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The topological requirements for robust perfect
adaptation in networks of any size
Robyn P. Araujo 1,2 & Lance A. Liotta3

Robustness, and the ability to function and thrive amid changing and unfavorable environ-

ments, is a fundamental requirement for living systems. Until now it has been an open

question how large and complex biological networks can exhibit robust behaviors, such as

perfect adaptation to a variable stimulus, since complexity is generally associated with fra-

gility. Here we report that all networks that exhibit robust perfect adaptation (RPA) to a

persistent change in stimulus are decomposable into well-defined modules, of which there

exist two distinct classes. These two modular classes represent a topological basis for all

RPA-capable networks, and generate the full set of topological realizations of the internal

model principle for RPA in complex, self-organizing, evolvable bionetworks. This unexpected

result supports the notion that evolutionary processes are empowered by simple and scalable

modular design principles that promote robust performance no matter how large or complex

the underlying networks become.
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Robust perfect adaptation (RPA) is the ability of a system to
generate an output that returns to a fixed reference level (its
'set point') following a persistent change in input stimulus,

with no need for tuning of system parameters1–3. RPA has been
widely observed throughout biology1,4–11, at the cellular level
(signal transduction, gene regulation, protein interaction net-
works6–8), in sensory systems6,10,11, at the whole-organism level
in mammals9, and during development12,13. For example,
mammalian plasma calcium concentration exhibits perfect
adaptation to persistent changes in calcium export (e.g., lacta-
tion), or influx (e.g., diet changes or bone remodeling), thereby
keeping plasma calcium within very tight tolerances as calcium
demands vary9. In addition, perfect adaptation enables a biolo-
gical system to reset itself following a perturbation, in order to
maintain responsiveness to subsequent variations in external
stimuli3. The RPA property thus promotes high sensor sensitivity,
while increasing the dynamic range, regardless of the intensity, or
the variations, in the average stimulus1–3,14,15.

Importantly, while RPA confers many benefits to living sys-
tems, loss of the RPA property in networks that require it could
lead to disease (e.g., ras-mediated oncogenesis3,16), reduced fit-
ness1, or death17. During development, and throughout evolu-
tion1, biologic networks—or bionetworks—grow to enormous
size and molecular complexity, apparently without any compro-
mise in robustness. Why isn’t this growth in complexity asso-
ciated with heightened fragility, or instablility, or a loss of
requisite function18–20?

In this connection, it is essential to recognize that biological
systems differ in fundamental ways from engineering control
systems. Molecular signaling networks are self-organizing, self-
regulating, adaptable, and evolvable, and as such, are comprised
of elements that must serve both as the transmitted signals and
their own controllers. Unlike their designed counterparts in
engineering control systems, bionetworks do not have the luxury
of employing specially-designed, dedicated components whose
purpose is to sense or control biochemical signals. Although
asymptotic tracking problems (of which RPA to constant exo-
genous inputs is a special case) have been studied extensively for
engineering systems21–23, how can we understand the mechan-
isms governing robust performance in the context of the self-
organizing, self-regulating autonomous systems arising in biol-
ogy, or that become deranged in disease24–26?

Until now, three basic approaches have been used to under-
stand the allowed topologies for RPA networks2,3,5,8,14,18,19, and
they have only provided answers for very small systems. The first
approach is to model a small, well-defined, and well-studied
natural system that exhibits RPA; a classic example of this
approach is the work of Barkai and Leibler on RPA in bacterial
chemotaxis5. A second approach is to build trial modifications of
input–output network connection maps, hoping to find circuit
designs that have the RPA property3,18,19. Both of these
approaches consider the RPA problem via ad-hoc modeling. By
contast, a third approach is to undertake high-throughput com-
putational searches to comprehensively study very small net-
works, typically only containing two or three components2,13. Ma
et al.2 used this approach to suggest that, for three-node net-
works, only two types of signaling motif were capable of imple-
menting RPA.

Crucially, such ad-hoc or high-throughput strategies are
impractical for most networks in living and evolving systems,
which can contain huge numbers of interacting molecules, and
for which we have limited or no a priori knowledge of component
and pathway interconnections, reaction kinetics, or system
parameters1,17,18. If computational search strategies could be
extended to networks with more than three nodes, would this
reveal any RPA network topologies that are distinct from the two

basic network designs already discovered for three-node RPA
networks? Do the topological requirements for RPA in large
systems increase in complexity, or change qualitatively, along
with the growth of the system, or must larger systems simply
replicate the same basic design principles used by smaller sys-
tems? Could there exist universal topological principles that
characterize all RPA-capable network designs18?

In the present study we provide definitive answers to these
questions. In stark contrast to previous work on the RPA problem
(see3,18 for recent reviews), we develop a topological framework,
and a new set of unifying definitions, that is able to interpret and
account for the flow and control of biochemical signals through a
network. This global and top-down methodology allows us to
describe the full set of possible network topologies for achieving
RPA in arbitrarily large and complex networks, involving any
number of interacting components, with no prior assumptions as
to how the components are interconnected, or the kinetics of any
reactions. Remarkably, we show that all networks, no matter how
large or interconnected, have just two distinct mechanisms at
their disposal, corresponding to two distinct types of integral
control, in order to implement RPA. Each of these two
mechanisms generates a rich class of well-defined network
topologies—'modules'—containing previously unrecognized
architectural features that are too complex to be observed in
three- or four-node networks. Most importantly, we show that
these two rich and distinct classes of modules represent a topo-
logical basis for the solution to the RPA problem: that is, the full
set of all possible RPA-capable networks can be expressed via the
interconnections of these special modules, subject to well-defined
modular connectivity rules.

Results
General schema for identifying RPA topologies. In order to
specify the complete solution space to the general RPA problem,
we derive and analyze a suitable algebraic condition that we refer
to as the RPA Equation (see Methods). This equation accounts
for all possible interactions and interconnections in a network of
arbitrary size, and establishes a special case of the Internal Model
Principle (IMP) from which topological structures may be
deduced. The equation takes the form of a particular Jacobian
determinant, which is required to take a zero value for all system
inputs, I.

At the broadest level, we interpret the (signed) terms of the
RPA equation’s determinant expansion as a set, R, and recognize
that partitions of R may exist for which the contents of every
subset can sum to zero independently of the contents of every
other subset. We proceed to identify general conditions under
which such 'independently adapting subsets' can exist by
accounting for the topological information contained within
each term. In particular, we show in Supplementary Note 2 that
each member of R represents a unique product of the three
fundamental mathematical elements of signal transmission— (1)
a route factor (a pathway through the network, corresponding to
an unbroken sequence of node-node interactions commencing at
the input node and ending at the output node), (2) circuit
products (corresponding to multi-node cycles, i.e., feedback
loops), and (3) 'kinetic-multipliers' (single-node cycles, which
encode important properties of the reaction kinetics at the node
in question).

The cornerstone of our methodology is to identify conditions
under which an arbitrary subset of R can sum to zero for all I,
thus solving a local adaptation equation (LAQ), with no possible
further sub-division into smaller adaptive subsets. We refer to
such a subset as a 'minimally adaptive (MA)-subset', of which we
identify two distinct types: singleton MA-subsets (hereafter, S-
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sets), whose single term must be able to assume a zero value for
all I, and multi-term MA-subsets (hereafter, M-sets), all of whose
terms must solve their LAQ with strictly non-zero values for all I.

S-sets and M-sets are generated (that is, their LAQ is solved) by
distinct mechanisms that are orchestrated by special classes of
reaction kinetics at one or more key network nodes. For S-sets, we
refer to the generating mechanism as 'opposition', and the special
class of reaction kinetics that execute the mechanism as 'opposer
kinetics'. The 'balancing' mechanism that generates M-sets, on the
other hand, requires two different types of reaction kinetics
working together in collaboration—'balancer kinetics' and 'con-
nector kinetics'—at distinct nodes. We will see later that these
special classes of reaction kinetics play remarkable computational
roles in RPA-capable networks.

S-sets and the creation of Opposer Modules. S-sets are created
by a mechanism we refer to as opposition, since a factor in the
cycle component of the term assumes a zero value, thereby
opposing that term’s route component. The mechanism is
transacted by an opposer node, Po, which appears in the form of a
kinetic multiplier, and whose reaction kinetics (opposer kinetics)
must satisfy ∂fo

∂Po
¼ 0 at steady-state, for all I.

Now, a node can only exhibit opposer kinetics if it participates
in a feedback loop (Theorem 1, Supplementary Note 2), making
opposition a circuit-based mechanism. We show that the
mathematical requirements of opposer kinetics imply a well-
defined class of possible chemical reaction forms, which we
describe in Supplementary Note 4. In addition, an opposer node

requires a single independent regulator, which must participate in
a common circuit with the opposer, in order to implement these
reaction kinetics. This requirement for a single independent
regulator implies that an opposer node cannot occur at the
junction of two independent feedback loops, for instance.

Importantly, a single opposer node will oppose (assign to S-
sets) all instances in R of a particular route if and only if (a) it is
disjoint from the route, and (b) it participates only in circuits that
are contiguous with the route (Theorem 2, Supplementary
Note 3). From this it follows that a single opposer node can
only partially oppose a route if it participates in even one circuit
that is disjoint from the route in question. Nevertheless, all
instances of a route could still be assigned to S-sets by a collection
of two or more opposer nodes working together in concert. We
refer to such a collection of opposer nodes as an 'opposing set'.

We identify a strict set of topological conditions for which a
collection of opposer nodes, {Po1,…, Pom} constitutes an opposing
set for a particular route in Theorem 3 of Supplementary Note 3.
The topological requirements of opposing sets specified in
Theorem 3, combined with the requirement for each opposer
node to have a single independent regulator in a common circuit,
define a rich class of network topologies associated with the
opposition mechanism: a collection of opposer nodes distributed
to a set of interlinked circuits, embedded into a feedback loop that
is contiguous with the route being (fully) opposed. In this sense, a
single opposer (with no disjoint circuits relative to a route it fully
opposes, and is embedded alone into a contiguous circuit), may
be considered a trivial opposing set—a special case which
vacuously satisfies the conditions of Theorem 3.
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Fig. 1 Two module classes are a topological basis for RPA networks. The essential architecture of the two RPA basis modules: the Opposer Module (a, b)
and the Balancer Module (c). All nodes that exhibit the RPA property are denoted with a superposed red asterisk. The symbol SN indicates that any motif or
sub-network may be fully embedded at the indicated position. Interactions among nodes are indicated with a solid dot, to indicate that the interactions may
be either activating or inhibitory in principle. All nodes depicted below may also (optionally) be regulated by extramodular nodes that exhibit the RPA
property (blind regulations) due to the activity of other RPA modules in the larger network (not shown, for clarity). These modules rely on special
computational nodes—opposer nodes, balancer nodes, and connector nodes—all of which use special classes of reaction kinetics to orchestrate their RPA-
generating functions (see Supplementary Note 4). a An Opposer Module with a single opposer node (denoted O in yellow). Opposer Modules are
characterized by a feedback architecture, defined by an apex node (C) and a base node (D, both in blue). All routes that are contiguous with the route
segment C—D are opposed by the opposer node—that is, all routes that feed into the module at some node between C and D, inclusive. The module could
therefore include any of optional regulations indicated in feint. b An Opposer Module with a two-node opposing set. Structure of the module is as for part
(a) except that two opposer nodes now work together in concert within a pair of interlinked circuits embedded into the feedback architecture. Opposer
nodes are part of a master set, which in this case comprises {O1, X, O2}. c A Balancer Module is characterized by a collection of (at least two) parallel
route segments, which diverge upstream at D and reconnect downstream at the connector node, C, both indicated in green. All nodes embedded into those
route segments are balancer nodes, indicated in blue. The three dots on either side of the interior SN elements indicate that the module may contain any
arbitrary number of route segments between D and C
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In Fig. 1a, b, we depict the class of network topologies
corresponding to the mechanism of an opposing set, illustrating
the case of a single opposer node, as well as a simple version of a
two-node opposing set. We refer to these network topologies
hereafter as Opposer Modules.

Computational role of Opposer Nodes. We illustrate in Figs. 2a
and 3 (with additional analysis in Supplementary Note 4) that
opposer nodes calculate an integral of a tracking error—the dif-
ference between some network quantity (e.g., the activity of a
particular node) and its steady-state value, the latter being
determined purely by system parameters, rather than the mag-
nitude of the system input.

For a single opposer node, the tracking error in question
corresponds to the error in the activity of the single independent
regulator (Fig. 2a). Since the opposer and its regulator participate
in a common circuit, the computation of this integral constrains
the regulator node to exhibit the RPA property. In an opposing
set, on the other hand, each opposer in the collection computes
the integral of a unique tracking error, involving various
combinations of nodes in the master set (Fig. 3). All nodes
featuring in these various tracking errors exhibit the RPA
property due to the combined effect of the multiple integrals;
the opposer nodes themselves, by contrast, never exhibit the RPA
property (Supplementary Note 4).

It is apparent that these more complex arrangements of
opposer nodes are indeed employed in certain gene regulatory
circuitries since we show in Supplementary Note 5 that the
recently identified phenomenon of antithetical integral
feedback3,14 is actually an instance of a two-node feedback
opposing set with single input/output node. Some additional
examples of opposing sets are depicted in Fig. 3, with a more
general representation of opposing sets given in Fig. 4 (further
details in Supplementary Note 3).

M-sets and the creation of Balancer Modules. Although the
opposition mechanism is orchestrated by feedback loops, along
with the collections of opposer nodes embedded into them, the
balancing mechanism is route-based. Indeed, we show that an M-
set must contain at least two distinct routes (Theorem 4, Sup-
plementary Note 3). A consequence of this requirement is that
networks in which a single node acts as both input and output
cannot invoke the balancing mechanism to achieve RPA, and
must instead rely on opposition (Corollary 2, Supplementary
Note 3).

Obtaining a solution to the LAQ places constraints on the
reaction kinetics of all nodes within certain route segments, and
any fully embedded feedback loops, for the particular routes
contained in the proposed M-set. The interconnectivities among
these constrained nodes delineate a specific sub-network topology
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Fig. 2 Integral control in opposer and Balancer Modules. Solving the RPA problem in general networks relies on the computation of two different types of
integral—one for each type of RPA basis module. a In an Opposer Module, each opposer node computes a tracking error that involves the activity of its
single independent regulator. For the minimal example of an Opposer Module shown here, the single opposer node O exhibits a simple form of opposer
kinetics which is zero-order in its substrate, with single independent regulator X. The opposer thereby computes the tracking error between the activity of
X and its (input-independent) steady-state value, X*. b In a Balancer Module, it is the role of the balancer nodes to compute a steady-state activity (B*) that
is a linear function of the steady-state of the diverter node (B*). Each balancer thereby computes an integral that involves the deviation of the nodes’
activities from a linear relationship. This upstream computation then creates the conditions for the connector node to track a steady-state value (C*) that is
independent of the activity of the D-node through the computation of an integral involving its direct regulators. For the minimal example of a Balancer
Module shown here, the balancer tracks the simplest linear relationship with the diverter activity, namely a proportional relationship. c Numerical
simulations for the simple Opposer model shown in a: input (I) (shown in black) increases from 0.2 to 1 in steps of 0.2. X-equation: dX/dt= k3(I/O) – k4X;
parameters: k1= k4= 1, k2= 0.5, k3= 0.4. d Numerical simulations for the simple Balancer model shown in b. Input (I) (shown in black) increases from 0.2
to 1 in steps of 0.2. D-equation: dD/dt= k5I− k6D; parameters: k2= k4= k5= k6= 1, k1= 0.8, k3= 0.5
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that implements the balancing mechanism. We refer to this
topological configuration hereafter as a Balancer Module, and
present a general schematic for the module in Fig. 1c. As shown, a
Balancer Module is characterized by a 'diverter node' (D-node) at
the apex, and a 'connector node' (C-node) at the base of the

module. Separating the D- and C-nodes are a collaborating set of
balancer nodes, comprising all members of the route segments
between the D-node and the C-node, for the M-set in question,
along with any feedback loops fully embedded into those route
segments. The requisite reaction kinetics for balancer nodes
constrain their steady-state values to reside on a 'flat manifold'
(Theorem 5, Supplementary Note 3)—that is, the steady-state for
each balancer is a linear function of the steady-state of the D-
node. Full details on the class of reaction forms that implement
balancer kinetics are given in Supplementary Note 4; a key
topological requirement for the implementation of balancer
kinetics is for the set of collaborating balancer nodes to have a
single independent regulator—namely, the D-node. The set of
balancer nodes must also collaborate with one additional node—
the connector node—whose special reaction kinetics (Supple-
mentary Note 4) complete the balancing act for the M-set,
allowing its terms to sum to zero for all I.

The balancing mechanism thus requires a computational
collaboration between two distinct types of nodes: a collection
of one or more balancer nodes, along with a single connector
node. The reaction kinetics for these two-node types implement a
form of integral control that is distinct from the integral feedback
control that characterizes the activity of opposer nodes. As we
illustrate in Fig. 2b for a very simple Balancer Module, the
computational function of the balancer nodes is to linearize their
steady-state responses to the activity of the D-node. This
upstream linearization creates the conditions that allow the
connector node to compute a particular integral—one which
constraints the connector to track a steady-state value that is
independent of the D-node (and therefore, of the input to the
network). In a Balancer Module, then, the connector node alone
exhibits the RPA property; the D-node and all balancer nodes, by
contrast, assume steady-state values that vary with network input.

RPA basis sets and their corresponding basis modules. Armed
with an understanding of the two basic RPA-generating
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Fig. 3 Integral feedback control via three kinds of opposing sets. Three
different examples of opposing sets, with the nature of the integral
computed by each individual opposer node indicated in each case. Opposer
nodes are indicated in yellow; a red superposed asterisk indicates nodes
within each module that exhibit the RPA property due to the combined
activities of the opposing set. Not only do all opposer nodes in the set
contribute to an overall computation that allows one or more nodes in the
opposed route to exhibit RPA, but one or more nodes in the master set
must also exhibit the RPA property as part of this computation. This
phenomenon has important implications for the interconnectivity of
modules, through the possibilities for either live or blind outgoing
regulations from the module. a A two-node opposing set {O1, O2}, with
associated master set {O1, X, O2}. O1 imparts the RPA property to X,
through the computation of a tracking error involving X. With X thus
equipped with the RPA property, O2 imparts the RPA property to P2
through the computation of a tracking error involving both X and P2. b A
two-node opposing set {O1, O2}, with associated master set {O1, A, B, C, D,
E, O2}. O1 imparts the RPA property to A, through the computation of a
tracking error involving A. The steady-state activities of C and E are
dependent on A, so these two nodes also exhibit the RPA property as a
consequence. With E thus equipped with the RPA property, O2 then
imparts the RPA property to P2 through the computation of a tracking error
involving both E and P2. c A three-node opposing set {O1, O2, O3}, with
master set {O1, X1, O2, X2, O3}. O1 imparts the RPA property to X1, through
the computation of a tracking error involving X1. With X1 thus equipped with
the RPA property, O2 imparts the RPA property to X2, through the
computation of a tracking error involving X2 and X1. With X2 now equipped
with the RPA property, O3 can impart the RPA property to P2 through the
computation of a tracking error that involves both P2 and X2

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04151-6 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1757 | DOI: 10.1038/s41467-018-04151-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


mechanisms, we now turn our attention to the central concern of
this work—the topological characterization of the set of all pos-
sible networks capable of exhibiting RPA.

We note at this point that the balancing mechanism described
in the preceding section automatically balances all copies of all
routes in R that contain the noted route segments between the D-
and C- nodes, regardless of whether those terms were selected in
the original M-set (see Supplementary Note 5). The union of the
M-set with all such terms thus represents the independently
adapting subset of R associated to the M-set. The Balancer
Module depicted in Fig. 1c thus represents the class of network
topologies that correspond to an independently adapting
(balancing) subset of an RPA equation.

Moreover, any route in a network that is only partially opposed
must have copies that are balanced. Since a balancing mechanism
will automatically balance all copies of its routes, such a partially
opposed route is redundantly opposed. As such, the indepen-
dently adapting subset associated to any opposition mechanism
(via opposing sets) comprises the union of only those terms in R
whose routes are fully opposed by the mechanism. The union of
S-sets generated by partial opposition of a particular route should
thus be absorbed into the independently adapting subset
associated with the relevant balancing mechanism.

From the conditions of Theorems 2 and 3, then, the
independently adapting subset associated with an opposition
mechanism contains all copies of all routes that are disjoint from
the opposing set, while contiguous with a circuit into which the
opposing set is embedded—that is, all routes fully opposed by the
opposition mechanism in question. The Opposer Module
presented in Fig. 1a,b then represents the class of network
topologies that correspond to an independently adapting
(or opposing) subset of an RPA equation.

Now, the hallmark of an RPA-capable network is the existence
of a partition of its RPA equation into independently adapting
subsets. (This general description includes the possibility of the
trivial partition into a single subset comprising all of R). In
addition, from the observation that the terms of R are distributed
to independently adapting subsets by route (that is, all instances
in R of a particular route are to be grouped together into a single
such subset), it follows that these subsets are disjoint, and must
cover R. We have seen, moreover, that two and only two
mechanisms—which we call opposition and balancing—are able
to generate the independently adapting subsets of R in an RPA-
capable network, and that each such mechanism may be
implemented by a rich class of sub-network topologies—Opposer
Modules and Balancer Modules, respectively. Taken together,
these considerations imply that a network can exhibit RPA only if
it is decomposable into Opposer and/or Balancer Modules—that
is, each route for the transmission of biochemical signal from
input to output must be either balanced or (fully) opposed by a
single network module.

A general RPA network could contain an arbitrary number of
such modules—corresponding to its RPA equation being
partitioned into (the same) arbitrary number of disjoint
independently adapting subsets—so the question now remains
as to how multiple such network modules may coexist (i.e., be
connected together) in RPA networks.

Interconnections of basis modules and larger RPA networks.
Now that we have a clear picture of the topological basis modules
from which any RPA-capable network must be constructed, a set
of rules governing how the modules may be combined
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interlinked disjoint circuits as the master set associated to the opposing set (see Theorem 3). The requirement for each opposer node to have a single
independent regulator requires there to be one, and only one, opposer node in each interlinked circuit. This also requires the opposer node from one circuit
to be regulated directly or indirectly by a node in the opposed route; all other opposer nodes in the opposing set will have a single independent regulator
that is internal to the collection of disjoint circuits. The opposer nodes Oi, and their dependents (all marked in red) do not exhibit RPA. The single
independent regulator of each opposer node, and its dependents (all marked in green) do exhibit the RPA property. Thus, any outgoing regulation from a
node marked in red will be a live regulation; any outgoing regulation from a node marked in green will be a blind regulation. This has important implications
for the interconnections of the module with other parts of the RPA-capable network. The symbol SN indicates that any motif or sub-network may be fully
embedded at the indicated position. a For illustrative purposes, an example is shown where the opposer node from one of the disjoint circuits has a single
independent regulator that comes from the opposed route; the opposer node, or one of its dependents, from some other disjoint circuit in the collection
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example is shown where a single opposer node in the opposing set is regulated by a route note, and also regulates a route node, thus forming the requisite
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(interconnected) defines the full solution space of possible RPA-
capable network topologies.

The nature of the two distinct RPA-generating mechanisms,
and their topological realizations in self-organizing/self-regulating
networks, does place some constraints on how RPA modules may
be interconnected to form more complex multimodular networks.
These constraints are two-fold: first, we note that the three types
of reaction kinetics required to implement RPA—opposer
kinetics, balancer kinetics and connector kinetics—are mutually
exclusive (Supplementary Note 4). That is, any given node can
exhibit at most one of the three types of reaction kinetics. Second,
any given computational node (opposer, balancer or connector) is
constrained in how it may be regulated: an opposer node, or a
collection of collaborating balancer nodes, each has a single
independent regulator; and a connector node works with a single
collection of collaborating balancer nodes.

From this, we can conclude that the active part of each module
(that is, nodes residing between the apex (node C in Fig. 1a, b and
node D in Fig. 1c), and the base (D in Fig. 1a, b and C in Fig. 1c)
must be distinct from the active part of any other module. A node
that plays the role of an opposer in one module, for instance,
cannot also be required to operate as a balancer (or a connector)
for some other module. Moreover, the requirement for a single
independent regulator implies that an opposer node can only
perform its computational function for a single Opposer Module.
Likewise, a set of collaborating balancer nodes, together with their
connector node, delineates a single Balancer Module.

The requirement for distinctness of the active parts of RPA
modules implies that the modules may either be connected 'in

parallel', or 'in series' according to the definitions given in our
Methods section.

Live and blind regulations from intramodular nodes. In order
to make the series connection of RPA modules precise from a
topological perspective, we first recall from the preceding sections
that within the active part of each module, some nodes exhibit the
RPA property, while others do not. Opposer nodes, along with
any associated dependent nodes, do not exhibit the RPA property.
The single independent regulator for an opposer, along with any
associated dependent nodes, do exhibit the RPA property. Like-
wise, balancer nodes, along with their single independent reg-
ulator (the associated D-node) do not exhibit the RPA property,
while connector nodes do exhibit the RPA property. From these
considerations, we can consider any outgoing regulations from
the active parts of an RPA module–leading ultimately to the
network’s output node—to be either 'blind regulations' if they
come from node(s) that exhibit the RPA property or 'live reg-
ulations' if they come from node(s), which do not exhibit the RPA
property.

We illustrate the essential principles of series interconnections
of modules, which are required in any RPA network containing a
module with live outgoing regulations, in Fig. 5. As shown in
Fig. 5a, b, outgoing regulations from an opposer node (or
associated dependent nodes) place that opposer in a route which
must then be either balanced or (fully) opposed by some other
RPA module (as indicated by the symbol A which indicates the
position of the required ancillary module). Likewise, in a Balancer
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the RPA property, on the other hand, can produce only a live regulation. Live outgoing regulations correspond to routes in the network that are not
opposed/balanced by the module they feed out of. As such, they require an ancillary module to balance or oppose the live regulation in order for the
network as a whole to be RPA-capable. a, b Opposer nodes cannot exhibit RPA. Any outgoing regulations from an opposer node (or any downstream
dependents) place that opposer into a route that is not opposed by the associated Opposer Module. Such an outgoing regulation corresponds to term(s) of
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Module, outgoing regulations from balancer nodes place these
nodes in routes that are not balanced by the module; these routes
must be either balanced or (fully) opposed by some other
ancillary module, as indicated by the symbol A in Fig. 5c. In
either case, any outgoing blind regulations generate no require-
ments for any ancillary modules. Thus, any module with only
blind outgoing regulations may exist alone in an RPA network,
and any sub-network structures downstream of such regulations
may be considered part of the module itself. In addition, blind
outgoing regulations may feed into any other RPA module(s)
without affecting the ability of those modules to contribute to
RPA in the network as a whole.

Figures 6 and 7 present two different illustrative examples of
RPA networks that are decomposable into two different RPA
basis modules connected in series. In Fig. 6, the upstream module
is an Opposer Module, whose single opposer node also
contributes to two routes in the network (owing to the presence
of live outgoing regulations from the opposer). These two routes
are then balanced by the downstream Balancer Module. Figure 7
presents a network whose topological structure admits two
different possible decompositions into RPA basis modules,
depending on the choice of reaction kinetics at nodes 6 and 7.
If the reaction kinetics at node 6 conform to opposer kinetics, for
instance, this creates an Opposer Module where the single
opposer node also participates in a collection of network routes;
in this case, nodes 9 and 10 must be able to exhibit balancer

kinetics, and node 11 connector kinetics, in order for the network
as a whole to exhibit RPA through the creation of a downstream
Balancer Module (Solution 1). If node 7 were to operate with
opposer kinetics, on the other hand, this would be sufficient to
create a single Opposer Module from the entire network (Solution
2). Detailed analyses of these examples are given in Supplemen-
tary Note 5.

Discussion
In the postgenomic era, as we continue to amass ever larger
quantities of data on the vast and complex networks of molecular
interactions within living systems, a tantalizing question con-
tinues to be raised: could complex biological systems be con-
structible from just a limited set of simple design principles?20–26.
Here we show conclusively that, for RPA-capable networks at
least, the answer is an unequivocal yes.

The centerpiece of the present work is the identification of two
rich yet well-defined classes of network topologies which, toge-
ther, span the space of all possible RPA-capable networks when
suitably interconnected. These two classes of network module
thus represent a topological basis for the solution to the RPA
problem in any network, no matter how large or interconnected.
In this sense, the topological basis modules are like the atoms of
robust adaptation.

These findings represent a significant advance in our under-
standing of the basic structures underlying the complex and
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evolving networks occurring in nature. In many biological con-
texts—cellular signal transduction and cellular metabolism, for
instance—the underlying signaling networks are so complex and
high-dimensional, so prone to change over time, and so extra-
ordinarily variable from one realization to another (even from
one cell to another phenotypically identical neighboring cell), that
the networks themselves are virtually impossible to define con-
cretely at any useful level of detail. Although most investigators
view this variability as a source of intractable complexity, parti-
cularly in our current age of Big Data, our work reveals that these
networks may now be considered from the point of their unex-
pected simplicity—that is, as decompositions into well-defined
basis modules.

It is interesting to consider these findings in the light of
established results in control theory, which have determined that
asymptotic tracking problems (such as RPA) require integral
control as a structural property of the system21–23. Our work

shows that there are, in fact, two distinct types of integral control
involved in the solution to the general RPA problem, corre-
sponding to each of the two classes of RPA basis module: one
type of integral is computed within feedback structures,
employing specialized computational nodes (opposing sets)
within collections of interlinked circuits; the other type is com-
puted by a collaboration between two different types of compu-
tational nodes (balancers and connectors) embedded into parallel
pathways (routes). Beyond this, we offer the novel insight that
sufficiently large networks may solve the RPA problem via the
arbitrary combination of the two topological basis modules,
thereby distributing integrals of the two possible types throughout
their vast assemblies of interacting nodes.

We summarize a wide selection of previously reported RPA
examples2,3,5–9,14 in Supplementary Note 7, and show that all
such previous solutions are special cases of a single RPA basis
module. All previous work to our knowledge considers networks
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that are so small and simple in construction that their RPA
equations only admit the trivial partition into either a single S-
set (generated by a single opposer node), or a single M-set (gen-
erated by a single balancer node and its collaborating connector).
Indeed, all previously identified integral feedback in simple sig-
naling motifs2,3,5,8,16 are special cases of an Opposer Module
using a single opposer node (itself a special case of an opposing
set, Fig. 1a, b). The buffer nodes identified by Ma et al.2 are
special cases of opposer nodes. Previously identified examples of
the incoherent feedforward motif3,27–30 are special cases of the
Balancer Module. The proportioner nodes described by Ma et al.2

are special cases of balancer nodes.
We emphasize again that combinations of these two distinct

mechanisms within a single RPA network have never before been
proposed, presumably since the requisite network sizes are
beyond the reach of blind computational screening methods.

In Fig. 8, we consider the smallest RPA networks that are
capable of invoking the various novel topological features we
identify in the present work, illustrating the significant increases
in the sizes of the computational screening problems that would
be required to identify these topologies. For a network to employ
both an Opposer Module and an Balancer Module working
together in collaboration, for instance, a minimum of five nodes
would be required (Fig. 8a, b). Likewise, for a network to feature
an opposer node that is also involved in a route (Fig. 8a, c), at
least five nodes are needed. For a network with distinct input/

output nodes to incorporate a (non-trivial) opposing set (Fig. 8d),
five nodes are, once again, the minimum requirement. If one or
both of these opposer nodes are also in a route (Fig. 8e, f), the
smallest such RPA networks contain seven nodes. Additional
analysis of these small RPA topologies is presented in Supple-
mentary Note 5.

Our general topological view of RPA networks highlights the
role of antagonizing compensatory mechanisms—opposition and
balancing—and the modular network structures induced by those
mechanisms, in the robust regulation of signaling networks. This
deep connection between compensation and modularity suggests
that a modular design may characterize a wider class of robust
networks beyond RPA-capable networks. Indeed, it raises the
question as to whether all biochemical networks, of any size, with
a fundamental need to exhibit robust functionalities, are char-
acterized by modular architectures involving just a small number
of topological basis modules.

Several lines of evidence already support the generalization of
our network modularization to other bio-signaling contexts. The
work of Averbukh et al.31, and Ben-Zvi et al.32, for example, point
to a limited set of modules in the context of spatial signaling
problems in embryonic development. Those authors undertook
computational searches of small reaction-diffusion networks to
identify configurations that could produce robust and scalable
morphogen gradients13,31,32. Very few networks were capable of
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implementing RPA via a non-trivial opposing set whose opposer node(s) also appear in a route, thereby requiring the collaboration of an ancillary module
connected in series (e, f). Simple model equations for all six small network topologies, along with parameters and numerical simulations, are given in
Supplementary Note 5, to confirm that these solutions do indeed engender RPA. a an Opposer Module (upstream) whose single opposer node (O1, in
yellow) also appears in a route of the network. This live outgoing regulation is balanced (downstream) by a Balancer Module. b a Balancer Module
(upstream) whose balancer node B (in blue) also appears in a route that is not balanced by the module. This live outgoing regulation is opposed
(downstream) by an Opposer Module. c A similar network construction to case a, except here the live outgoing regulation from opposer O1 is opposed by a
second Opposer Module connected in series downstream. d A single Opposer Module, employing the smallest non-trivial opposing set {O1, O2} with
associated master set {O1, X, O2}. e An Opposer Module with two-node opposing set (as in network d), whose opposer nodes also appear in routes of the
network. This live outgoing regulation is balanced (downstream) by a Balancer Module. f A similar network construction to case e, except here the live
outgoing regulation from opposer O2 is opposed by a second Opposer Module connected in series downstream

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04151-6

10 NATURE COMMUNICATIONS |  (2018) 9:1757 | DOI: 10.1038/s41467-018-04151-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


generating the requisite robust patterning, and those that did
were of a very specific type.

This paradigm shift suggests a resolution to a baffling paradox
in living systems—that while networks of interacting molecules
are often unimaginably complex, a property that is generally
associated with fragility1,20, such networks are never-
theless characterized by a remarkable robustness1,17. Indeed,
robust traits are selected by evolution, and robustness facilitates
evolvability in the face of changing and unfavorable environ-
ments. Our work provides strong evidence that a small number of
universal modular designs offers a simplifying framework for the
construction of complex bionetworks, giving them the capacity to
scale to any size or complexity, without impairing their ability to
adapt robustly, and without the requirement for any tuning of
network parameters.

Methods
Methods overview and relationship to the IMP. In the 1970s, Francis and
Wonham21,22 investigated the necessary controller structures required to achieve
robust regulation with internal stability, and established what is now referred to as
the IMP. By this principle, a controller can reject exogenous disturbances and/or
track prescribed reference signals by incorporating within itself a model of the
dynamic structure of the disturbances/references. More recently, Yi et al.23 con-
sidered a special case of the IMP concerning RPA to constant exogenous inputs, in
the context of providing a framework for understanding the extraordinary preci-
sion of adaptation in bacterial chemotaxis5. This analysis provided a purely alge-
braic condition that must be satisfied by an RPA-capable system, which has been
shown to be equivalent to the requirement for integral control23.

Here, our interest is not in confirming whether a particular network topology is
capable of RPA, but in specifying all the possible network topologies—i.e., all the
possible arrangements of nodes that are capable of exhibiting RPA, along with any
constraints on the reaction kinetics for those nodes. For this, we begin by
developing an alternative version of the algebraic condition specified by Yi et al.23,
for the special case in which a particular input/output node pair is specified,
thereby constructing a framework from which topological structures may be
deduced relative to that input/output node pair.

The generality of our method for studying RPA in biological networks, being
self-organizing, self-regulating, complex, and evolvable, builds upon precise
definitions of all the key terms of the problem, which we provide in detail in the
attached Supplementary Information (SI). Briefly, we consider a node to be any
entity that can encode and transmit a biochemical signal. Most commonly a node
represents a molecule (its concentration, say, or the concentration of a particular
activation state), a complex of molecules, or even a mathematical function of
multiple biomolecular entities (See Supplementary Note 1). An input node is the
recipient of some outside stimulus, I, while the end-point of interest (not
necessarily distinct from the input node) is assigned the role of the output node.
From this, a network may be defined, being the set of all nodes that are 'connected'
and 'transmissive' relative to a chosen input/output node pair (see Supplementary
Note 1 for detailed explanations of these terms). RPA is said to occur when the
output node always returns to the same steady-state level, regardless of the
magnitude of the stimulus delivered to the input node, with no requirement for
special (fine-tuned) parameter choices.

Based solely on these general characteristics and definitions, for a network
containing n nodes P1,…, Pn, each with a reaction rate, f1,…, fn, respectively, we
show in Supplementary Note 2 that RPA occurs only when

det MIOð Þ¼ 0; ð1Þ

and

det Jnð Þ≠0; ð2Þ

where Jn ¼ ∂ f1 ;¼ ; fnð Þ
∂ P1 ;¼ ; Pnð Þ is the n × n Jacobian for the system f¼ f1; ¼ ; fn½ �T , and

MIO is the (n−1) × (n−1) input–output minor of Jn—that is, the matrix obtained
by removing the input row and the output column from Jn, and where all matrix
entries (i.e., partial derivatives) are evaluated at the network’s steady-state,
πn¼ P�

1 ; ¼ ;P�
n

� �T
(see Supplementary Note 2 for detailed derivations and

supporting discussion).
We refer to Eq. 1 as the RPA equation. In contrast to previous work22, we do

not consider this equation as simply an algebraic test for RPA; rather, we view the
determinant expansion of the RPA equation from a topological perspective—that
is, as a set of signed terms, together with collections of its subsets that may play
independent roles in its solution. Noting that each term in the expansion contains
topological information on the underlying network in terms of routes from input to
output, feedback loops, and reaction kinetics, we thereby uncover general

principles as to how network sub-structures are able to work together in
collaboration to generate RPA in arbitrarily large and complex networks.

It is clear that the RPA equation is a potentially huge equation in general,
comprising some subset of the (n−1)! terms corresponding to a fully-connected
network of n nodes. A 10-node network, for instance, could have as many as
362,880 terms in its RPA equation. Adding just five more nodes to give a 15-node
network results in an equation of up to 8.7 × 1010 terms. Doubling this network size
to a 30-node network produces an RPA equation of up to 8.8 × 1030 terms (see
Supplementary Table 1). In any event, an arbitrary network of n nodes will be able
to exhibit RPA only if the τ ≤ (n−1)! terms of its RPA equation can sum to zero for
all I without violating Eq. 2.

We note that an alternative, but mathematically equivalent, version of the RPA
equation has also been developed in the recent work of Tang and McMillen33.
Those authors refer to the condition as 'the cofactor condition', and apply this
approach to the issue of designing novel homeostatic systems. In particular, their
design algorithm has been used to generate topologies and parameter constraints
that 'will support homeostatic behavior for a given set of network components and
a desired set of general regulatory constraints to be applied between them'33.

Deducing general mechanisms of RPA from the RPA equation. We provide full
details on our solution method for solving the RPA equation in complete generality
in our Supplementary Information. As noted in the preceding section, Supple-
mentary Notes 1 and 2 provide a complete set of precise definitions corresponding
to our problem, and present detailed derivations of the RPA equation and the RPA
constraint, along with mathematical forms for a set of axioms for the reaction
kinetics at individual network nodes.

Supplementary Note 3 provides full details on our topological approach to the
solution of the RPA problem, identifying conditions whereby the RPA equation
may be partitioned into independently adapting subsets. To this end, we begin with
the notion of a minimally adaptive subset of the RPA equation, of which there are
two basic types—S-sets and M-sets—each with their own type of LAQ. We explore
how these mathematical conditions imply novel topological structures within RPA
networks—Opposer Modules (employing the novel concept of opposing sets) and
Balancer Modules

The constraints on reaction kinetics that are imposed by the creation of S-sets
and M-sets from the RPA equation are presented in detail in Supplementary
Note 4. Here we also explore a range of parameter constraints that would allow the
requisite reaction kinetics to be implemented in RPA networks, and also consider
how these reactions implement some form of integral control.

Supplementary Note 5 considers the central matter of this work, namely the
relationship between the two fundamental types of RPA Module (Opposer and
Balancer) and a topological basis for RPA-capable networks. We consider how
these topological basis modules may be interconnected to form larger
(multimodular) RPA-capable networks.

To aid in the general delineation of all RPA-capable network topologies through
the interconnections of Opposer and/or Balancer Modules we distinguish between
the two possible relationships between interconnected modules, as we outline in the
next section.

Modules connected in series or in parallel. Two RPA modules are said to be
connected in parallel if none of the computational nodes within either module
participate in route(s) that are opposed/balanced by the other. The respective route
collections for the two modules must, therefore, diverge upstream of the active
parts of the modules, and then reconnect again downstream of the active parts.
Informally speaking, parallel modules are connected side-by-side within the global
topology of the RPA network. When an opposer module is connected in parallel
with all other RPA modules that comprise the network, for instance, its opposer
node(s) do not participate in any route of the network; they participate in feedback
loops only. This is a comparatively straightforward intermodular arrangement,
then, for which we present an example in Supplementary Note 5 for two Opposer
Modules connected in parallel (see Supplementary Figure 15).

A parallel arrangement of modules may be contrasted with the possibility that
in some particular RPA module, one (or more) of its computational nodes may also
participate in some network route that is not opposed or balanced by the module in
question. For example, an opposer node—which operates within a feedback
arrangement relative to the route(s) it opposes—may also participate in some route
within the network. Likewise, a balancer node—embedded into the route segments
defining its Balancer Module—may also participate in some other route in the
network (that is, a route that is not balanced by the Balancer Module in question).
In either case, the extramodular route(s) in which the computational node(s)
participate must be either balanced or fully opposed by one (or more) additional
RPA module(s) connected in series with the original module. Informally speaking,
series modules are connected in an upstream-downstream arrangement, since
computational nodes for the upstream module feed into the downstream module.

Additional notes on Methods. We conclude the detailed presentation of our
methods in the Supplementary Information with a brief consideration of how all
previously reported instances of RPA in the literature, to our knowledge, are special
cases of the general solution we present in this article (Supplementary Notes 6 and
7).
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For completeness, we also observe that although the topological structures we
identify here are necessary conditions for solving the RPA problem in complete
generality, these conditions are not sufficient by themselves to guarantee the
implementation of RPA across all possible parameter regimes. In practice, RPA
also requires global stability to ensure that there is a unique and stable steady-state
regardless of initial conditions. We discuss stability issues briefly in Supplementary
Note 8, where we point out that feedback loops, if present at all, should be negative-
feedback loops since these are stability promoting. We nevertheless acknowledge
that negative feedback could potentially induce oscillations or even chaotic
behavior. More direct dynamical systems approaches are required to examine these
possibilities for specific RPA topologies and specific parameter regimes.

Code availability. All computational simulations presented for illustrative pur-
poses in this work were performed with MATLAB’s inbuilt ODE solver, ODE45.
All equations and parameters supplied to this solver are available in the Supple-
mentary Information (see Supplementary Note 5).

Data availability. All data used in the present research are available upon request
from the authors.
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