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Published online: 02 May 2018 . Although previous studies have indicated importance of taste receptors in food habits formation in
© mammals, little is known about those in fish. Grass carp is an excellent model for studying vegetarian
adaptation, as it shows food habit transition from carnivore to herbivore. In the present study,
pseudogenization or frameshift mutations of the umami receptors that hypothesized related to dietary
switch in vertebrates, were not found in grass carp, suggesting other mechanisms for vegetarian
. adaptation in grass carp. T1R1 and T1R3 strongly responded to L-Arg and L-Lys, differing from those
. of zebrafish and medaka, contributing to high species specificity in amino acid preferences and diet
selection of grass carp. After food habit transition of grass carp, DNA methylation levels were higher in
CPG1 and CPG3 islands of upstream control region of TLR1 gene. Luciferase activity assay of upstream
regulatory region of TIR1 (—2500-0 bp) without CPG1 or CPG3 indicated that CPG1 and CPG3 might be
involved in transcriptional regulation of TIR1 gene. Subsequently, high DNA methylation decreased
. expression of TIR1 in intestinal tract. It could be a new mechanism to explain, at least partially, the
. vegetarian adaptation of grass carp by requlation of expression of umami receptor via epigenetic
. modification.

Taste receptors belong to G-protein coupled receptors, which were firstly cloned and characterized in topograph-
ically distinct subpopulations of taste receptor cells and taste buds’. Then they were identified in non-gustatory
. tissue including the gut, pancreas, and even the brain, suggesting their functional roles in other tissue?. TIR1/
© T1R3 and T1R2/T1R3 heteromers are activated by amino acids and sugars, respectively, which are preferable
. tastants. T1R1 is pseudogenized or absent in western clawed frogs’; fructivorous, insectivorous and vampiric
. bats*; giant pandas®® and marine carnivorous pinnipeds”®. The pseudogenization of T1Rs in giant panda has been
¢ hypothesized to be related to its dietary switch from carnivore to herbivore, which is confirmed by the approxi-
* mate match in inferred time between T1R1 pseudogenization and dietary switch of panda®. The pseudogenization
: of T1R1 in pinnipeds might be consistent with its feeding behavior of swallowing food whole without mastication
and its carnivorous food habit®. The absence or presence of intact T1R1 are concordant with food habit formation,
suggesting the adaption of T1R1 evolution to food habit transition and environmental changes. Previous studies
. on closely related species with high dietary diversity could provide a better understanding of the relationship
. between food habits and the evolution of umami taste’. However, little is known about the relationship between
. the presence/absence of intact T1Rs and food habits in fish.
: The food habits of fish, which have higher sensitivity to water-soluble chemicals than mammals!?, are highly
: species-specific and associated with chemosensory-mediated locomotion, especially taste sense!!. The T1R1 gene
. has been reported to be lost in herbivorous blunt snout bream (Megalobrama amblycephala) by whole-genome
© analysis'2. However, little information is known about the function and evolution of umami taste receptor gene
© nor the relationship with food habits'®. The grass carp (Ctenopharyngodon idella) is an ecologically appealing
. model of vertebrate herbivores and goes through a transition from carnivore to herbivore during its life cycle.
. When its total length is shorter than 3 cm, the grass carp is carnivorous and feeds on zooplankton or benthos; fish
3-5.5cm in length undergo food transition stages from zooplankton or benthos to aquatic macrophytes; when the
fish grow to larger than 5.5 cm, they are entirely herbivorous'+-¢.
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grass carpl 100.00

zebrafishl 85.21 100.00

Mexican tetral 67.32 66.02 100.00

spotted garl 58.56 57.09 56.45 100.00

tongue solel 60.86 58.36 60.82 55.95 100.00

seabassl 59.26 56.77 59.44 54.76 72.19 100.00

puffer fish1 57.60 56.00 58.41 52.50 70.07 70.34 100.00

fugul 60.29 58.21 58.17 53.93 69.95 72.28 85.09 100.00

platyfish1 59.90 57.91 60.20 56.90 71.43 71.53 69.31 71.24 100.00

medakal 59.54 57.67 61.05 56.02 70.45 70.81 65.59 67.86 79.11 100.00

humanl 41.31 40.10 43.35 43.42 41.58 40.56 41.38 41.25 40.92 42.26 100.00
mousel 41.18 40.67 44.03 43.13 41.09 39.83 40.12 39.76 40.80 41.54 73.37 100.00

Table 1. Amino acid sequence identities of TIR1 compared with other fish and mammals. Amino acid
sequences available in the EMBL/GenBank databases and food habit information of fish are shown in Table 3.

grass_carp3 100.00

zebrafish3 8391 100.00

Mexican_tetra3 66.63 64.73 100.00

spotted_gar3 55.87 54.69 57.85 100.00

tongue_sole3 54.69 53.73 53.82 52.63 100.00

seabass3 57.81 55.66 58.11 54.92 67.74 100.00

puffer_fish3 54.18 52.00 55.68 54.59 63.74 70.82 100.00

Fugu3 53.33 51.55 55.44 53.67 63.50 70.82 81.79 100.00

platyfish3 5291 51.78 52.54 51.72 61.76 67.49 59.78 61.41 | 100.00

medaka3 52.33 51.14 53.69 51.43 59.64 65.12 59.20 58.72 65.85 100.00

human3 37.61 36.88 37.94 39.95 34.99 37.13 38.56 37.08 35.09 36.31 100.00
mouse3 36.03 35.07 36.01 38.04 34.34 36.08 36.60 35.60 34.93 35.42 73.38 100.00

Table 2. Amino acid sequence identities of TIR3 compared with other fish and mammals. Amino acid
sequences available in the EMBL/GenBank databases and food habit information of fish are shown in Table 3.

In addition to pseudogenization, the sensitivity of TIR1/T1R3 to umami compounds, which could be affected
by genetic factors such as SNP variation and epigenetic modifications, might also be related to the food hab-
its. In humans, some nonsynonymous single polymorphisms (nsSNP) in the coding region of TIR1 and T1R3
were demonstrated to be associated with the inability to taste monosodium glutamate in non-tasters and
hypotasters'”'®. In mice, saccharin preference is associated with nsSNPs in TIR3 gene'®. However, little has been
reported about the function of DNA methylation in the gene regulatory region of T1R1 and T1R3. DNA meth-
ylation modification plays crucial roles in the regulation of gene expression, such as modulating the initiation of
gene transcription by the methylation of CpG islands in the gene control region?*?!.

In the present study, the evolution of umami receptor TIR1/T1R3 in fish with different food habits was ana-
lyzed. We detected the responses of T1R1 and T1R3 to amino acids in grass carp. In addition, we investigated
the DNA methylation profiles and mRNA expression of T1R1 and T1R3 genes in grass carp before and after the
transition from carnivore to herbivore. These results might provide new insight into the function and evolution
of umami taste receptors during food habit formation in fish.

Results

Sequence analysis of TIR1 and T1R3 genes in grass carp. The complete CDS of grass carp TIR1
and T1R3 genes was 2466 bp and 2538 bp in length, encoding a 822-aa protein and a 845-aa protein, respectively
(Gene Bank: KU976428, KU976429). As shown in Tables 1 and 2, the multiple alignments revealed the high
conservation of amino acid sequences of T1R1 and T1R3 genes. The predicted structure of TIR1 and T1R3 in
grass carp exhibited the characteristics of G protein coupled receptors, including a ligand-binding domain, a
cysteine-rich domain at the extracellular N-terminal, and seven transmembrane regions (Fig. 1 and 2). No pseu-
dogenization or frameshift mutations of TIR1 and T1R3 were found in fish with different food habits (Table 3).
Phylogenetic analysis suggested that TIR1 and T1R3 of grass carp were most evolutionarily related to zebrafish,
rather than a product of independent evolution for its herbivorous food habits (Fig. 3).
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Figure 1. Multiple amino acid sequence alignment of T1R1. The colors indicate that the amino acids in that
column were identical across all species. A long extracellular amino-terminal domain called a Venus flytrap
module (VFTM) containing the ligand binding pocket was marked with blue line. A cysteine-rich domain
(CRD), which links the VFT and 7TM domains was marked with red line. Transmembrane domains (TMD)
of grass carp T1R1 were marked with red boxes. Amino acid sequences are available from the DDBJ/EMBL/
GenBank databases shown in Table 3.

Gene structure of TIR1 and T1R3 genes in grass carp.  The total size of T1R1 gene we obtained from
grass carp was 8150 bp in length, and contained 7 exons and 6 introns. The T1R3 gene of grass carp was 7425 bp
in length, and contained 8 exons and 7 introns (Fig. 4).
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Figure 2. Multiple amino acid sequence alignment of T1R3. The colors indicate that the amino acids in that
column were identical across all species. Extracellular amino-terminal domain Venus flytrap module (VFTM)
containing the ligand binding pocket was marked with blue line. A cysteine-rich domain (CRD), which links
the VFT and 7TM domains was marked with red line. Transmembrane domains (TMD) of grass carp T1R3
were marked with red box. Amino acid sequences are available from the DDBJ/EMBL/GenBank databases
shown in Table 3.

Synteny analysis of TIR1 and T1R3 genes in fish.  Synteny analysis showed that the genes adjacent to
T1RI1 and T1R3 genes were strictly conserved in humans and mice. In fish (Fig. 5), transcription factor genes
(hairy-related genes: HER4.1, HER4.2, HER4.3, HER12, hes family bHLH transcription factor 5: HES5) were
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Species Dietary habits | EMBL/GenBank databases
coelacanth (Latimeria chalumnae) Carnivore T1R3: XP005986165.1
spotted gar (Lepisosteus oculatus) Carnivore TIR1: XP006642104.1

T1R3: XP006642093.1
T1R1: XP008316256.1

tongue sole (Cynoglossus semilaevis) Carnivore T1R3: XP008317882. 1
northern pike (Esox lucius) Carnivore ?}}g i?g}ggggééi}
Burton’s mouthbrooder (Haplochromis burtoni) Carnivore %iﬁ; igggggigggi
lyretail cichlid (Neolamprologus brichardi) Carnivore Eﬁé ;gggg;gg%g}
Pundamilia nyererei (Pundamilia nyererei) Carnivore TIRI:XP005733129.1

T1R3: XP005724813.1
puffer fish (Tetraodon nigroviridis) Omnivore TI1R1: CAG03219.1
T1R1: BAE78486.1

fugu (Takifugu rubripes) Omnivore TIR3: BAE78489.1
zebrafish (Danio rerio) Omnivore %iﬁ; Eggg}ggigg?
grass carp (Ctenopharyngodon idella) Herbivore %}%; Egg;gﬁg
Mexican tetra (Astyanax mexicanus) Carnivore ?}E; iggg;iéﬁzgi
Amazon molly (Poecilia formosa) Omnivore %iﬁ; ))ggg;giggggi
medaka (Oryzias latipes) Omnivore %hlg iAB%gggglf
platyfish (Xiphophorus maculatus) Omnivore TIRI: XP005800206.1

T1R3: XP005816500.1
tilapia (Oreochromis niloticus) Omnivore TI1R1: XP013126540.1

T1R1: KKF08786.1
T1R3: XP010729654.1

T1R1: DLAgn00132940,
T1R3: DLAgn00094770

yellow croaker (Larimichthys crocea) Carnivore

European seabass (Dicentrarchus labrax) Carnivore

Table 3. Food habit information for the fish studied. Sources of information: http://animaldiversity.ummz.
umich.edu/.

nearby T1R1. ER membrane protein complex subunit 1 (EMC1) and ubiquitin protein ligase E3 component
n-recognin 4 (UBR4) appeared on the downstream of T1R1 in medaka, fugu and tongue sole; however, it was
located on the upstream of T1R1 in zebrafish and grass carp. The upstream genes of T1R1 in grass carp were sim-
ilar to those in zebrafish. Regulation of nuclear pre-mRNA domain containing 1B (RPRD1B) gene was present on
the upstream of TIR1 in medaka, fugu and tongue sole, but not in zebrafish and grass carp.

In the fish we analyzed, the adjacent genes of TIR3 were partially conserved. The solute carrier family 45
member 1 (SLC45A1), prothymosin alpha-like (ProT o), and coiled-coil domain containing 114 (CCDC114)
genes were located on the upstream of T1R3 in most fishes. The ERBB receptor feedback inhibitor 1 (ERRFI1)
gene was always next to TIR3 gene in fish, and the mitochondrial ribosomal protein S16 (MRPS16) and paired
box 7a (PAX7a) genes were frequently on the downstream of T1R3 in fish (Fig. 6).

Response of grass carp TIR1 and T1R3 to L-amino acids. The cells with co-expression of grass carp
T1RI1 and T1R3, strongly responded to L-Arg and L-Lys, moderately to L-Glu and weakly to the other amino
acids (Fig. 7A,B). The cell response to L- Arg were dose-dependent in the range of 0.01 mM to 1000 mM (Fig. 7C).

mMRNA expression of TIR1 and T1R3 in grass carp before and after food habit transition. As
shown in Fig. 8, compared with fish before food habit transition, the gene expression of T1R1 and T1R3 were sig-
nificantly reduced in the intestinal tract of grass carp after the food habit transition from carnivore to herbivore.

Methylation of TIR1 and T1R3 in grass carp before and after the food habit transition. We ana-
lyzed the CpG islands at —2000 bp upstream from the transcription initiation site (designated as 0) of T1R1 and
T1R3 by methylation analysis software. As shown in Fig. 9, three CpG islands existed in this region of grass carp
T1R1 gene. The first was —1943 to —1784 bp, the second was —1309 to —1111 bp and the last was —657 to —478
bp of T1R1 gene. The first CpG island contained 10 CpG sites, and the DNA methylation levels at the —1827 site
was significantly higher in the intestine of grass carp after the food habit transition than those before the transi-
tion (Table 4). The second CpG island contained 16 CpG sites, and no difference in the DNA methylation levels
was found in the intestine of grass carp before and after the food habit transition (Table 5). The last CpG island
contained 8 CpG sites, and DNA methylation levels at the sites of —529, —522 and —500 CpGs were significantly
higher in intestine of the grass carp after food habit transition (Table 6). However, no CpG island in this region
was predicted in T1R3 of grass carp (not shown).
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Figure 3. Phylogenetic analysis of fish T1IR1 and T1R3. A phylogenetic tree was generated by the Maximum
Likelihood method of MEGA?7.0 (http://www.megasoftware.net/). The numbers at branch points represent
bootstrap values (1000 repetitions). The scale bar indicates the relative measure of evolutionary distance. Amino
acid sequences available in the EMBL/GenBank databases and food habit information of fish are shown in

Table 3.

4923bp
zebrafish TIR1 |—|-—//-.| } l l

4836bp

medakaTivs  HHH-

— : 1kb
__/ /_ : longer than 4kb

Figure 4. The gene structures of TIR1 and T1R3 genes in grass carp, zebrafish and medaka. The black lines
indicate introns and the black boxes indicate exons. Grass carp and zebrafish TIR1 genes contain 7 exons and 6
introns. However, medaka T1R1 has only 6 exons and 5 introns, and the last intron is lost compared with grass
carp and zebrafish. Grass carp, zebrafish and medaka T1R3 genes all contain 8 exons and 7 introns.

Luciferase activity assay of the upstream regulatory region of TLIR1lingrasscarp. Three recombinant
vectors with the upstream sequences of grass carp T1R1 of different lengths (PGL6-T1R1-P, PGL6-T1R1-CPG1-,
PGL6-T1R1-CPG3") were successfully constructed (Fig. 10A). They were then co-transfected into HEK293T
cells with plasmid pRL-SV40-N as the internal control, and the luciferase activity was detected at 36 h after trans-
fection. Dual luciferase assay showed that compared with the cells with PGL6-T1R1-P plasmid, the luciferase
activity of the cells with PGL6-T1R1-CPG1~ and PGL6-T1R1- CPG3~ plasmid were significantly decreased
(Fig. 10B).

Discussion

The pseudogenization or absence of TIR1 gene in western clawed frogs®, giant pandas™®, pinnipeds”® and blunt
snout bream has been hypothesized to be related to food habits. These studies have reported that the absence or
presence of functional T1R1 was concordant with food habits, suggesting the adaptive evolution of TIR1 to food
habit transition or environmental changes. However, this concordance between genetic and behavioral evidence
has been challenged®. Research has suggested that additional factors shape T1R1 evolution, such as in the rela-
tively closely related species, the high dietary diversity can impact on the evolution of TIR1 and umami taste®.
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Figure 5. Synteny analyses of TIR1 genes. Adjacent genes of human and mouse T1R1 were strictly conserved.
In fish transcription factor genes (hairy-related genes: HER4.1, HER4.2, HER4.3, HER12, hes family bHLH
transcription factor 5: HES5) were near T1R1. ER membrane protein complex subunit 1 (EMC1), ubiquitin
protein ligase E3 component n-recognin 4 (UBR4) appeared in downstream of TIR1 in medaka, fugu and
tongue sole; however, it was located upstream of TIR1 in zebrafish and grass carp. Upstream genes of T1R1 in
grass carp were similar as in zebrafish. The regulation of nuclear pre-mRNA domain containing 1B (RPRD1B)
was present upstream of T1R1 in medaka, fugu and tongue sole but not in zebrafish and grass carp.

In the present study, no pseudogenization or frameshift mutations of TIR1 and T1R3 genes were found in the
herbivore grass carp. T1R1 and T1R3 of grass carp were most evolutionarily related to zebrafish, as they belong to
Cyprinidae, rather than a product of independent evolution with its herbivorous food habit. It is suggested that
the evolution of umami taste receptor genes in fish could be independent of feeding ecology.

T1R1 and T1R3 have been identified in several mammals?>-?, zebrafish, medaka and puffer fish*. In the
present study, we cloned the complete coding sequence of T1IR1 and T1R3 genes in grass carp. The predicted sec-
ondary structures of TIR1 and T1R3 proteins were conserved not only in fish but also in mammals®**. Synteny
analysis revealed that the genes adjacent to T1R1 or T1R3 genes were strictly conserved in humans and mice,
while no obvious synteny was found in fish, especially T1R1 gene, suggesting a more complicated evolutionary
relationship in fish. Genes adjacent to T1R1 were more variable than those adjacent to T1R3, suggesting the
potential unique transcription regulation and interactions of umami receptor genes with adjacent gene in fish.
Interestingly, hairy-related genes and the hes family were conservatively located on the downstream of TIR1 gene
in fish. Her factors have been demonstrated to play important roles in developmental and neurogenic processes,
including somitogenesis and components of the central nervous system as well as the neuro-sensory system?®. The
conserved gene locus in fish might be attributed to the co-evolution of sensory system in fish.

Li et al.>® showed that TIR1/T1R3 heterodimers respond to AAs in mammals. Oike et al.*’ revealed that unlike
mammals, TIR2/T1R3 was not activated by sugars in medaka or zebrafish. Zebrafish mainly detect amino acids
by T1R2s/T1R3 rather than by TIR1/T1R3. Medaka could detect amino acids by both TIR2/T1R3 and T1R1/
T1R3. Vertebrate T1R2s have probably evolved to adapt themselves to necessary nutrients depending on the
species. However, in the present study, the results revealed that TIR1/T1R3 of grass carp strongly responded to
L-Arg and L-Lys, moderately to L-Glu and weakly to other amino acids. In addition, we identified more isoforms
of T1R2 genes in grass carp than zebrafish and medaka. All T1R2s were responded to glucose or fructose in vitro
(unpublished data). The results were different from those of zebrafish and medaka fish. Facial nerve recordings
and calcium imaging using an HEK293T heterologous expression system in zebrafish demonstrated that the
fish perceived to L-Ala and L-Pro but not to sugras, mainly by T1R2s/T1R3, Calcium imaging analysis of T1Rs
medaka fish revealed that both TIR1/T1R3 and a series of T1IR2/T1R3 responded to amino acids (strongly to
L-Arg and L-Ser) but not to sugars®’. Although the gene sequences of TIR1 and T1R3 were highly conserved in
grass carp and zebrafish, the diversity of amino acids sequence in ligand-binding domain of T1R1 might raise the
possibility of different binding affinity and response to amino acids between grass carp and zebrafish.

Previous studies have demonstrated that amino acid recognition in humans and mice could be determined
by separate sets of amino acids in VFTD, which is the key domain for the sensitivity of umami taste receptor” 2.
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Figure 6. Synteny analyses of T1R3 genes. The adjacent genes of T1R3 were partially conserved. The solute
carrier family 45 member 1 (SLC45A1), prothymosin alpha-like (ProT o), coiled-coil domain containing 114
(CCDC114) genes located upstream of T1R3 in most fishes. The ERBB receptor feedback inhibitor 1 (ERRFI1)
was always next to the T1R3 gene in fish. Mitochondrial ribosomal protein S16 (MRPS16) and paired box 7a
(PAX7a) genes are frequently downstream of fish T1R3.

Raliou et al.*” reported that amino acid substitutions (A110V and R507Q) in the N-terminal ligand-binding
domain of T1R1 in humans leads to the impaired response of TIR1/T1R3 to monosodium glutamate in vitro. The
amino acid composition was different in aquatic macrophytes (main food source of grass carp) and tubificidae,
daphnia, or the fish body (main food sources of zebrafish and medaka)*!*2. We hypothesize that the different
responses of T1R1 and T1R3 to amino acids might contribute to their preferences for plant protein or animal
proteins. These findings might offer a good explanation for the high species specificity in amino acid preferences
and food habits in teleosts?»%.

Research has revealed that the activation of T1R1/T1R3 initiated the peristaltic reflex and pellet propulsion in
the distal colon®. In addition, the activation of TIR1/T1R3-initiated sensing of amino acids by the gut-expressed
T1R1/T1R3 could stimulate CCK secretion in the proximal intestine of mice*, providing evidence of the signifi-
cant role of TIR1/T1R3 in nutrient sensing in the intestinal tract. The presence of taste receptor mRNA has been
reported in the midgut of rainbow trout®. Evidence of the existence of taste receptors in fish guts have suggested
that the sensing of food might also have functional effects beyond oral taste sensations. In our previous research'®,
grass carp fed with duckweed had significantly greater growth than fish before the food habit transition or those
without a food habit transition fed with chironomid larvae. It has been suggested that a longer gut could enable
fish to achieve higher growth rates on plant materials, which are relatively poor in nutritional quality’®. These
results have indicated the importance of gastrointestinal development in the food habit transition of grass carp.
For the study of evolution of the food habit transition from carnivory to herbivory in grass carp, we have focused
on the umami receptors in the gut of grass carp. A comparative analysis between carnivores and herbivores in one
species eliminated the differences in results from different species!>!°.

The upstream regulatory region of TIR1 gene was methylated in grass carp both before and after the food
habit transition. DNA methylation levels at the sites of —1827, —529, —522 and —500 in CpG1 and CPG3 were
significantly higher in grass carp after the food habit transition than those before the transition. The transcription
factor binding sites that are sensitive to methylation were predicted in these differentially methylated regions.
We also found that the upstream regulatory region of T1R1 (—2500-0 bp) without CPG1 or CPG3 sequences
showed lower transcriptional promotion than those with CPG1 or CPG3 by luciferase activity assay, indicat-
ing that the CPG1 and CPG3 might involved in the transcriptional regulation of T1R1 gene. However, no CPG
island of T1R3 gene was found in grass carp although the expression results revealed a drastic transcriptional
down-regulation after food habit transition, suggesting TIR3 might not be regulated through DNA methylation
during food habit transition of grass carp. T1R3 is more crucial for taste perception and could also combine with
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Figure 7. Responses of HEK293T cells co-expressing grass carp T1R1 and T1R3 to tastant stimuli. (A)
Representative radiometric images of fluo-4AM-loaded HEK293T cells during the application of 100 mM
L-Arg, L-Lys and L-glu. Top and bottom panels show the cell images that were obtained 0s and 1 min after
stimulation, respectively. (B) The quantification of responses of grass carp T1R1- and T1R3-transfected cells.
Amino acids were used at 100 mM. (C) Dose-dependent responses of grass carp T1R1 and T1R3 to L-Arg.
Responses were normalized to the mean response before tastant stimuli.

TI1R2 to respond to sweet substance. There could exist other mechanism for transcriptional regulation of T1R3
gene which was unidentified at present. The higher DNA methylation levels of the T1R1 gene were correlated
with its lower expression in grass carp after the food habit transition than those before the food habit transition.
Previous studies indicated that umami tastes were strictly dependent on T1R receptors, and the selective elimi-
nation of T1R subunits by knockout could differentially abolish behavioral and nerve responses to umami com-
pounds®>*’. As the qualitative changes in the amino acid profiles of the diets of grass carp before and after the food
habit transition from carnivory to herbivory, the reduced expression levels of the umami receptor gene suggested
an insensitivity to umami taste, which might be the cause of vegetarian adaptation in grass carp. It could be a new
mechanism for the vegetarian adaptation of grass carp by the regulation of the expression of the umami receptor
via DNA methylation of the umami receptor gene in addition to the pseudogenization or frameshift mutation of
the umami receptor gene.

In conclusion, no pseudogenization or frameshift mutations of T1R1 and T1R3 were found in grass carp,
which was different from other herbivorous fish, the blunt snout bream. The T1R1/T1R3 in grass carp strongly
responded to L-Arg and L-Lys, moderately to L-Glu and weakly to other amino acids, which was different from
the response in zebrafish and medaka. The gene expression of TIR1 was significantly decreased in grass carp after
the food habit transition, which might be attributed to the higher DNA methylation levels in the upstream regu-
latory region of T1R1 with CPG islands. This might be a new adaptation mechanism for amino acid preferences
and food habits in vertebrates.

Materials and Methods

All animals and experiments were conducted in accordance with the “Guidelines for Experimental Animals” of
the Ministry of Science and Technology (Beijing, China). The study was approved by the Institutional Animal
Care and Use Ethics Committee of Huazhong Agricultural University. All efforts were made to minimize
suffering.

Cloning of grass carpTIR1and T1R3 gene sequences. To obtain the T1R1 and T1R3 gene sequences in
grass carp, we searched the genome database of grass carp available at the official National Center for Gene
Research website (http://www.ncgr.ac.cn/grasscarp/). In the first step, TBLASTN searches were conducted
with E-value 107! against the genomic data using the coding sequences (CDS) of T1R1 and T1R3 identified
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Figure 8. The T1R1 and T1R3 mRNA expression levels of the intestinal tract in the grass carp transition from
carnivory to herbivory. (A) mRNA expression levels of TIR1 gene in the intestinal tract of grass carp transition
from carnivory to herbivory. (B) mRNA expression levels of T1R1 gene in the intestinal tract of grass carp
transition from carnivory to herbivory. The T1R1 and T1R3 gene expression levels were both significantly
reduced in the grass carp brain and intestinal tract after the food habit transition to herbivory. All values
represented the mean £+ S.E.M. (n=56).

from the genome databases of zebrafish Danio rerio, medaka Oryzias latipes and fugu Takifugu rubripes™. The
obtained sequences were confirmed by BLASTP searches against NCBI non-redundant (nr) database, if the
best hit was a previously known T1R1 and T1R3, it was considered a candidate sequence. In the second step,
each region of BLAST similarity was extended in 5" and 3’ directions to establish a detailed prediction of the
coding sequences. The exon-intron junctions were determined by comparing the genomic sequence with the
cDNA sequence using SPIDEY (http://www.ncbi.nlm.nih.gov). In the third step, the cDNA of lip and tongue
were used to verify the sequences. Polymerase chain reaction (PCR) was conducted on Biometra Thermo
cyclers (Biometra, Germany) using Phanta® Super-Fidelity DNA Polymerase (Vazyme Biotech, China) with
the designed primers (Table 7).

Sequence analysis of TIR1 and T1IR3. The sequences of grass carp TIR1 and T1R3 genes were analyzed
by the program Editseq to translate into amino acid sequences using standard genetic codes. Multiple alignments
of amino acid sequences were performed by ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). The phy-
logenetic tree based on the amino acid sequences was constructed by the Maximum Likelihood method of the
MEGA 7.0 program (http://www.megasoftware.net/index.html) and decorated by iTOL (http://itol.embl.de/).
Numbers at the branches reflect the confidence levels as obtained by bootstrapping (1000 replications).

To determine whether T1R1 and T1R3 genes of grass carp are orthologous to other vertebrate species, synteny
analysis was performed by searching the flanking gene(s) of TIR1 and T1R3 in human, mouse, zebrafish, medaka,
fugu (Takifugu rubripes) and tongue sole (Cynoglossus semilaevis) genomes using the Ensembl genome browser
(http://www.ensembl.org/index.html), UCSC Genome Bioinformatics (http://genome.ucsc.edu/index.html) and
NCBI map viewer (http://www.ncbi.nlm.nih.gov/mapview/).

Grass carp TLR1/T1R3 co-expressing cells and Ca?* imaging analysis. ~The complete coding sequences
of T1R1 and T1R3 genes of grass carp were subcloned into the pcDNA3.1 expression vector (Invitrogen) using
ClonExpress™ II (Vazyme Biotech, China). Human embryonic kidney 293T (HEK293T) cells were cultured in
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Figure 9. Differentially expressed CpG islands and DNA methylation patterns of TIR1 CpG islands in the grass
carp intestinal tract. (A) Illustration of the region of CpG islands and BSP primers. The BSP detection region
contained 3 CpG islands, which included 10 CpG sites, 16 CpG sites and 8 CpaG sites, respectively. (B) DNA
methylation patterns of the intestinal tract in grass carp before or after the food habit transition to herbivores as
analyzed by BSP. Each line represents one individual bacterial clone, and each circle represents one single CpG
dinucleotide. Open circles show unmethylated CpGs and black circles show methylated CpGs. A red asterisk
suggests that the DNA methylation of the CpGs was significantly different after the food habit transition from
carnivore to herbivore in grass carp.

Dulbecco’s modified Eagle’s medium (DMEM) (Cat. No. C11995500, Life Technologies, Carlsbad, CA, USA) supple-
mented with 10% fetal bovine serum (Sigma-Aldrich, Saint Louis, MO) at 37°C in 10% CO,. After 18 hours, the cells
were transiently transfected with grass carp T1R1 and T1R3 gene using Lipofectamine 2000 reagent (Invitrogen,
Carlsbad, CA). Cells transfected with empty vector, lacking T1R1 or T1R3, were employed to control for unspecific
reactions of the cellular background. Eighteen hours after transfection, the cells were washed with Hanks balanced
salt solution (HBSS) (Sigma-Aldrich, Saint Louis, MO). Cells were loaded with 4 uM of the calcium indicator dye
fluo-4 AM (Cat. No. F10489, Invitrogen, Carlsbad, CA) diluted in HBSS for 30-40 min at 37 °C and then rinsed
and incubated in 1 ml of HBSS for >30 min. The stimulation was performed by the addition of 1 ml amino acid by
pipette. Cells were transfected with the pEGFP-N1 vector, which can express green fluorescent protein, to evaluate
the transfection efficiency. Thirty-six hours after transfection, the cells were washed with HBSS, and the green fluo-
rescent protein was observed. The transfection efficiency was 70% to 80%.

The fluo-4 AM fluorescence intensities resulting from excitation at 494 nm were measured at 514 nm using
an inverted confocal microscope (FluoView FV1000; Olympus, Tokyo, Japan). Baseline was established for at
least 15 s before stimulation, as shown in the Fig. 7B. After that, cells were perfused with 100 mM L-amino acids
(Sigma-Aldrich, Saint Louis, MO) at a rate of 2 ml/min. Images were recorded at 6.54-s intervals up to 183.16s
after the addition and analyzed using FV10-ASW 3.1 Viewer software. The backgrounds of the emission intensi-
ties were subtracted. Data are expressed as the ratio of the fluorescence intensities of several single 20 HEK293T
cells per dish and initial intensity (F/FO0).

Fish and sample collection. Fish and samples were prepared according to the experiments of He et al.'®.
The grass carp embryos were obtained from Wuhan Academy of Agricultural Science and Technology (Wuhan,
Hubei Province, China). Larvae were raised in tanks and fed with chironomid larvae Chironomus tentans. At 46
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Me-CpG

Fish before food habit transition (Group A) | 36.3% | 83.3% |70.0% |76.7% |43.3% |63.3% |66.7% |53% 100.0% | 100.0% | 68.5%

11/30 | 25/30 | 21/30 |23/30 13/30 | 19/30 | 20/30 16/30 | 30/30 30/30 204/298

Me-CpG 12/30 | 19/29 |21/30 |26/30 |17/29 |21/30 |15/30 |24/30 |30/30 |30/30 |214/298
Fish after food habit transition (Group B) 40.0% | 65.5% |70.0% |86.7% |56.7% |70.0% | 50.0% 80.0% | 100.0% | 100.0% | 71.8%
significance — — — — — — — * — — —

Table 4. Methylation status of each CpG in CpG island 1 of the T1R1 gene in grass carp before or after the food
habit transition. *P < 0.05 ~P > 0.05.

Me-CpG
Fish before food 27/30
habit transition 90.0%
(Group A)

27/30
90.0%

3/30 20/30 | 20/30 | 12/30 |26/30 | 14/30 |16/30 |24/30 |24/30 |24/30 |25/30 |0/30 21/30 | 28/30 | 311/480
10.0% | 66.7% | 66.7% |40.0% |86.7% |46.7% |53.3% |80.0% |80.0% |80.0% |83.3% |0.0% 70.0% | 93.3% | 64.8%

Me-CpG
Fish after food 26/30
habit transition 86.7%
(Group B)

21/30
70.0%

4/30 25/30 | 15/30 | 18/30 |27/30 | 15/30 |17/30 |26/30 |28/30 |27/30 |23/30 |0/30 24/30 | 24/30 | 320/480
13.3% | 83.3% |50.0% |60.0% |90.0% |50.0% |56.7% |86.7% |93.3% |90.0% |76.7% |0.0% 80.0% | 80.0% | 66.7%

significance —

Table 5. Methylation status of each CpG in CpG island 2 of the T1R1 gene in grass carp before or after the food
habit transition. *P < 0.05 ~P > 0.05.

Me-CpG 28/30 24/30 | 25/30 | 9/30 2/30 16/30 1/30 11/30 116/240
Fish before food habit transition (Group A) | 93.3% | 80.0% | 83.3% |30.0% |6.7% 533% |3.3% 36.7% | 48.3%
Me-CpG 28/30 26/30 25/30 8/30 21/30 19/30 11/30 22/30 160/240
Fish after food habit transition (Group B) 93.3% |86.7% |83.3% |26.7% |70.0% |633% |[36.7% |73.3% |66.7%
significance — — — — * — * * —

Table 6. Methylation status of each CpG in CpG island 3 of the T1R1 gene in grass carp before or after the food
habit transition. *P < 0.05 ~P > 0.05.

days post-hatch (dph) (body weight 0.39 +0.05 g, body length 28.05 £ 0.99 mm), 6 fish were randomly selected
for sample collection as fish before food habit transition (Group A). The rest of the fish in Group B were fed with
duckweed Lemna minor after the food habit transition to herbivores. Fish in both groups had free access to food
24h a day and fed for 70 days. At 116 dph (body weight and body length for Group B were 7.34 +1.43 g and
72.78 £ 6.15mm, respectively), 6 fish were randomly selected from the group for sample collection. The fish were
deeply anesthetized with MS-222 (200mg L") and killed by immediate spinal destruction for the measurement
and dissection. The whole intestine of the grass carp before and after the food habit transition was collected and
then frozen in liquid nitrogen and stored at —80°C for RNA and DNA isolation. Total RNA was extracted using
Trizol Reagent (TaKaRa, Japan), and then its integrity and quantity were measured using protein and agarose
gel electrophoresis and an Eppendorf Biophotometer (Hamburg, Germany). According to the manufacturer’s
instructions, cDNAs were obtained from 1 g total RNA with the HiScript® IT Reverse Transcriptase (Vazyme
Biotech, China) in a 20-pL reaction volume.

DNA methylation analysis. Genomic DNA was extracted following the standard procedures using
TIANamp Genomic DNA Kit (Tiangen, Beijing, China). DNA treatment with sodium bisulfite was performed
using the EZ DNA Methylation Kit (Zymo Research, USA) according to the manufacturer’s protocol. The BSP
primers were designed by the online MethPrimer software 14 and Primer 5.0 (Table 7). PCR was performed on
Biometra Thermo cyclers (Biometra, Germany) by using Taq plus DNA Polymerase (Vazyme Biotech, China).
The PCR products were gel purified using a Gel Purification Kit (Sangon, Shanghai, China) and then were sub-
cloned into the pMDI18-T clone vector (Takara, Japan). Ten positive clones for each subject were randomly
selected for sequencing (Sangon, Shanghai, China). The final sequence results were processed by online QUMA
software (http://quma.cdb.riken.jp/). Three samples from the intestine of grass carp before and after the food
habit transition from carnivore to herbivore were analyzed.

Luciferase activity assay of the upstream regulatory region of TIR1in grass carp. The upstream
regulatory region sequences of T1R1 in grass carp were cloned by overlapping PCR* using Phanta® Super-Fidelity
DNA Polymerase (Vazyme Biotech, China), and specific primers containing Kpn I and Xho I restriction sites were
designed (Table 7). As shown in Fig. 10A, three sequences were obtained, including the sequence of the upstream
regulatory region of —2500 bp upstream from the transcription initiation site (designated as 0), the —2500 bp
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Figure 10. Relative activity of the upstream regulatory region of T1R1 gene. (A) Schematic representation of
the upstream regulatory region of T1R1 gene. A series of plasmids containing the upstream sequences of grass
carp T1R1 of different lengths (PGL6-T1R1-P, PGL6-T1R1-CPG1-, PGL6-T1R1-CPG3") fused in the frame
to the luciferase were co-transfected with pRL-SV40 into HEK293T cells. (B) Relative activity of the upstream
regulatory region of T1R1 gene with deletions. Values were normalized to the control plasmid pGL6-Basic
and represented as the ratio between firefly and Renilla luciferase activities. The results are expressed as the
mean + SEM arbitrary units of three independent experiments (P < 0.05).

sequence without CPG1, the —2500 bp sequence without CPG3. For the generation of luciferase reporter, the PCR
product was purified and subsequently digested using kpn I and Xho I restriction enzymes, then cloned into the
corresponding restriction sites of pGL6-basic vector by a ClonExpress™ II One Step Cloning Kit (Vazyme, USA).

For determining the function of the upstream regulatory region of T1R1, transfection assays were per-
formed. HEK293T cells were plated in 24-well plates for 24 h and then transfected with different plasmids
with Lipofectamine 2000. Equimolar amounts (500 ng) of reporter plasmids were used in Opti-MEM (Gibco/
Invitrogen), and they were co-transfected with 1 ng pRL-SV40, a Renilla luciferase reporter vector, as the inter-
nal control. After 4h, the cell culture medium was replaced by 10% FBS-DMEM. Thirty-six hours later, trans-
fected cells were washed twice with phosphate buffered saline (PBS) and then collected. The cells were lysed with
Passive Lysis Buffer (Promega) and assayed for Firefly and Renilla luciferase activities in a luminometer by the
Dual-Luciferase Reporter Assay System (Promega). The luciferase value of each sample was first normalized
against the pRL-SV40 levels, and the relative light unit (RLU) intensity was presented as the ratio of firefly lucif-
erase to Renilla luciferase. The results were normalized to the control reporter pGL6-Basic. All experiments were
performed in triplicate and repeated three times.

T1R1 and T1R3 gene expression analysis of the food habit transition from carnivore to herbivore
in grass carp. To detect the expressions of T1R1 and TIR3 mRNA in grass carp before and after food habit
transition from carnivore to herbivore, real-time PCR assays were carried out by quantitative thermal cycler
(MyiQ™ 2 Two-Color Real-Time PCR Detection System, BIO-RAD, USA). Primers were designed according
to the sequences we cloned (Table 7). The EF1 gene was used to normalize the template amount as an endoge-
nous reference. All amplifications for each RNA sample were performed in triplicate. The reaction volume was
10pL GoTaq® qPCR Master Mix (BIO-RAD, USA), 1l of cDNA, and 0.2 pM of each primer. The PCR cycling
parameters were 95 °C for 30 followed by 40 cycles at 95°C for 105, 58 °C for 30 sec and a melt curve step from
65 °C, gradually increasing from 0.5 °C-s~! to 95 °C, with acquisition data every 6 sec. Gene expression levels were
quantified relative to the expression of EF1 gene using the optimized comparative Ct (2-44%) value method. The
specificity of the primers was determined through sequencing and the melting curve of PCR products. Plasmid
containing target fragments were dilated 10-fold. qPCR was conducted using different dilutions as templates to
construct standard curves for genes. The amplification efficiencies were analyzed according to the slope of the
standard curve in a given run.
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Primers ‘ Sequences (5'-3')

Primers for cloning of TIRI and TIR3

CLgc TIR1 F ATGTTGGTCTGGTGTGTGTTTCTCTC

CLgc TIRIR TCACTGCTTGGACATGGTGTACATT

CLgc TIR3 F ATGGCTAAGGAGTGGACGCTT

CLgc TIR3R CTAGCTTTCTTCAGGTGGTGTTGG

Primers for construction of expression vector

EXgc TIR1 F TAGTCCAGTGTGGTGGAATTCATGTTGGTCTGGTGTGTGTTTCTCTC
EXgc TIRIR GGTTTAAACGGGCCCTCTAGATCACTGCTTGGACATGGTGTACATT
EXgc TIR3F TAGTCCAGTGTGGTGGAATTCATGGCTAAGGAGTGGACGCTT
EXgc TIR3 R GGTTTAAACGGGCCCTCTAGA CTAGCTTTCTTCAGGTGGTGTTGG
Primers for genomic DNA amplicon

CPGITIR1 F TGTTTAAGTGCTATATCAGGTCCC

CPGITIRIR CAAAGGTCTTACGGCTGTGGAAT

CPG2TIR1 F GCCGCTCAGATATTGCTCCC

CPG2TIRIR CATTTCTGTCAAACCCAACCTCTG

CPG3 T1R1F ACAGAGGTTGGGTTTGACAGAA

CPG3 TIRIR GTGTGAGCAAAAACACGCAGTT

Primers for BSP amplicon

BSP1 TI1R1 F AGAAAATATGAAAAAGGATAATTT

BSP1TIRIR ACTTTACCTCGCTTACGAAAAC

BSP2 TIR1 F GAGAATATTTTTGGTGCGTTAAAA

BSP2TIRIR ATATTATAAAACGACGAAAATATT

BSP3 TIR1 F AGGTATATGTAGTCGATGAGTTGA

BSP3 TIR1 R CCCTATTTAAATATAAACAAAAACAC

Primers for cloning of the upstream regulatory region of TIR1 gene

gc TIR1-PF GGTACCGCTTGGGTGTCGAGGTTGTG

gc TIR1I-PR CTCGAGGTTACTTCCTCTGATATGAGCTCTTC

gc TIR1-CPG1"AF GGTACCGCTTGGGTGTCGAGGTTGTG

gc TIR1-CPG1 AR CTTCAAAAATACTTACATTTAAGGCTTGCCAAAACAAAGTT

gc TIR1-CPG1 BF ACTTTGTTTTGGCAAGCCTTAAATGTAAGTATTTTTGAAGGGTTA
gc TIR1-CPG1 BR CTCGAGGTTACTTCCTCTGATATGAGCTCTTC

gc TIR1-CPG3-AF GGTACCGCTTGGGTGTCGAGGTTGTG

gc TIR1I-CPG3 AR GTTTTTGTATGACCCTTTAAAGAAGTTACAACTTTTAGAATGCAT
gc TIR1-CPG3 BF TTCTAAAAGTTGTAACTTCTTTAAAGGGTCATACAAAAACTGCGT
gc TIR1-CPG3 BR CTCGAGGTTACTTCCTCTGATATGAGCTCTTC

Primers for real-time PCR

RTgc EF1 F GCTGACTGTGCCGTGCTGAT

RTgc EF1 R GCTGACTTCCTTGGTGATTTCC

RTgc T1IR1 F CTGCCGCCACCTTCCTCA

RTgc TIR1IR CTCCGGCCGACTTCACCAC

RTgc TIR3 F CACAGGATGGTCTCTGAACG

RTgc TIR3R ATAGGGACTGAATAGGCGAA

Table 7. Nucleotide sequences of the primers.

Statistical analysis. The normality of data was assessed by using SPSS 19.0 software with the Shapiro-Wilk
test. All data of T1IR1 and T1R3 gene expression levels were subjected to one-way analysis of variance using SPSS
19.0 software. Differences between the means were tested by Duncan’s multiple range test after the homogeneity
of variances was checked. The DNA methylation analysis was determined with the X test. Statistical significance
was determined at the 5% level. All data were presented as the mean + S.E.M (standard error of the mean).
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