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Abstract

BACKGROUND—The P3 component of the event-related potential (ERP) has been particularly 

useful in alcohol research for identifying endophenotypes of alcohol use disorder (AUD) risk in 

sober subjects. However, practice and/or fatigue reduces P3 amplitude, limiting the ability to 

ascertain acute and adaptive effects of alcohol exposure. Here, we report acute alcohol effects on 

P3 amplitude and latency using an adaptive stop signal task (aSST).

METHODS—One hundred and forty eight nondependent moderate to heavy social drinkers, age 

21 to 27, participated in 2 single-blind, alcohol or placebo, counterbalanced sessions 

approximately one week apart. During each session, subjects performed an adaptive stop signal 

task (aSST) at (1) baseline, (2) upon reaching the target 60 mg/dL breath alcohol concentration or 

at the equivalent time during the placebo session, and (3) approximately 135 minutes later while 

the breath alcohol concentration was clamped. Here, we report on differences between baseline 

and first subsequent measurements across the experimental sessions. During each aSST run, the 

stop signal delay (SSD, the time between stop and go signals) adjusted trial-by-trial based on the 

subject’s performance.

RESULTS—The aSST reliably generated a STOP P3 component that did not change significantly 

with repeated task performance. The pre-infusion SSD distribution was bimodal, with mean values 
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several hundred msec apart (FAST: 153 msec and SLOW: 390 msec). This suggested different 

response strategies: FAST SSD favoring “going” over “stopping,” and SLOW SSD favoring 

“stopping” over “going”. Exposure to alcohol at 60 mg/dL differentially affected the amplitude 

and latency of the STOP P3 according to SSD group. Alcohol significantly reduced P3 amplitude 

in the SLOW SSD compared to FAST SSD group, but significantly increased P3 latency in the 

FAST SSD compared to SLOW SSD group.

CONCLUSIONS—The aSST is a robust and sensitive task for detecting alcohol induced changes 

in inhibition behavior as measured by the P3 component in a within subject design. Alcohol was 

associated with P3 component changes which varied by SSD group, suggesting a differential effect 

as a function of task strategy. Overall, the data support the potential utility of the aSST in the 

detection of alcohol response related AUD risk.
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INTRODUCTION

Scalp Event-Related Potentials (ERPs) reflect neurophysiological responses to discrete 

events. ERPs are characterized by several key components (e.g., P2, N2, P3, P3a, P3b) 

related to the neural network response to stimuli and cognitive events. In contrast to fMRI, 

which can locate sources of neural activity but provide meager temporal resolution, ERPs 

provide rich temporal information about neural processing activity, but less spatial 

resolution. The scalp topography and temporal properties of ERPs using P3 paradigms 

obtained in a sober state have proven useful as endophenotypes of risk for alcohol use 

disorder (AUD) (e.g., Euser et al., 2012, Justus et al., 2001, Kamarajan et al., 2005, Porjesz, 

et al., 2005) and for neural systems research in general (e.g., Di Giorgio et al., 2015, 

Motlagh et al., 2016, Downes et al., 2017).

Our laboratory seeks responses to alcohol that are novel endophenotypes of alcohol use 

disorder (AUD) risk, using intravenous alcohol administration to prescribe identical brain 

exposures in all subjects (Plawecki et al., 2008, Ramchandani et al., 1999b, O’Connor et al., 

1998). ERPs are promising candidates among the various behavioral, subjective, and 

neurophysiologic responses to alcohol exposure. The P3 component is particularly appealing 

because it is genetically influenced, varies substantially in morphology across subjects (yet 

very little within subjects), reflects cognitive processes known to be impaired by exposure to 

alcohol, and has been shown to be associated with AUD risk in the sober state (Cohen et al., 

1997, Perlman et al., 2013). Alcohol exposure is believed to reduce maximum P3 amplitude 

(|P3|), lengthen latency (λP3) to |P3|, and perhaps shift the scalp locus of peak P3 activity (if 

alcohol has a differential hemispheric influence on P3 generators) (Lukas et al., 1990, 

Martin and Garfield, 2006, Lewis et al., 2013).

Demonstrating a reliable alcohol effect on P3 activity is difficult. Detection of an alcohol 

effect on cognitive components of an ERP ideally include a comparison of intoxicated 

performance to baseline activity within an individual, thus requiring repetition of the 

paradigm. However, standard P3 paradigms are sensitive to practice and fatigue effects, as 
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both stimulus novelty and importance influence the evoked response to target stimuli 

(Segalowitz et al., 2001). Specifically, reduced novelty from repetition alters the P3. Thus, 

most studies of alcohol’s influence on P3 activity implement an across subject design (Lewis 

et al., 2013, Sanchez-Roige et al., 2016, Easdon et al., 2005).

To isolate the effect of alcohol on individuals, our study design compares the acute alcohol 

response during a clamped breath alcohol concentration (BrAC) to baseline, accounting for 

changes from the same measure performed during a separate, counterbalanced placebo 

infusion session. Thus, our clamping protocol requires that each subject performs an ERP 

paradigm a minimum of 4 times, compounding the influence of fatigue and practice on the 

results. Our prior studies reflect this challenge, and have not shown within-subject changes 

in P3 after alcohol as compared to placebo, likely due to practice effects. As documenting 

the sensitivity of P3 ERP paradigms to alcohol remains of high interest for detecting 

potential endophenotypes of AUD risk, alternate approaches are needed.

Inhibitory capacity, as well as alcohol’s effect upon it, is important to identify risk factors 

associated with developing an AUD. A predisposition toward risky and premature 

responding (impulsivity) has been repeatedly demonstrated to be a risk factor for AUD (e.g., 

de Wit, 2009, Dick et al., 2010, Jentsch et al., 2014, Lejuez et al., 2010, Verdejo-Garcia et 

al., 2008). Stop Signal task (SST) performance requires inhibiting learned reflexes (i.e., 

inhibit the pre-potent motor response for the GO stimulus when followed by the STOP 

stimulus) and is thought to be a marker of impulsivity. Oral alcohol challenge affects 

impulsivity, but with variable effects across exposures, tasks, and populations (e.g., Reed et 

al., 2012, Ortner et al., 2003, Finn et al., 1999, Dougherty et al., 2008, Reynolds et al., 2006, 

Fillmore et al., 2008). Brain activity induced by the SST alone, as well as affected by 

alcohol, may also be informative in studying AUD risk (Kareken et al., 2013, Weafer et al., 

2015). Under the horse-race model of the SST, the GO and STOP responses are considered 

to be independent processes, with successful inhibition determined by the difference in their 

completion. However, data suggests that, “subjects can make proactive response-strategy 

adjustments on a trial by trial basis” (Aron, 2011; Verbruggen and Logan, 2009) making 

interpretation more challenging.

The scalp ERP of the SST is also complex. Each SST trial always includes a fixation and a 

pure GO stimulus, with a subset of trials including a STOP stimulus following the GO signal 

after a stop signal delay (SSD, msec). Each stimulus elicits a brain response reflected in the 

EEG recorded from the scalp. Inherent to the SST paradigm, some of these evoked brain 

responses overlap in time, necessitating various filtering approaches to separate them (e.g., 

Bekker et al., 2005; de Jong et al., 1990; Dimoska et al., 2006; Dimoska et al., 2003; Pliszka 

et al., 2000; Woldorff, 1993). The literature reports a relationship between STOP P3 

amplitude during response inhibition and experimental alcohol consumption (Jones et al., 

2013), as well as electrophysiological differences in “fast” versus “slow” responders (van 

Boxtel et al., 2001, Band et al., 2003, Dimoska et al., 2006). However, none of these studies 

used a within-subject design to dissociate the influences of practice versus brain exposure to 

alcohol and none of the ERP alcohol challenge studies used intravenous infusion of alcohol 

to overcome the nearly 3-fold variation in BrAC trajectories following ingestion of standard 

oral doses of alcohol (Ramchandani et al., 1999b).
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We examined how exposure to alcohol at 60 mg/dL affects the spatio-temporal features of 

the average electrophysiological response to STOP signal stimuli. This response reflects the 

relative import of the stimulus, and possibly the behavioral strategy used. Further, 

knowledge of the SSD delay (between the onsets of GO and STOP stimuli) offers the chance 

to derive the P3 component response to STOP prompts that are uncontaminated by the 

unfinished response to the GO stimulus.

Here we examine the placebo-controlled, within-subject initial response to alcohol in STOP 

signal P3 component using a real-time, adaptive SST task reported elsewhere in brain 

imaging work by our group (aSST; Kareken et al., 2013; Weafer, et al., 2015). aSST adjusts 

the SSD on each STOP trial, lengthening it by 50 msec after a subject successfully 

withholds the GO response following a STOP stimulus or shortening the SSD if the subject 

responded despite the STOP stimulus. Over many trials, the task ideally finds the SSD at 

which subjects respond to 50% of the STOP prompts with the correct behavioral inaction. 

Subjects performed the aSST thrice in each of two sessions: at an infusion-free baseline, 

following acquisition of a clamped 60 mg% target BrAC (or at a matched time-point during 

the placebo infusion), and again after prolonged alcohol exposure. We hypothesized that 

alcohol would alter the STOP P3, and that these changes would be eventually useful as an 

endophenotypic markers of AUD risk. Here we report the effect of acute alcohol on |P3| and 

λP3 as defined by changes across baseline and upon reaching the target BrAC, and 

accounting for similar changes across a placebo infusion session.

METHODS

GPRA Study Design

The parent study was designed to examine the effects of single nucleotide polymorphisms 

(SNPs) previously associated with AUD risk and other known risk factors on the effects of a 

controlled brain exposure to alcohol for several dependent measures. Appraisals included 

resting state EEG, aSST, saccadic eye movements, and the subjective response to alcohol 

(reported in Kosobud et al., 2015); a subsample of these same subjects subsequently went on 

to repeat the aSST during fMRI under alcohol and placebo infusions (Kareken et al., 2013, 

Weafer et al., 2015). The current analysis focuses on detection of an acute alcohol effect on 

the aSST STOP P3 ERP component.

Subjects

DSM-IV non-dependent, heavy-drinking, European American subjects, aged 21–27 years, 

were recruited using community advertisements and interviewed. Following BrAC 

measurement to confirm sobriety and the subject’s signing of an informed consent approved 

by the Indiana University Institutional Review Board, subjects completed portions of the 

Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA; Bucholz et al., 1994), 

completed a 30-day timeline followback to assess recent drinking history (TLFB; Sobell et 

al., 1988), and provided blood and urine samples for assessment of liver function, drugs of 

abuse screening, and, in females, pregnancy screening. Inclusion criteria were consumption 

of at least 17 drinks in the past month, good health as determined by medical self-report and 

brief nursing assessment, and review of laboratory test results. Exclusion criteria included 
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self-reported current or prior serious disease (including central nervous system, 

cardiovascular, respiratory, gastrointestinal, hepatic, renal, or endocrine), positive hepatitis 

or HIV test, alcoholism in the biological mother during pregnancy, current or prior history of 

severe alcohol-induced flushing reactions, current or prior history of DSM-IV Axis-I 

psychiatric conditions including alcohol or drug dependence but not alcohol abuse, use of 

medications known to interact with alcohol within 2 weeks of study initiation, and females 

who were or intended to become pregnant. In addition, subjects were excluded if, on the 

days of testing, they had a positive BrAC, presence of illicit drugs on urine drug screen, or, 

for females, a positive urine pregnancy test.

General Procedure

Each subject undertook 2 single-blind, intravenous-infusion study sessions at least 3 days 

but targeted 7 days apart receiving 6% ethanol in half-normal saline during one session and 

vehicle only at a comparable infusion rate profile during the other. Infusate order was 

counter-balanced across subjects. Subjects were advised that they would receive alcohol 

during one or both visits. On both study days, the subject arrived at the laboratory by 7:00 

AM and underwent a brief physical exam, as well as breathalyzer and urine testing. We 

offered a 550 calorie breakfast, after which nurses placed a 20-gauge indwelling venous 

catheter in an antecubital vein of each arm, flushed with saline, and capped with a heparin 

lock. Lab technicians provided instruction on the various tasks to be performed, and fitted a 

64-channel EASYCAP® electrode cap (EASYCAP GmbH, Germany). Infusion sessions 

began at approximately 10:15 AM. Testing in each session comprised three 45-minutes 

blocks during which multiple tasks were administered in a fixed order (Figure 1); only 

electrophysiological aSST results for Baseline (Block 0) and the subsequent measurement 

(Block 1) are reported here. Baseline was obtained just prior to the infusion; subjects were 

aware that they had not yet received alcohol. Block 1 began either 20 minutes later (placebo 

session) or after the 60 mg/dL alcohol clamp was established and stable for 5 minutes 

[occurring across the entire sample at 18.8 ± 0.01 minutes (mean ± SEM)]. The aSST was 

performed approximately 17 minutes into each experimental block.

Experimental Alcohol Exposure

BrAC closely approximates the arterial alcohol concentration (Gomez et al., 2012), and 

therefore the brain’s exposure to alcohol, as the brain is a high-flow, low-volume organ. 

However, studies of responses attributable to changes in BrAC are complicated when oral 

dosing is used because individuals show significant variation in rise, peak, and fall of BrAC 

(Ramchandani et al., 1999b). Intravenous (IV) infusion of alcohol, based on an individual’s 

physiologically based pharmacokinetic parameters, assures identical BrAC trajectories 

among subjects by circumventing absorption kinetics and compensating for individual 

variation in distribution and elimination kinetics (Plawecki et al., 2008; Ramchandani et al., 

1999b). Using IV infusion to “clamp” BrAC at a specific concentration is ideal for 

examining the acute effects of alcohol without complications from inter-subject variability in 

BrAC, or from Pavlovian associations that come from the oral ingestion of alcohol. As 

developed by our laboratory, the intravenous alcohol infusion methodology has been 

successfully used to prescribe alcohol exposures in many experimenter-specified and alcohol 
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self-administration experiments (e.g., Cyders et al., 2016, Junger et al., 2016, Kareken et al., 

2010, Oberlin et al., 2015, Stangl et al., 2017, Yoder et al., 2009).

The alcohol infusate was prepared by the Indiana University Hospital research pharmacy. 

Individualized infusion rates were computed and delivered by our Computer-assisted 

Alcohol Infusion System (CAIS, Zimmermann et al., 2008) using a transformation of the 

subject’s age, height, weight, and gender into the parameters of a physiologically based 

pharmacokinetic model of alcohol distribution and elimination (O’Connor et al., 1998; 

Plawecki et al., 2008; Ramchandani et al., 1999b). That infusion rate profile, in conjunction 

with BrAC measurement feedback, achieved and maintained a BrAC of 60.8 ± 0.1 mg/dL 

(Mean ± SEM; intended target 60.0 mg/dL) over Block 1 dependent measures assessment, 

assessed with an Alcotest meter, model 7410 or 6510 (Draeger, Irving, TX).

Stop Signal Task

We programmed and administered the aSST (Kareken et al. 2013, as adapted from Rubia et 

al., 2003) using E-Prime® 2.0 software (Psychology Software Tools Inc., Sharpsburg, PA) to 

provide consistency across experimental environments of the parent study. At baseline, 

Block 1, and Block 2, each subject completed 2 runs of the aSST (divided to allow BrAC 

testing but immediately subsequent), with each sub-block consisting of 60 “pure GO” trials 

and 30 “STOP” trials. We instructed subjects to respond as quickly and as accurately as 

possible to each GO trial. STOP trials included a red up-pointing arrow, after a green 

horizontal GO stimulus, indicating the need to inhibit the button press associated with the 

GO response. An adaptive staircase algorithm, with inter-trial interval of 3000 msec and 

SSD initiated at 250 msec, adjusted the delay in 50-msec increments to target a stop 

inhibition success rate of 50%. The duration of the fixation cross, GO, and STOP stimuli 

were 700 msec, 250 msec, and 250 msec respectively. A combination GO-STOP stimulus 

appeared during any time periods of overlap between the GO and STOP stimuli. Preliminary 

analysis demonstrated no clear difference across sub-blocks, so they were subsequently 

combined to increase trial numbers. Combining sub-blocks, each block comprised a total of 

120 pure GO trials and 60 STOP trials.

Scalp EEG Data Collection

Dependent measures, including all electrophysiologic data, were collected with the subject 

seated in a comfortable, reclining chair located in a sound attenuated RF-shielded room 

(IAC, Industrial Acoustics, Bronx, NY). Fifty-nine leads in the expanded 10–20 system were 

referenced to the bridge of the nose with the ground placed at the midline forehead. Separate 

leads were placed for heart beat and horizontal and vertical eye movement detection. 

Electrode impedance was maintained below 5kΩ. EEG activity was recorded with 

Synamps2® EEG amplifiers connected to a 24-bit analog-to digital converter and sampled at 

1000 kHz and using NeuroScan® (Neurosoft, Inc., El Paso, TX) PC-based data collection 

software.

Data Reduction

One hundred forty-eight subjects contributed aSST session data for ERP analysis. The 

continuous EEG records were visually screened for identification of bad leads, which were 
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then removed with a nearest neighbor correction algorithm (Buchsbaum et al., 1982, 

Shepard, 1968). Matlab® based programs were then used to synchronize the E-prime and 

Neuroscan event records and identify eye blink artifacts as well as artifact-free blocks within 

the record for Neuroscan Spatial Filtering. GO and STOP stimuli were epoched, non-phase 

shifted, bandpass filtered, linearly detrended, baseline corrected, subjected to voltage 

thresholding then sorted and averaged based on stimulus type. We employed an approach to 

minimize impact of response overlap that was modeled on the Adjacent Response Filtering, 

ADJAR, procedure (Woldorff, 1993, Dimoska et al., 2006). Our modified ADJAR took 

advantage of distinct GO trials and the assumption of independence of the GO and STOP 

processes. We identified the sequence of artifact-free STOP trials to be used in computing 

the ERP and the corresponding array of SSD for each trial in the sequence. We jittered the 

subject’s own pure GO ERP according to the SSD sequence to create a Blurred GO response 

for that block’s usable STOP trials. Finally, we subtracted the Blurred GO response from the 

contaminated average STOP response and baseline corrected the result in the [−200, 0] msec 

pre-stimulus interval.

Data Analysis Strategy

Review of the average SSD distribution, from all available data revealed an unexpected 

bimodal distribution, with short (FAST) and long (SLOW) SSDs (Supplemental Figure 1). 

The SSD data from the baseline blocks retained this bimodal character and was modeled as a 

two component Gaussian Mixture via the Matlab® fitgmdist function (Figure 2). Three 

groups were thus defined based on their first exposure to the aSST task (baseline of the first 

session, independent of infusate type): the ‘FAST’ group comprised subjects with a SSD less 

than or equal to the mean of the shorter SSD group (153 msec). The ‘SLOW’ group had an 

SSD greater than or equal to the mean of the longer SSD group (390 msec). The 

INTERMEDIATE (IM) group had SSDs that fell between the SLOW and FAST groups.

P3 Extraction Procedure

A spatial mask for computation of P3 amplitude (|P3|) at a corresponding latency (λP3) in 

each ERP was created based on the intermediate (IM) SSD group grand mean STOP ERPs 

(Figure 3 and Supplemental Figure 3). We chose a set of 16 adjacent leads, comprising the 5 

midline leads {Fz – Pz}, their nearest 10 off-midline neighbors, and posterior lead POz to 

reduce data dimensionality. The |P3| at a specific λP3 was defined as the average voltage 

within that spatial distribution. A static topographic display of each ERP’s voltage over time 

and space was examined for the latency of characteristic maximal centro-midline signature 

of P3 activity. Then, a computerized search for maximum spatial mask voltage within a ± 20 

msec window about that approximation, defined the analytic variables |P3| and λP3 for that 

ERP. The masking procedure removed sensitivity of |P3| to midline shifts in P3 activity 

associated with distinct occurrences of P3a and P3b sub-component activity. In addition, the 

conservative masking procedure reduced the spatio-temporal peak P3 amplitude to 

accommodate rational sensitivity to the spatial extent of P3 activity at λP3.

Calculation of an Alcohol Effect

Consistent with our other examinations of the response to alcohol as a function of constant 

BrAC, we defined the initial response to alcohol (IRA) or placebo (IRP) infusion as the 

Plawecki et al. Page 7

Alcohol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



value of the dependent variable at Block 1 (alcohol target reached) – Block 0 (non-infusion 

baseline; Kosobud et al., 2015; Morzorati et al., 2002; Ramchandani et al., 1999a). The 

overall alcohol effect was defined as (IRA – IRP), to account for changes present in both the 

alcohol and placebo sessions. Subjects with an IM SSD (those who did not fall within the 

inclusion parameters for either the FAST or SLOW groups), having served as a model to 

define the P3 region of interest, were excluded from further analysis. For inclusion in the 

final analytical database, subjects required 4 blocks of valid aSST electrophysiological data: 

subjects not completing a session were excluded. Outlier data (greater than 2 standard 

deviations from overall mean for |P3| and λP3 alcohol effects independently) and subjects 

with unrecognizable ERP morphology in one or more of the blocks were removed from 

further analysis. One hundred and fourteen subjects had complete data. No group was 

preferentially impacted by the outlier removal and data review processes. Final group sizes, 

after outlier, incomplete data, and poor data removal, were 25 and 24 for FAST and SLOW 

SSD groups respectively (Table 1). Upon visual inspection, these groups demonstrated clear 

differences in baseline grand mean ERP morphology (Figure 3) and λP3, but not |P3| 

(Figure 4a–b), as well as differences in the effect of alcohol (Figure 5).

Statistical analyses were performed using GraphPad Prism 7 for Mac (GraphPad Software, 

La Jolla, CA) for demographic and baseline differences between SSD groups and IBM SPSS 

Statistics 24 (IBM, Armonk, New York) for multivariate analysis of variance. We assessed 

demographic differences between the FAST and SLOW groups using t-tests (for quantitative 

traits) or chi-squared tests (for qualitative traits). For each session, we assessed baseline 

differences in |P3| and λP3 for SSD groups using 2-tailed t-tests. Analyses across the two 

sessions employed 2-way repeated measures analysis of variance (ANOVAs) with SSD 

group and session as factors. Post-hoc comparisons were performed using Bonferroni 

correction. The dependent variable was the effect of alcohol on the initial response for |P3| 

and λP3, as measured by Alcohol Effect = IRA-IRP. No correlation between the |P3| alcohol 

effect and λP3 alcohol effect was observed (r = 0.02, p = 0.91). A multivariate analysis of 

variance (MANOVA) assessed differences in the two SSD groups (FAST vs SLOW) on the 

alcohol effect for |P3| and λP3.

RESULTS

Behavior and Electrophysiology

FAST and SLOW SSD groups did not differ on any demographic variables (ps > 0.09) 

(Table 1). Baseline STOP |P3| did not significantly differ by SSD group in either infusion 

session [Session 1: t(47) = 1.3, p = 0.20; Session 2: t(47) = 0.7, p = 0.47]. A significant 

smaller baseline |P3| occurred [F(1, 47) = 6.58, p = 0.01] for SLOW SSD for session 2 

compared to session 1 (p = 0.02). A significantly longer baseline λP3 obtained for the group 

with FAST compared to SLOW SSD in both infusion sessions [session 1: t(47) = 6.72, p < 

0.0001; session 2: t(47) = 3.23, p < 0.01]. A significant effect of session on baseline |P3| was 

observed [F(1, 47) = 6.58, p = 0.01] with post hoc analysis indicating a significant reduction 

in |P3| for SLOW SSD at session 2 baseline compared to session 1 baseline (p = 0.02). A 

significant session x SSD interaction for baseline λP3 was observed [F(1, 47) = 20.62, p < 
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0.0001] with post hoc analysis indicating a significant reduction in λP3 for FAST SSD at 

session 2 compared to session 1 (p < 0.001) (Figure 4).

We observed homogeneity of covariance matrices of the alcohol effect (Box’s M p = 0.09) 

across the SSD groups. The multivariate alcohol effect was significant by SSD group, [F(2, 

46) = 6.30, p < 0.01, partial η2 = 0.25], reflecting a significantly reduced |P3| for the SLOW 

compared to FAST SSD group [F(1, 47) = 5.98, p < 0.02, partial η2 = 0.11], and a 

significantly longer λP3 for the FAST compared to SLOW SSD group [F(1, 47) = 5.56, p = 

0.02, partial η2 = 0.11] (Figure 6a–b).

DISCUSSION

We examined the effect of a precisely-controlled, acute alcohol exposure on ERP component 

P3 indices following a cue for response inhibition in an adaptive SST task. We employed a 

within-subject, placebo-controlled design to identify changes attributable to alcohol 

exposure. We made use of a real-time adaptive SST algorithm to reduce the well-known 

confound of practice and fatigue on the STOP ERP. Inspection of the STOP Signal Delays 

yielded a clear bimodal distribution, suggesting two distinct strategies for performing the 

task. Similar to prior reports of “fast” and “slow” SSRT response and SSD groups, we 

identified two groups with consistent response strategies (FAST and SLOW) and a larger 

INTERMEDIATE group which likely reflected a response strategy that reflected a mixture 

of the strategies (Dimoska et al., 2006, Verbruggen and McLaren, 2016, Greenhouse and 

Wessel, 2013). The FAST SSD group (SSD mean of 117 ± 6 msec) appeared to utilize a 

response strategy that favored going over stopping while the SLOW SSD group (SSD mean 

of 518 ± 20 msec) appeared to use a conservative strategy that emphasized stopping over 

going. As suggested by Dimoska et al., 2006 and Greenhouse and Wessel, 2013, these 

proposed response strategies for the SSD groups were supported by baseline STOP P3 

differences as well as the observed difference in pure GO |P3| (unanalyzed but utilized 

within the modified ADJAR procedure, see Supplemental Figure 4). We subsequently 

hypothesized that the effect of alcohol on the two strategies would be apparent in STOP P3 

component amplitude and latency.

To our knowledge, this is the first SST-based electrophysiological study to demonstrate a 

within-subject effect of alcohol on conservative estimates of ERP component activity. We 

observed significant alcohol effects on P3 amplitude and latency that differed depending on 

the response strategy implemented. Although all subjects were provided the same task 

instructions in an identical manner, we do not have specific data why subjects chose a 

specific strategy. FAST subjects appeared to use a response strategy that favors rapid go 

responses, resulting in a STOP |P3| that was not significantly influenced by either practice or 

acute alcohol exposure, but with a significantly longer λP3 than the SLOW subjects. In 

contrast, subjects in the SLOW group appeared to implement a response strategy that 

prioritizes stopping over going, and exposure to 60 mg/dL alcohol was associated with 

changes opposite to that demonstrated by the FAST group: a significantly reduced STOP |

P3|, but no impact on λP3. Consequently, we hypothesize that the influence of alcohol 

impacts one’s approach to solving a problem, rather than the solution of the problem itself. 

The dichotomy may represent an important indicator of AUD risk. We are currently 
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conducting analyses on other ERP components derived from the SST suggested by our 

results and intend to test for associations between risk factors (gender, recent drinking 

history, family history, candidate genes) and SSD related ERP parameters once complete.

The findings are subject to limitations. The traditional SST paradigm, like most other ERP 

paradigms, is not entirely immune to practice effects across repeated testing (Manuel et al., 

2013). Thus, the effect of practice on the resulting P3 ERP can still be confounded with the 

effect of alcohol administration due to the need for at least one replication of the task (SST 

P3 with and without alcohol). Although the aSST used here is designed to minimize this 

effect, we did observe baseline |P3| and λP3 differences for the SLOW and FAST groups 

respectively between Session 1 and 2. These ERP changes, associated with repeating the 

task over three experimental blocks in each of 2 sessions, supports our analytical 

methodology that intentionally accounted for the confound. Another limitation of this work 

is brain exposure to alcohol at mid-morning rather than in the evening when the sample 

population is more likely to have had experience with drinking alcohol. On the other hand, 

subjects were also unlikely to have previously experienced the purely pharmacological 

effects of alcohol. Thus, we chose to sacrifice a more ecologically valid schedule for the 

precision of exposure afforded by our intravenous alcohol infusion technique and within the 

practical limitations of scheduling these sessions.

To examine the effect of acute alcohol exposure on the inhibitory ERP distinct from that of 

practice, a modified ADJAR procedure was used to remove the overlap of the preceding GO 

ERP signal from the STOP prior to the determination of any alcohol effect. Indeed, the 

resultant STOP ERP waveforms were visibly distinct and improved (see Supplemental 

Figures 2 and 4). The widely-held assumption of independence between the STOP and GO 

processes is inherent in the decontamination procedure. If these processes are not 

independent, our, and many other, decontamination strategies would instead introduce error 

into the analysis. Consequently, the assumption of STOP and GO independence should be 

considered a potentially significant limitation. Further, any ADJAR based decontamination 

procedure will differentially impact the STOP signal ERPs as a function of SSD. Indeed, the 

procedural effect of STOP ERP decontamination on P3 activity was greater in the order of 

FAST to IM to SLOW groups (See Supplemental Figure 2). Other procedures have been 

reported to accomplish decontamination (see review in Ihrke et al., 2009). However, the 

structure of our data, including number of relevant stimuli, their overlap, and sub-block 

design, prevented their implementation. Overall, we recommend application of the modified 

ADJAR procedure for understanding ERP activity from any version of the SST.

Our use of a spatial mask to define |P3|, while advantageous from a data reduction 

perspective, precluded a more refined spatial analysis. It is commonly accepted that the P3 is 

comprised of two positive potentials that occur in close temporal proximity (P3a and P3b). 

The early P3a component has a frontal distribution and peaks around 240 – 280 msec after 

the stimulus. The later P3b component has a more parietal distribution that peaks around 250 

– 500 msec after the stimulus (Squires et al., 1975). Both components are thought to reflect 

the updating of working memory with new information (Polich & Kok, 1995). Specifically, 

the P3a has been hypothesized to reflect attentional processing that initiates the inhibition of 

ongoing activity (Polich, 2007), though further research is needed to verify that hypothesis. 
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Grand Mean ERPs (see Figure 5) suggest the potential for detecting separate P3a and P3b 

subcomponents. It is conceivable that the alcohol-induced increase in P3 latency for FAST 

subjects and reduced |P3| for SLOW subjects reflects differential alcohol effects upon these 

subcomponents. That possibility might help identify which strategy that individual members 

of the INTERMEDIATE SSD group of subjects were using. However, our conservative 

method for defining |P3| precluded testing such a hypothesis. Further analysis of the STOP 

ERP is needed to fully ascertain the effect of alcohol on response inhibition (e.g. does 

alcohol have a different effect on ERPs from correctly inhibited motor responses to STOP 

cues when compared to uninhibited motor responses?). Finally, the cognitive-

neurophysiological aspects of the stop signal task are complex and extend beyond the 

response inhibition processing hypothesized to be represented in P3. Inspection of the 

spatio-temporal signatures in our database suggests the possibility of SSD group and drug 

influences on P1, N2, CNV, and a late bi-frontal activity of opposite polarity.

More generally, the two session within-subject design and SSD-based analytical approach 

proved analytically complex and costly from a data retention perspective. However, 

subtracting the effect of repetition allowed for a more robust phenotype. To be included in 

the final analysis, subjects were stratified according to clear response types and needed to 

provide high quality data across four experimental blocks. Further, subjects may alter their 

strategy across and within experimental runs in ways that may or may not depend on 

experimental intervention, potentially confounding our results. Efforts to better identify the 

strategy subgroups, even potentially within an experimental run, is thus a clear area of need.

In summary, we documented an effect of precisely controlled alcohol exposure at 60mg/dL 

on what we perceive to be two distinct strategies used to produce the P3 component of scalp 

ERPs cued by a visual stimulus signaling the need for response inhibition. Our findings may 

be eventually useful in searching for the expression of risk for developing an AUD 

associated with impulsivity. The ability to inhibit a pre-potent response is an integral part of 

normal cognitive functioning. Even moderate alcohol exposure can compromise conflict 

monitoring depending on the nature of the response strategy or stimulus salience. Speed of 

inhibition might be compromised when a pre-potent response is prioritized (i.e., such as 

might be the case in the FAST SSD group > SLOW SSD group comparison). On the other 

hand, conflict processing (i.e., |P3| amplitude) could be compromised when stopping is 

prioritized (i.e., SLOW SSD group). The ERP data here make clear that such subject-level 

task approaches may need to be accounted for to more completely understand the underlying 

neurodynamics, with and without alcohol.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• An Adaptive Stop Signal Task was used to examine within-subject alcohol 

ERP changes

• Stop Signal Delay distribution was bimodal, implying different response 

strategies

• Alcohol was associated with different P3 ERP changes by Stop Signal Delay 

group
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Fig. 1. 
Experimental Design. Adaptive Stop Signal Task (aSST) was performed in two consecutive 

runs (4.5 min/run), in a fixed order with other dependent measures, and began approximately 

17 minutes within each of three 45 minute blocks during the infusion sessions. Sub-block 

aSST assessments were analyzed together. Block 0, or Baseline, occurred before infusion of 

either alcohol or placebo. Block 1 was collected beginning 20 minutes after the initiation of 

alcohol/placebo infusion and Block 2 initiated 90 minutes after the completion of Block 1. 

Sessions were scheduled nominally 7 days apart.
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Fig. 2. 
Comparison of Session 1 Baseline Stop Signal Delay Density and 2 Component Gaussian 

Mixture Model.
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Fig. 3. 
Baseline Grand Mean STOP ERPs. Grand Mean STOP ERPs at electrode locations Fz 

(Top), Cz (Middle), and Pz (Bottom) are displayed for each of the 3 SSD groups for 

Baseline Session 1 (Left) and Session 2 (Right). Each waveform reflects application of the 

modified ADJAR decontamination procedure.
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Fig. 4. 
Baseline P3 Amplitude and Latency by Session and SSD group. P3 Amplitude (Left, Closed 

Bars): No baseline P3 amplitude differences between FAST and SLOW SSD groups was 

observed across sessions. SLOW SSD group baseline P3 amplitude was significantly 

reduced in Session 2 versus Session 1. P3 Latency (Right, Open Bars): FAST SSD group 

baseline P3 latency was significantly longer than that of SLOW SSD group across sessions. 

FAST SSD group baseline P3 latency was significantly reduced in Session 2 versus Session 

1. (* p<0.05; **p<0.01; ****p<0.0001).
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Fig. 5. 
Differences of Grand Mean STOP ERPs. Tempero-spatial differences between FAST and 

SLOW SSD groups in the initial responses to placebo administration (IRP), initial responses 

to alcohol exposure at 60mg/dL (IRA), and the alcohol effect (AE) calcualted as the 

difference of differences (IRA-IRP)are displayed. None of these signals were actually 

measured and the comparison is meant only to illustrate group effects observed in 

association with alcohol exposure.
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Fig. 6. 
Effect of Alcohol on STOP P3 Amplitude and Latency. Alcohol significantly decreased |P3| 

for SLOW SSD compared to FAST SSD group (a). Alcohol significantly lengthened P3 

latency for FAST SSD compared to SLOW SSD group (b). (* p < 0.05)
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