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T cells modified via chimeric antigen receptors (CARs) have emerged as a promising treatment modality. Unparalleled clinical
efficacy recently demonstrated in refractory B-cell malignancy has brought this new form of adoptive immunotherapy to the
center stage. Nonetheless, its current success has also highlighted its potential treatment-related toxicities. The adverse events
observed in the clinical trials are described in this review, after which, some innovative strategies developed to overcome these
unwanted toxicities are outlined, including suicide genes, targeted activation, and other novel strategies.

1. Introduction

Cell-based therapies have risen to the forefront of treatment
approaches for cancer [1]. Progress in synthetic biology
and gene transfer enables a rapid and efficient redirection
of polyclonal T lymphocytes [2]. T cells modified via
synthetic CARs have made remarkable achievements in
eliminating chemotherapy-resistant acute lymphoblastic
leukemia [3–7], chronic lymphocytic leukemia [8, 9], and
non-Hodgkin lymphoma [10, 11]. In light of their promise,
there has formed a broad wave of CAR-modified T cells for
cancer immunotherapy, including the challenging solid
tumors [12–15].

CARs commonly composed of an extracellular antigen-
binding moiety (i.e., single-chain variable fragment of anti-
body) fused to intracellular signaling domains can reprogram
specificity against the targeted molecules of a selected cell and
outsmart HLA restriction [16, 17]. Upon antigen ligand
engagement, CAR T cells can produce cytokines, kill targeted
cells, and stimulate the proliferation of T cells, resulting in a

highly amplified response and the consequent eradication of
a huge quantity of tumor cells within weeks. Despite CAR T
cells being promising, toxicities have been associated with
most of the clinical responses, and fatal complications have
been observed in some patients treated with gene-modified
T cells [18–22]. The aim of this review is to provide a frame-
work for the classification of different toxicities and highlight
state-of-the-art potential overcoming strategies.

2. Toxicities of T Cells Genetically
Modified with CARs

A brisk immune response can be a double-edged weapon.
The efficacy of T cells genetically modified with CARs against
cancer is greatly improved at the expense of enhanced toxic-
ities; therefore, it will be useful to classify the multifaceted
adverse events in trials, clearly dividing them into five catego-
ries, i.e., on-target on-tumor, on-target off-tumor, off-target,
neurotoxicity, and other toxicities (Figure 1).

Hindawi
Journal of Immunology Research
Volume 2018, Article ID 2386187, 10 pages
https://doi.org/10.1155/2018/2386187

http://orcid.org/0000-0001-9861-4681
http://orcid.org/0000-0002-8221-3354
https://doi.org/10.1155/2018/2386187


2.1. On-Target On-Tumor Toxicity. When it comes to the
toxicity specific to the administration of T cells itself, the
most common toxicity is the on-target on-tumor type, which
is triggered by excessive cytokine release or tumor cell necro-
sis (Figure 1(a)). The underlying premise of immunotherapy
is to activate effector T cell and achieve cytokine release.
However, excessive cytokine release may result in cytokine
release syndrome (CRS), which can vary from mild moderate
to severe potentially fatal forms [18–20]. Furthermore, the
rapid devastation of large quantities of tumor cells can also
trigger tumor lysis syndrome (TLS), which can bring out an
array of systemic metabolic disturbances with an overlap in
symptoms with CRS and is characterized by elevated levels
of phosphate, potassium, and uric acid in serum [8, 21].
Emerging evidence suggests that the severity of CRS and
TLS depends upon disease burden [3, 22]; splitting the ini-
tial dose and strictly monitoring the vital parameters can
mitigate the risk [5, 23]. Additionally, considering that CRS
manifests as a rapid immune reaction driven by the massive
release of cytokines, including IFN-γ, IL-6, and IL-10,
the administration of high-dose corticosteroids and corre-
sponding antagonist mAb (e.g., IL-6 receptor antagonist

mAb and tocilizumab) can also be effective therapeutic
interventions [24–26].

2.2. On-Target Off-Tumor Toxicity. The most striking toxic-
ity specific to genetically targeted T cells is “on-target off-
tumor,” resulting from a direct attack on normal tissues that
have the shared expression of the targeted antigen
(Figure 1(b)). Considering the potency of redirected T cells,
toxicity on nonpathogenic tissues expressing low levels of
the antigen can be highly detrimental. For example, Erasmus
University’s earliest trials described the occurrence of chole-
stasis in renal cell carcinoma patients infused with T cells
modified with a CAR specific for carbonic anhydrase IX,
which is physiologically expressed on bile duct epithelial cells
[27, 28]. Similarly, low-level ERBB2 expression on lung epi-
thelia might have precipitated the reported case of fatal lung
toxicity [29]. With these toxicities in mind, the selection of
target antigen, which is strictly specific to the tumor (e.g.,
EphA2 [30] and mutated EGFRvIII [31, 32]) or on the cate-
gory of nonessential tissues (e.g., thymic stromal lympho-
poietin [33, 34] and CD33 [35, 36]), is probably the most
critical determinant to broaden the application. Indeed, such
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Figure 1: Toxicities of T cells genetically modified with CARs. (a) On-target on-tumor toxicity. (a1) Effector T-cell activation and excessive
cytokine release may result in cytokine release syndrome (CRS). (a2) High tumor load leads to massive destruction of tumor tissue, resulting
in tumor lysis syndrome (TLS). (b) On-target off-tumor toxicity: the shared target antigen is also expressed on nonpathogenic cell,
subsequently damaging healthy tissue. (c) Off-target toxicity: the extracellular crystallizable fragment (Fc) of CARs can interact with the Fc
receptor (FcR) expressed on innate immune cells, leading to antigen-independent activation. (d) Neurotoxicity: manifestation ranges from
confusion, delirium, aphasia to some degree of myoclonus, and seizure. (e) Genotoxicity: integrating viral vectors used to facilitate the
stable expression in primary T cells may pose a potential risk of oncogenic insertional mutagenesis. (f) Immunogenicity: single-chain
variable fragments (scFvs) derive from mouse monoclonal antibodies (mAbs), leading to severe immune response.
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antigens have been difficult to identify, particularly in the set-
tings of solid malignancies. Moreover, a study proved that the
substantial dose of infused CAR T cells (1× 1010) could
potentially provoke this toxicity, and lower doses of HER2/
neu-specific CAR T cells (without prior conditioning chemo-
therapy) were safe [13]. Hence, given the known background
expression of the target antigen, it becomes extremely impor-
tant to determine whether levels are over the threshold that
can cause this toxicity and to determine the potential severity
thereof in humans.

2.3. Off-Target Toxicity. Off-target toxicity occurs when the
transduced T-cell population unexpectedly attacks an anti-
gen other than the intended one or activates themselves inde-
pendently from their specificity (Figure 1(c)). The majority of
CAR T cells recognize antigens through single-chain variable
fragments derived from monoclonal antibodies (mAbs).
However, the safety of some mAbs profile is uncertain. The
data in vitro suggested that the artificial synthetic constructs
themselves may carry some risks of off-target recognition.
For example, the toxicity profile of the mAbs has been illus-
trated in the case of trastuzumab (anti-HER2/neu), in which
CARs carrying the IgG1-derived CH2CH3 domain as extra-
cellular spacer may interact with the Fc receptor expressed
on innate immune cells (e.g., macrophages and NK cells),
leading to antigen-independent activation [29]. Fortunately,
the off-target recognition of cross-reactive antigens has
not been evident in CAR T-cell trials to date. Nonetheless,
fatal cardiac toxicity has been seen in 2/2 patients infused
with autologous T cells engineered to express an enhanced
affinity T-cell receptor (TCR) directed against the testis
antigen MAGE-A3 [37, 38], of which the cross-reactivity
occurred against titin only expressing in cardiac tissue
[39]. Therefore, this possibility has to be kept in mind for
future developments when CAR T cells target novel tumor-
associated antigen.

2.4. Neurotoxicity. Neurotoxicity is another potentially seri-
ous toxicity observed in patients receiving CD19-specific
CAR T-cell therapy, and its manifestation ranges from con-
fusion, delirium, and aphasia to some degree of myoclonus
and seizure (Figure 1(d)). What is not clear is the causative
pathophysiology of these neurologic side effects. Although a
clear expression of CD19 in the affected brain areas has not
been shown, some groups have documented the infiltration
of CAR T cells into the cerebrospinal fluid (CSF) in most
patients with neurotoxicity [3–5, 40]. Lee et al. particularly
found that 6/21 patients who had neurotoxicity had higher
concentrations of CSF CAR T cells. However, magnetic reso-
nance imaging scans often did not show abnormalities. Fur-
thermore, a similar constellation of symptoms has also been
observed in patients treated with blinatumomab [41, 42].
Therefore, it is uncertain if the toxicity arises from direct
CAR T cells attack on the CNS tissue or generalized
cytokine-mediated inflammation [43]. To date, the neuro-
logic toxicity in all but the rare fatal cases has been reversible
and self-limited. Understanding the mechanisms behind it
will be critical for safer CAR T-cell therapy as well as for
more effective management of these adverse effects.

2.5. Other Toxicities. Besides the toxicities mentioned above,
there are some others as follows: (1) Immunosuppression:
Immunosuppressive pretreating to the recipients prior to T-
cell infusion is associated with much greater antitumor effi-
cacy [44]. Unfortunately, the lymphodepleting and nonmye-
loablative regimen comes along with the well-known
toxicities of anemia, coagulopathy, and neutropenic sepsis.
The mortality of this toxicity is approximately 1% and consti-
tutes the major fatal risk of adoptive T-cell therapy in the
National Cancer Institute Surgery Branch experience [45,
46]. (2) Immunogenicity: The majority of the antigen recog-
nition region used in a genetically modified T cell is derived
from mouse mAb [47], of which the foreign potential im-
munogenicity may lead to severe anaphylaxis [48–50]
(Figure 1(f)). The mesothelin-specific CAR T cell had been
reported to cause severe cardiac dysfunction [51], which
was ultimately attributed to the formation of anti-mouse
antibody triggered by allergic reaction. Therefore, diligent
surveillance, prompt recognition, and immediate treatment
must be adhered to, to control this life-threatening toxicity,
whenever possible, and especially, if repeated dosing is
planned, humanizing scFvs rather than mouse mAbs should
be used [52]. (3) Genotoxicity: Integrating viral vectors used
to facilitate the stable expression in primary T cells may
pose a potential risk of oncogenic insertional mutagenesis,
including the disruption of normal gene expression as
observed in the therapy for SCID-X1 on the account of an
uncontrollable LMO2 gene [53, 54] (Figure 1(e)). Though
no such toxicity of vector-induced immortalization, clonal
expansion, or enrichment for integration sites has been
reported in CAR therapy to date [55], it is clearly an impor-
tant consideration for the future when CAR T cells may pre-
vail for the lifetime of the treated patient.

3. Overcoming Strategies of Related Toxicities

In light of the different spectrums of toxicities associated with
the administration of T cells, it is logical to find a fine balance
between tumor elimination and unexpected toxicities. To
achieve this, innovative strategies have been implemented to
offer compelling opportunities, including suicide gene, tar-
geted activation, and other innovative gene therapy strategies.

3.1. Suicide Gene Therapy. To manage unexpected toxicities
or to eliminate transduced T cells after an eradication of the
disease, coexpressing a conditional safety switch is a poten-
tially effective tool. A suicide gene is a gene-encoding mole-
cule, which allows the selective destruction of expressing
cells upon the administration of a nontoxic prodrug and the
elimination of the symptoms of treatment-driven toxicities
(Figure 2); however, the clinical impact on their activation is
unknown at present. The HSV-tk suicide gene has been uti-
lized in most clinical settings, rendering target cells suscepti-
ble to GCV-mediated elimination [56–58] (Figure 2(a)).
While limited by the immunogenicity of viral enzymes
and the long time (several days) to reach full effect [59,
60], it may not be acceptable in the face of toxicities, which
pose immediate threat to live. Alternative safety switches
are based on the well-characterized, targetable surface
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antigen expressed in the transduced T cells, such as CD20
[61, 62] and truncated EGFR [63, 64], allowing eliminating
the modified cells efficiently through complement/antibody-
dependent cellular cytotoxicity (CDC/ADCC) after the
administration of the associated monoclonal antibody
(Figure 2(c)). Despite the preponderance of the system in
nonimmunogenicity and dual-purpose nature of the addi-
tional transgene (which can also be used to measure the
persistence of the transduced T cells), its efficacy and kinet-
ics as a CAR T-cell elimination system have not been tested
in the settings of clinical toxicities.

The inducible caspase 9 (iCasp9)/AP1903 suicide system
is perhaps the most advanced and effective solution, which is
based on the fusion of caspase 9 and a drug-sensitive FK-
modified binding protein [60, 65]. Upon being exposed to
the synthetic molecule AP1903, the fusion protein dimerizes
and leads to the rapid apoptosis of T cells (Figure 2(b)). The
efficacy and safety of iCasp9/AP1903 have been first demon-
strated in allogeneic hematopoietic stem cell transplantation
studies [66, 67]. When the GvHD occurred, AP1903 admin-
istration could eliminate iCasp9-expressing T cells within
30min from the end of AP1903 administration (2 hours of
infusion), followed by the permanent abrogation of symp-
toms without recurrence [68]. This response has also been
replicated in preclinical models using CAR T cells along
with coexpressing iCasp9 [69–71]. However, this represents
the least preferred strategy, since the depletion of the CAR T
cell will also mean abrogating its therapeutic potential, and
the modulated activation of the switch and multiple

administration of CAR T cells are potential strategies to
overcome this issue.

3.2. Targeted Activation

3.2.1. Targeting Two Tumor-Associated Antigens. Consider-
ing the prematurely attenuated therapeutic potential of
suicide genes, there is a considerable interest in developing
T cells whose activation can be controlled through combina-
torial antigen-targeting activation with separated signals.
These include dual targeting CAR strategies in which T cells
are modified to express two CARs with different tumor-
associated antigens to ensure that their activation occurs only
on tumor cells [72–74]. It is achieved by “splitting” the acti-
vation signal and the endocostimulatory signal in different
CAR constructs (Figure 3(a)). Likewise, this has also been
proven in principle for Tan-CARs [75, 76], a single CAR that
has specificity for two antigens owing to the expression of
two tandemly arranged scFvs coupled to the same signaling
domain (Figure 3(b)). Alternatively, if the presentation of
antigens is exclusive to normal tissue, the inclusion of inhib-
itory CARs (iCARs) mediated by the physiological check-
point molecule (PD-1 and CTLA-4) is another approach
[77, 78]. The binding of iCARs bind to antigens found on
normal cells can result in the inhibition of the CAR T-cell
function, allowing a dynamic, self-regulating switch to target
malignant tissue (expressing one antigen) while the normal
tissue is spared [79] (Figure 3(c)). Recently, an novel dual-
receptor AND-gate CAR called synthetic Notch (synNotch)
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Figure 2: Summary of overcoming toxicities by the suicide gene co-expression in T cells. (a) HSV-tk turns the nontoxic prodrug GCV into
GCV-triphosphate, leading to cell death by halting DNA replication. (b) iCasp9 can bind to the small molecule AP1903 and result in
dimerization, which activates the intrinsic apoptotic pathway. (c) Targetable surface antigen expressed in the transduced T cells (e.g., CD20
and truncated EGFR), allowing eliminating the modified cells efficiently through complement/antibody-dependent cellular cytotoxicity
(CDC/ADCC) after administration of the associated monoclonal antibody.
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has been developed in the lab of Wendell Lima, which con-
sists of an engineered antigen-recognition domain towards
an antigen of interest (e.g., CD19 or surface GFP), a Notch
core, and an artificial transcription factor [80, 81]. Upon
ligand recognition by the synNotch receptor, an orthogonal
transcription factor (e.g., TetR-VP64 or Gal4-VP64) is
cleaved from the cytoplasmic tail that regulates a custom
genetic circuit, and the cleaved transcription factor primes
CAR expression. Only when both antigens are present can
it work orthogonally and requires no signaling intermediates,
providinganextraordinaryflexibleway to regulate customized
cascades in a wide variety of applications [82] (Figure 3(d)).
However, the immunogenicity of the nonhuman transcrip-
tion factors remains to be investigated [83].

3.2.2. Switch-Mediated Activation

(1) On-Switch CAR. Overriding strategies by the inclusion of
an “on-off” switch in CAR design enable the precise regula-
tion of the location, duration, and intensity of therapeutic
activities. Wu et al. [84] described an approach that gated cel-
lular functions by clinician-prescribed small molecule inputs,
making a major step. The authors distributed the conven-
tional CAR into two parts by expressing the extracellular
antigen-binding domain separately from the intracellular
signal-transducing domain. Only in the presence of a hetero-
dimerizing small molecule can they conditionally reassemble
(Figure 3(e)). This approach has great potential for clinical
application. Similarly, Juillerat et al. described a strategy to
create a “transient” CAR T cells with a new architecture in
CARs that are directly dimerized at the hinge domain with
the addition of a small molecule. They finally confirmed that
it can offer a basic framework to use alternative split-CARs
and show a more controlled and potentially safer way
towards the development of the engineered CAR T cell
[85]. In summary, both exogenous control behaviors based
on small molecules below can be implemented for the mod-
ified T cell to alter conventional T cells into smart T cells
whose therapeutic behaviors are precise and effective and
subject to user control [86].

(2) Recombinant Antibodies as Switches. With the rapid
development of the bispecific antibodies in cancer immuno-
therapy [87, 88], the titratable recombinant antibody-based
switches also enable the precise control geometry and
stoichiometry of complex formation between the target cells
and T cells. Examples of these switches include TAA-specific
monoclonal antibodies that elicit antitumor activity from Fc-
specific CAR T cells [89] and chemically or enzymatically
modified antibody-hapten conjugates that redirect antihap-
ten CAR T cells [90, 91]. Rodgers et al. reported the tumor
antigen-specific Fab molecule engrafted with a peptide neo-
epitope (PNE) that is bound exclusively by a PNE-specific
switchable CAR T cell [92] (Figure 3(f)), and Kim et al.
demonstrated the redirection of anti-FITC CAR T cells with
a heterobifunctional small-molecule switch, folate-FITC,
which selectively targets folate receptor-overexpressing can-
cers [93]. Overall, these switchable CAR T-cell dosing
regimens could be tuned to provide efficacy comparable

to that of the corresponding conventional CAR T cells target-
ing CD19, characterized by lower cytokine levels and broader
range of antigens targeting. Therefore, this may offer a
method of mitigating CRS, as well as a strategy for targeting
other types of cancer, including solid tumors.

3.3. Other Strategies. In addition to the strategies mentioned
above, it is possible to tune down the intrinsic potency of
genetically targeted T cells by controlling the expression time
or modulating the affinity of TCRs/CARs. The transient
expression of CARs in T cells using nonviral methods (e.g.,
mRNA electroporation [12] and sleeping beauty transposi-
tion [94]) and the stimulation of activation-induced T-cell
inhibitory proteins (e.g., PD-1 [95]) ensure the limited per-
sistence of the redirected T cells; conversely, the regulation
of affinity may be achieved via high-affinity TCR/CAR detec-
tion [96]. A fully human CAR comprised of the human C4
folate receptor-alpha (αFR)-specific scFv has been developed
with lower affinity for αFR protein and less recognition of
normal cells expressing low levels of αFR, which may over-
come the issues of transgene immunogenicity and “on-
target off-tumor” toxicity [97]. However, affinity tuning
may decrease the threshold for CAR T-cell activation, which
may change the therapeutic window of CAR T cells to tissues
that express only high levels of antigen [98].

Besides, directing CAR T-cell delivery on the tumor sites
anatomically may also limit toxicity and enhance therapeutic
efficacy, which may be achieved by intratumoral or local
intralymphatic delivery [99] and/or by engineering CAR T
cells to express receptors of tumor-secreted chemokines
[100, 101]. The “fourth-generation” CAR (or TRUCK) T
cells with inducible release of IL-12 attract and activate
innate immune cells to the targeted tumor lesion, which in
turn eliminate cancer cells not recognized by CAR T cells
[102, 103]. It offers a strategy to locally achieve therapeutic
concentrations freed from systemic toxicity and prevent
tumor relapse by residual cancer cells. Last but not least,
the type of T cells used for adoptive transfer is critical, with
T cells displaying a less differentiated phenotype potentially
delivering improved therapy in vivo [104]. The CAR
expressed in Vα24-invariant natural killer T- (NKT-) cells
can build on the natural antitumor properties of these cells
while their restriction by monomorphic CD1d limits toxicity
[105], and the CD19-transduced T memory stem cells cul-
tured in IL-7 and IL-15 cytokines expanded more efficiently
and showed more potent survival and more powerful antitu-
mor effect in preclinical models [106].

4. Perspectives

Over the last decade, CAR-modified T-cell therapy has pro-
gressed rapidly, and dramatic benefits in patients with refrac-
tory hematological malignancies have formed a powerful
trend in developing this therapy. The unparalleled efficacy
was, however, frequently associated with toxicities that were
not fully anticipated by preclinical studies. As better medical
management of the associated adverse events has been put
into effect and more innovative gene therapy strategies have
been developed, we can expect that the era with improved
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control of toxicities with resulting superior outcomes and
applicability of CAR T-cell approaches is not far away. The
challenge will be to see whether in the next 5–10 years, the
CAR T-cell approach will be more widely applied as the
first-line treatment in a wider array of hematologic malig-
nancies and other neoplasms.
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