** /H™ antiport activity. The nature of the protein
responsible for increased Zn transport, however, remains
to be investigated. In vivo, this transport system most
likely detoxifies Zn by transporting cytosolic Zn into the
vacuole, a process that takes place far more efficiently in
the Zn-tolerant than in the Zn-sensitive ecotype.
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