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Seasonal dynamics of typhoid and 
paratyphoid fever
Neil J. Saad1, Victoria D. Lynch1, Marina Antillón1, Chongguang Yang1, John A. Crump2 & 
Virginia E. Pitzer1

Typhoid and paratyphoid fever may follow a seasonal pattern, but this pattern is not well characterized. 
Moreover, the environmental drivers that influence seasonal dynamics are not fully understood, 
although increasing evidence suggests that rainfall and temperature may play an important role. 
We compiled a database of typhoid, paratyphoid, or enteric fever and their potential environmental 
drivers. We assessed the seasonal dynamics by region and latitude, quantifying the mean timing 
of peak prevalence and seasonal variability. Moreover, we investigated the potential drivers of the 
seasonal dynamics and compared the seasonal dynamics for typhoid and paratyphoid fever. We 
observed a distinct seasonal pattern for enteric and typhoid fever by latitude, with seasonal variability 
more pronounced further from the equator. We also found evidence of a positive association between 
preceding rainfall and enteric fever among settings 35°–11°N and a more consistent positive association 
between temperature and enteric fever incidence across most regions of the world. In conclusion, we 
identified varying seasonal dynamics for enteric or typhoid fever in association with environmental 
factors. The underlying mechanisms that drive the seasonality of enteric fever are likely dependent on 
the local context and should be taken into account in future control efforts.

Typhoid and paratyphoid fever are febrile illnesses, exclusive to humans, caused by Salmonella enterica serovar 
Typhi (S. Typhi) and Salmonella enterica serovars Paratyphi A, B and C (S. Paratyphi), respectively, and are 
together referred to as enteric fever. Globally, the pathogens are estimated to cause 6.9 to 48.4 million cases annu-
ally with most of this burden occurring in Asia and Africa1,2.

In several Asian and African countries, enteric fever tends to follow a seasonal pattern, with a regular recur-
rence of peak incidence around the same time each year. In Bangladesh, Nepal, and Cambodia (South and 
Southeast Asia), incidence peaks around May to October3–5, while across Africa it presents in a range of seasonal 
patterns. In Blantyre, Malawi, a distinct seasonal cycle was observed with a peak in March-June following the 
rainy season6,7, but more complex dynamics were found in Nairobi, Kenya8,9. In Cameroon and the Democratic 
Republic of Congo, a more constant occurrence of the disease has been described10,11.

S. Typhi and S. Paratyphi are transmitted through ingestion of fecally contaminated food or water1,2. Variation 
in factors that influence these modes of transmission, such as host behavior or environmental factors, can result 
in fluctuating or complex seasonal dynamics12. Indeed, a recent analysis of drinking water sources in Kathmandu, 
Nepal, found S. Typhi and S. Paratyphi A DNA present in all sources throughout the year, with peak prevalence 
following the monsoon season13.

The drivers responsible for the seasonal occurrence of enteric fever are not fully understood. Some evidence 
suggests that rainfall and temperature may play an important role. In Dhaka, Bangladesh, typhoid fever was posi-
tively associated with higher temperature, higher rainfall, or water level of nearby water bodies14. Similarly, in the 
Hongta District of the Yunnan Province, China, the number of cases increased with higher rainfall and clustered 
spatially in the vicinity of markets and rainwater canals, which were used as open sewers and prone to flooding15.

A better understanding of the seasonal dynamics and environmental correlates of typhoid and paratyphoid 
fever could help to identify the predominant drivers of transmission, thereby aiding the evaluation of disease sur-
veillance and control efforts. Furthermore, understanding the mechanisms through which temperature and rain-
fall are associated with enteric fever incidence may help to pinpoint important sources of infection. We examined 
the seasonal pattern of enteric fever globally, determined the mean time of the seasonal peak on an annual cycle, 
quantified the seasonal variation and evaluated the potential environmental drivers of these seasonal dynamics.
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Methods
Data sources and data extraction.  We compiled a database of typhoid, paratyphoid, or enteric fever 
seasonal dynamics by identifying eligible articles and relevant data using two strategies. First, we conducted a 
systematic review by searching EMBASE, MEDLINE, Global Health, PubMed, and Web of Science for eligible 
articles (Table S1). Second, we searched for eligible articles and unpublished datasets in our personal library.

Eligible articles investigated the seasonality of typhoid, paratyphoid, or enteric fever and/or its relationship 
with climate. Search terms are listed in Table S1. Studies were excluded if the study duration was less than two 
years, if the disease data were not reported at a monthly or a finer resolution, and if the data were obtained from 
conference abstracts, case reports, or studies with the occurrence of less than 40 cases per year to avoid spurious 
results. Cases were ascertained by microbiological culture of blood, bone marrow, urine or stool, serological 
tests (Widal test and Typhidot), or based on clinical suspicion. Diagnosis by bone marrow and blood culture are 
highly specific and at least moderately sensitive, but most other means of diagnosis have major shortcomings of 
both sensitivity and specificity. Therefore, we assessed the robustness of our findings to the case definition in a 
sensitivity analysis.

We compiled the disease datasets by extracting the monthly occurrence of cases from eligible articles. We then 
calculated the average number of disease occurrences (separately for typhoid and paratyphoid fever, or enteric 
fever if not specified) for each month across the study period, and then calculated the relative monthly occurrence 
across the calendar year (i.e., the percentage of cases for each month of the year). We also extracted information 
on the characteristics of the study population, study design, and ascertainment of disease.

We complemented each disease dataset with location-specific geographic information on the study site (lon-
gitude and latitude). For country-level data, we used a single measure of central tendency. For subnational level 
data, we also included the altitude of the study site and the average monthly temperature and rainfall during the 
study period, which we obtained from a gridded climate dataset (CRU TS3.24.01)16.

The datasets generated and/or analysed during the current study are available from the corresponding author 
on reasonable request.

Statistical analysis.  We assessed the seasonal dynamics of enteric fever by examining the relative monthly 
occurrence of cases by geographic region (defined by the United Nations statistics division17) and latitude using 
an existing classification that categorizes latitude into five roughly equal divisions (70–36° North, 35–11°North, 
10° North-10° South, 11–35° South, 36–70° South), which has been previously used to examine disease sea-
sonality18. Second, we evaluated two seasonal metrics: the mean timing of the seasonal peak and the seasonal 
variation. We estimated the mean timing of the seasonal peak in enteric fever by determining the mean month of 
annual distribution, referred to as the centre of gravity, for each dataset using circular statistics; we obtained 95% 
confidence intervals (CIs) using bootstrap resampling19. We quantified the seasonal variation for each dataset 
by calculating the seasonal intensity (peak/mean) and amplitude ([peak-trough]/peak). We evaluated potential 
trends with the Pearson correlation coefficient.

To examine the potential environmental drivers of the seasonal dynamics, we examined the relationship 
between rainfall and temperature and disease occurrence and seasonal variation in studies with subnational 
data. First, we calculated the Pearson’s correlation coefficient between climatic factors, including monthly rainfall 
and temperature, and enteric fever cases at different lags (from 0 to 11 months) for the annual average monthly 
time-series to determine the lag corresponding to the strongest association. Second, we regressed the seasonal 
variation against the average location-specific rainfall and temperature, the variation in average rainfall and tem-
perature, and the study location’s elevation for all datasets with subnational data.

We evaluated potential sources of variation in the main analysis by conducting subgroup analyses by dis-
ease (typhoid or enteric fever), spatial scale (national or subnational level data), and temporality (historical or 
contemporary data, with 1990 considered the cut-off to yield a similar number of studies during both periods). 
Moreover, we conducted a sensitivity analysis by repeating the main analysis only among datasets in which cases 
were diagnosed by blood or bone marrow culture. As a secondary analysis, we compared the seasonal pattern and 
seasonal metrics (mean timing of the peak, intensity and amplitude) for studies that concurrently recorded data 
on typhoid and paratyphoid fever across the study period.

All analyses were conducted in R 3.2.4 (R Foundation for Statistical Computing, Vienna, Austria). We used 
the ggmap package20 to obtain the latitude and longitude, the rgbif package21 to obtain altitude, and the circular 
statistics package22 to determine the centre of gravity and 95% CI. Statistical significance was defined as P < 0.05.

Results
Characteristics of included datasets.  Our systematic review yielded 58 articles, containing 113 datasets, 
and 1 dataset from our collaborators (Figure S1). These datasets covered 33 countries across five regions; the 
majority, 63 (55%), were from Europe, with 25 (22%) from Asia, 21 (19%) from Africa and the Middle East, 3 
(3%) from North America, and only 2 (2%) from South America (Table S2). Enteric fever data were collected in 
just over half of the datasets (66, 58%), while 48 (42%) reported data separately for typhoid fever, of which 12 also 
concurrently reported paratyphoid fever data. For our primary analysis, we grouped together unspecified enteric 
fever and typhoid datasets, hereafter referred to as “enteric fever”.

The datasets differed in their epidemiological profile, with reported enteric fever incidence ranging from <1 to 
980 cases per 100,000 person-years (Table S2). Figure 1A provides an overview of the time period when the data 
was collected, with details available in Table S2. All datasets from the Americas and Europe were collected prior 
to 1990, with study periods occurring between 1911 and 1986, while in Africa and the Middle East, 12 (57%) were 
conducted more recently (≥1990). In contrast, the vast majority of datasets in Asia (20, 80%) were recent. There 
was little variation in the spatial resolution of the datasets, with most (95, 83%) being collected at the subnational 
level (Fig. 1B).
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Of 114 datasets, 84 (73.7%) contained data on cases from national or regional disease databases and 20 
(17.5%) from reviewing hospital records (Table S2). The method of detection was not described in depth in 83 
(72.8%) datasets, but commonly defined as according to national or regional standards. Only 16/114 datasets 
ascertained cases by blood culture alone, while 15/114 defined positive cases as those positive by blood culture, 
other cultures (bone marrow, stool or urine), and/or the Widal test; the remaining studies did not clearly specify 
the detection method.

Seasonal dynamics of enteric fever.  The seasonal pattern of enteric fever (Fig. 2) showed a peak in North 
America and Europe occurring around August-September. In Asia and Africa and the Middle East, the peak sea-
sons spanned multiple months: from July to November in Africa and the Middle East, and from May to October 
in Asia. In South America, the peak period was from January to May, reflecting the different timing of the seasons 
in the Southern Hemisphere.

When grouped by latitude (Fig. 2), enteric fever was more likely to occur seasonally further from the equator, 
with a pronounced peak in August-September between 70-36°N (66 datasets, mostly European countries) and 
a peak period from May to October between 35-11°N (33 datasets, mostly Asian countries). Similar inverse 
dynamics were observed in the Southern Hemisphere (11–35°S and 36–70°S: 4 and 1 datasets, respectively), while 
the equatorial region (10°N-10°S: 10 datasets, of which 8 are from Africa) mostly appeared to have a constant 
proportion of cases throughout the year (Fig. 2), although some equatorial datasets showed a more varied pattern 
of cases through the year.

The seasonal pattern was not markedly influenced by spatial scale, temporality (historical or contemporary 
data), or disease type (typhoid or enteric fever) (Figures S2–S5), although it was not always possible to assess 
the influence of these factors, as some subgroups only contained one dataset. Nonetheless, there was some het-
erogeneity in Africa and the Middle East, primarily due to differences between datasets from North Africa and 
the Middle East and those in the equatorial region. Most datasets in North Africa and the Middle East studied 
enteric fever at the national level before 1990, whereas datasets around the equator were more recent and used 
subnational data.

Seasonal metrics of enteric fever.  There was a moderate but statistically significant trend (P < 0.01) in 
the mean timing of the peak of enteric fever, which shifted from December to May when ordered by latitude from 
north to south among recent studies (≥1990) (Figs 3 and S6). This trend was independent of the disease (typhoid 
or enteric fever) or spatial resolution of the data (Figure S5), and persisted but was less pronounced among older 
datasets (<1990), as there was less geographic variation (Figure S7).

On the other hand, there was no clear pattern in the seasonal intensity of enteric fever by geographic region, 
latitude, disease, or spatial level of the data (P > 0.05) (Figs 3 and S5, S7). This did not change when evaluating 
another measure of seasonal variation, the amplitude (Figure S8).

Figure 1.  Map of countries for which data was available by (A) time period and (B) spatial resolution of the 
data. The Map was created in R 3.2.4 (R Foundation for Statistical Computing, Vienna, Austria) using the 
ggplot245 and maptools46 packages.
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Environmental drivers of seasonality.  Globally, there was no strong relationship between enteric fever 
and rainfall (Fig. 4A). However, when stratified by latitude, we found a positive correlation between enteric fever 
at lags of 0–2 months among settings located 35°–11°N. We found evidence of a positive correlation between 
temperature and enteric fever at lags of 0–2 months, except in the equatorial region (Fig. 4B).

Temperature and rainfall explained less than a tenth of the variation in seasonal intensity at the ecological 
level (R2 = 0.07), and none of the environmental factors were strongly associated with the seasonal intensity or 
amplitude globally in the regression analysis (Figs 4C, S9). However, in the equatorial region, reduced rainfall 

Figure 2.  Seasonal dynamics of enteric and typhoid fever by continent and latitude. The boxplots show 
the percentage of cases of the different studies for each month of the year and the red line depicts the mean 
percentage of cases for each month of the year.



www.nature.com/scientificreports/

5SCIENtIfIC REPOrTS |  (2018) 8:6870  | DOI:10.1038/s41598-018-25234-w

variation, increased average rainfall, and variation in temperature were associated with greater variation in the 
in the number of cases (Fig. 4C). We could not assess the environmental drivers in the Southern Hemisphere, as 
there were only four datasets.

Comparing the seasonal dynamics and metrics of typhoid and paratyphoid fever.  Twelve data-
sets provided concurrent data on typhoid and paratyphoid fever. Six studies were conducted in Europe or the 
Middle East between 1920 and 1970, while the other six were more recent datasets from Asia. Details on the 
epidemiological profile of typhoid and paratyphoid fever are provided in Table S3.

The seasonal dynamics of typhoid and paratyphoid fever appear to have become less congruent with time 
in some studies (Fig. 5). In older datasets, the seasonal pattern is nearly identical - the mean timing of the peak 
occurred simultaneously and the seasonal intensity was comparable. However, among contemporary studies, the 
seasonal pattern differed markedly, except in Kathmandu, Nepal, and Guangdong Province, China. The seasonal 
intensity was much greater among paratyphoid fever datasets in recent studies. Nonetheless, the mean timing of 
both typhoid and paratyphoid fever mostly still occurred contemporaneously.

Sensitivity analysis.  Only 16 datasets relied exclusively on blood culture to diagnose enteric fever, 
which complicated the comparison of results from the sensitivity analysis with those from the main analysis. 
Nonetheless, the seasonal pattern in Europe, Asia, and the Northern Hemisphere in the sensitivity analysis was 
consistent with that in the main analysis (Figure S10). In contrast, the patterns in Africa and the Middle East 
and the equatorial region were less similar and more variable. There were no datasets in North or South America 
that employed only blood culture for diagnosis. The clear trend in the mean timing of the peak persisted among 
datasets with a blood culture diagnosis (Figure S11) and shifted from October to May when ordered from north 
to south by latitude. Similar to the findings in the main analysis, there was no discernible pattern in the seasonal 
intensity of enteric fever (Figure S12). Finally, the findings regarding the environmental drivers were largely sim-
ilar between the overall dataset and those with blood culture diagnosis alone (Figures S12, S13).

Discussion
We observed a distinct seasonal pattern for enteric fever by latitude. The peak period occurred during August and 
September in the northern-most regions (36–70°N), with the peak period becoming wider from May through 
October in the 11–35°N region, until there was almost no seasonal pattern in the equatorial region. We also 
found evidence suggesting that a preceding peak of rainfall might be associated with the enteric fever among 
settings 35°–11°N and that the variation in disease in the equatorial region might be driven, in part, by variation 
in temperature.

As typhoid and paratyphoid fever are transmitted through ingestion of contaminated food or water, the likely 
drivers of the seasonal pattern are factors that influence transmission and differ by latitude. All contemporary 
datasets were from Africa or Asia, where the disease burden is associated with limited access to clean water and 
adequate sanitation23. These infrastructural deficiencies could be susceptible to climatic events, such as monsoons 
and droughts. However, the lack of a strong and consistent association with rainfall and/or temperature indicates 

Figure 3.  Mean timing of the peak and seasonal variation for contemporary (>1990) data on enteric and 
typhoid fever. Mean timing (as measured by center of gravity) is represented by the colored dots, while the 
lines represent the corresponding 95% confidence intervals. The seasonal variation is quantified by the seasonal 
intensity (peak/mean). Studies are ordered by latitude, from North (top) to South (bottom) and colored by 
region: Africa & Middle East (Purple) and Asia (Blue).
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that the important environmental drivers and routes of transmission may vary by setting and be influenced by 
other factors. In the following paragraphs, we discuss potential mechanisms by which climatic factors could influ-
ence the seasonal dynamics of enteric fever where such associations were apparent.

Among settings located 35°–11° N, the peak number of enteric fever cases occurs between May and October, 
which coincides with the monsoon season in many Asian countries. The monsoon season is marked by bursts of 
excessive rainfall, which are known to cause flooding24. Flooding has been identified as a risk factor for enteric 
fever and is thought to cause the mixing of drinking water sources with open sewers that contain fecal mat-
ter14,25–27. This is consistent with rainfall predating the peak in enteric fever in the observed data. In contrast, 
countries in the Middle East, some also located between 35°–11° N, experience a dearth of rainfall during the 
peak timing of enteric fever28. Therefore, what might explain the peak timing in these countries is the consump-
tion of contaminated water, drinks or food in search of refreshment during the warmest months of the year29. It 
is also possible that greater consumption of rainwater, which is less contaminated with human feces than surface 
water, during the rainy season might mitigate disease occurrence in these Middle Eastern settings.

The lack of a clear association between rainfall and enteric fever incidence in other regions might be explained 
by the changing availability of microbiologically safe water. While increased rainfall could lead to greater contam-
ination of rivers that are often used for bathing, defecating, and refuse as well as the primary source of water for 
drinking and cooking30,31, higher rainfall could also reduce the occurrence of disease due to the consumption of 
less contaminated rainwater. Moreover, limited supplies of clean water during hotter, drier periods could lead to 
water scarcity and force individuals to consume contaminated water32.

The association between enteric fever and temperature was more consistent across regions. There was a pos-
itive correlation between temperature and enteric fever at lags of 0–2 months, except in the equatorial region. 
This could be explained by the improved growth of S. Typhi and S. Paratyphi in warmer conditions. Increased 
temperature results in exponential growth of the bacteria, particularly on food, which has been found to plateau 
around 20–25 °C33,34.

In the equatorial region (10°N-10°S), we found that increased variation in temperature and less variation/
higher average rainfall is associated with greater variation in enteric fever. While climatic conditions are gener-
ally more constant year-round in this region, this suggests that in those settings where there is more variation in 
temperature over the course of the year (and higher average rainfall), there is also more variation in enteric fever 
incidence. Hence, similar associations as those seen in the correlation analysis likely exist in some, but not all, 
equatorial settings.

Evaluating the potential mechanisms of the seasonal dynamics in the Southern Hemisphere was complicated 
by the availability of a single contemporary dataset. However, studies from the late 1970’s in Chile unearthed 
another important potential mechanism of contamination—agricultural practice, which closely coupled with 
climatic seasons. In Chile, a marked increase in cases from November to April coincided with the irrigation sea-
son; it was subsequently discovered that farmers irrigated their crops with wastewater, which was likely contami-
nated35,36. This practice might provide an alternative explanation responsible for some of the seasonal variation in 
typhoid in other regions as well, as shown by recent studies in Morocco37,38.

We found that the dynamics of typhoid and paratyphoid fever have become less congruent with time, except 
in Kathmandu, Nepal and Guangdong Province, China. In Kathmandu, the clinical presentation of typhoid and 
paratyphoid fever are indistinguishable39, which might provide an explanation for the similar dynamics. However, 
the dynamics of paratyphoid fever are not well understood and should be explored further40.

Figure 4.  Association of environmental drivers with enteric or typhoid fever and seasonal intensity. The 
Pearson’s correlation coefficient between enteric or typhoid fever and (A) average monthly rainfall and (B) 
average monthly temperature (current and lagged (in months), up to 11 months) is summarized for all studies 
within a specified region. The values of the studies are represented in a boxplot, in which the whiskers represent 
the interquartile range (25th–75th percentile) times 1.5. (C) Coefficients from the meta-regression of the seasonal 
variation (peak/mean) against the average location-specific rainfall and temperature, the variation in average 
rainfall and temperature (peak/mean), and the study location’s elevation for all datasets with subnational data 
are plotted. The point estimates of the regression coefficients are represented by dots, while the 95% confidence 
interval is indicated by a horizontal line.
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Our findings were generally robust when restricted to those with a blood culture diagnosis. However, there 
was a paucity of studies that relied solely on blood culture confirmation, and more data are needed to confirm our 
findings. In this regard, the ongoing work by consortia such as the Strategic Typhoid alliance across Africa and 
Asia, Surveillance for Enteric Fever in Asia Project, and Typhoid Fever Surveillance in Africa Program41–43 are 
important and will provide novel insights into the disease’s transmission dynamics.

The seasonal dynamics do not appear to vary markedly by spatial scale, except possibly in Africa and the 
Middle East. This might be partially explained by the fact that most datasets in North Africa and the Middle East 
used national level data from before 1990, whereas datasets in sub-Saharan Africa used more recent subnational 
data. In Asia, only two datasets used national level data, which limited our ability to draw strong conclusions on 

Figure 5.  Seasonal dynamics, mean timing of the peak and seasonal variation for studies with typhoid and 
paratyphoid data. On the left, the percent of annual cases occurring in each month are plotted for paratyphoid 
fever (purple) and typhoid fever (blue). In the middle, mean timing (as defined by center of gravity) is 
represented by the dots, while the line corresponds to the 95% confidence interval. On the right, the seasonal 
variation (peak/mean) is plotted.
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the national-level dynamics in this region. This highlights the need for data with sufficient spatial resolution to 
disentangle potential variation between the national and regional level.

Moreover, the underlying mechanism driving the seasonal dynamics within regions might differ. Therefore, 
we should be mindful of the different local climate contexts that exist within countries. For example, these under-
lying seasonal drivers could differ in urban and rural areas despite a high prevalence of disease in both envi-
ronments43. While cities tend to have better infrastructure facilities, such as centrally-treated piped water and 
improved sanitation, those residing in many cities do not have equal access to these basic amenities, as evidenced 
by the numerous informal settlements that exist in cities worldwide44. This also underlines the importance of soci-
oeconomic factors as the frailty of infrastructure facilities and common lack of basic amenities among informal 
settlements affects those most impoverished, which, in turn, places them at greater risk of disease.

Finally, we have compared the aggregate annual dynamics between studies, countries and regions, which did 
not enable us to assess the seasonal dynamics across multiple years. Unfortunately, few long-term time-series of 
culture-confirmed enteric fever with sufficient resolution exist that would enable us to investigate and compare 
these dynamics further. Future studies should focus on examining associations between climatic variables and 
culture-confirmed enteric fever incidence in settings with longstanding surveillance platforms.

Conclusion and recommendations for future studies
In conclusion, we found distinct seasonal patterns for enteric fever by latitude. These dynamics might be 
explained by factors related to sources and modes of transmission, including inadequate access to clean water 
and sanitation, although associations with rainfall and temperature varied by region. Further work is needed to 
explore how socioeconomic factors may help to explain some of the different patterns we observed. Although 
the dynamics might be similar across geographic locations, the underlying mechanisms could be very different. 
Again, more multi-year datasets of culture-confirmed enteric fever cases at different spatial scales are needed. 
This could lead to a better understanding of the local mechanisms that drive the seasonality and transmission of 
enteric fever, which could aid surveillance and control efforts.
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