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β-amyloid (Aβ) accumulation in the brain is 1 of 2 pathologic hall-
marks of Alzheimer disease (AD), and the spatial distribution of Aβ
has been studied extensively ex vivo. Methods: We applied math-

ematical modeling to Aβ in vivo PET imaging data to investigate
competing theories of Aβ spread in AD. Results: Our results pro-

vided evidence that Aβ accumulation starts in all brain regions si-

multaneously and that its spatiotemporal distribution is due to

heterogeneous regional carrying capacities (regional maximum pos-
sible concentration of Aβ) for the aggregated protein rather than to

longer-term spreading from seed regions. Conclusion: The in vivo

spatiotemporal distribution of Aβ in AD can be mathematically mod-

eled using a logistic growth model in which the Aβ carrying capacity
is heterogeneous across the brain but the exponential growth rate

and time of half maximal Aβ concentration are constant.
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The major constituent of neuritic plaques, which appear to play
a key role in the pathogenesis of Alzheimer disease (AD) (1–3), is
b-amyloid (Ab) (4,5). The spatiotemporal distribution of Ab in AD
has been extensively characterized ex vivo through neuropathologic
studies using Ab immunostaining (6–8). A consistent spatiotempo-
ral distribution is observed with Ab, initially restricted to a small
number of brain regions before becoming widespread later in the
disease (6,8). There are competing hypotheses for the biologic
mechanism causing the evolution of Ab pathology. One hypothesis
is that Ab accumulation is determined by properties of the local
tissue environment (9–12). A second hypothesis is that Ab origi-
nates in a small number of seed regions and, over the duration of the
disease, spreads to other brain regions by means such as prion-like
self-propagation or transynaptic spread (7,13–16).
The in vivo regional Ab concentration can be measured in

humans using PET. Large-cohort cross-sectional studies have

been performed (17,18), but analysis has focused mainly on clas-
sifying the distinct clinical phases of the disease. This approach
has provided relatively little information about the way Ab plaques
accumulate over time. Analysis of longitudinal studies has been
restricted to either short time windows of no more than 2 years
(19–21) or the average deposition across the whole cortex (22).
Thus, despite the large amount of in vivo data collected, the spa-
tiotemporal distribution of Ab has yet to be fully characterized.
The logistic growth model has been used to model the growth

of a wide range of biologic and clinical phenomena, such as the
postglacial expansion of forest trees (23), the in vitro pharmaco-
dynamics of bactericidal kinetics (24), and, most interestingly,
in vitro Ab fibrillation (25). Here, we introduce the logistic growth
model to provide a mathematical description of a sigmoidal in-
crease in Ab concentration over time (Fig. 1),

SUVrðtÞ 5NS1AbðtÞ

5NS1
K

11 e2rðt2T50Þ
; Eq. 1

where t is the time through the accumulation process (a t of
0 corresponds to a time point at which Ab levels are minimal),
SUVr(t) is the PET Ab SUV ratio at time t, Ab(t) is the concen-
tration of Ab at time t, NS is the tracer nonspecific binding, r is the
exponential uninhibited growth rate, T50 is the time of half-maximal
Ab concentration, and K is the carrying capacity.
It is possible to test between the two competing hypotheses for

Ab accumulation by considering whether each of the 4 model
parameters is constant across different brain regions or whether
they are regionally different. A summary of the different logistic
growth models is displayed in Figure 2. If T50 varies between
regions, the model is consistent with longer-term spreading from
seed regions because seed regions would have a lower T50 than
other regions (models shown in gray in Fig. 2). If T50 is constant
across the brain, the model is consistent with local tissue proper-
ties driving the accumulation process (models shown in white in
Fig. 2). Application of statistical model selection criteria allows us
to test between the competing hypotheses.
We took a novel approach to testing between the competing

models of Ab accumulation: we used the whole-cortex Ab profile
derived from the longitudinal study of Jack et al. (in which the
patients did not receive any treatment) (26) to transform a large
cross-sectional study into a chronological dataset by assigning each
subject in the cross-sectional dataset a time through the accumulation
process. This dataset enabled full spatiotemporal modeling of the Ab
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accumulation process in AD, at a population level. Applying the
logistic growth model to in vivo Ab accumulation in this dataset
allowed us to test whether accumulation was best explained by the
longer-term spreading of amyloid from seed regions or by heteroge-
neous regional carrying capacities across brain regions.

MATERIALS AND METHODS

Longitudinal Model of Aβ Accumulation

We introduce a logistic growth model to describe the accumulation

of Ab in the human brain. The model assumes that the rate of change of
Ab concentration is proportional to the product of the current concen-

tration of Ab and a term limiting growth due to the K of the local
environment. The model is defined by the following differential

equation:

dAbðtÞ
dt

5 rAbðtÞ
�
1 2

AbðtÞ
K

�
: Eq. 2

Solving the differential equation yields a function for the concen-
tration of Ab over time:

AbðtÞ 5 K

11 e2rðt2T50Þ: Eq. 3

In vivo PET amyloid tracers are quantified in terms of the SUVr

between a target region containing amyloid and a reference region
containing only background NS, and therefore:

SUVrðtÞ 5 NS1AbðtÞ: Eq. 4

Substituting Equation 3 for Ab(t) into equation 4 yields the bottom

line of Equation 1, which describes the temporal evolution of the in vivo
PET Ab signal over time (with the 4 parameters NS, r, T50, and K).

Imaging Data

A chronological Ab dataset for the AD disease pathway at the

population level was generated by transforming a large cross-sectional
Ab dataset using a population time course for the mean cortical SUVr

obtained in a smaller longitudinal study.

Cross-sectional 18F-AV-45 ((E)-4-(2-(6-(2-(2-(2-18F-fluoroethoxy)ethoxy)

ethoxy)pyridin-3-yl)vinyl)-N-methyl benzeneamine) human Ab PET
imaging data and structural MRI data were obtained from the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI) database (27) for
779 subjects. The ADNI was launched in 2003 as a public–private

partnership, led by Principal Investigator Michael W. Weiner. The pri-
mary goal of ADNI has been to test whether serial MRI, PET, testing of

other biologic markers, and clinical and neuropsychologic assessment
can be combined to measure the progression of mild cognitive impair-

ment and early AD. Up-to-date information can be found online at
www.adni-info.org.

18F-AV-45 Human Ab PET Imaging Data. Each subject underwent a
20-min 18F-AV-45 PET scan 50 min after injection (370 6 37 MBq)

according to the standardized ADNI protocol (28). Three image prepro-
cessing steps were applied to the data before entry into the ADNI

imaging database (http://adni.loni.usc.edu/methods/pet-analysis/). Briefly,
4 late-time 5-min frames were coregistered and averaged. The result-

ing image was converted to a 160 · 160 · 96 voxel static image with
voxel dimension of 1.5 · 1.5 · 1.5 mm. Finally, a gaussian filter of

8 mm in full width at half maximum (corresponding to the lowest-

resolution scanner used in the study) was applied. These primary data
were downloaded from the ADNI database and used in the subsequent

analyses.
T1-Weighted MRI Data. All subjects underwent T1-weighted 1.5-T

structural MRI; the MR images were downloaded from the ADNI
imaging database.

Image Processing

Registration of Images into Stereotactic Space. 18F-AV-45 data
were nonlinearly registered into Montreal Neurological Institute 152

(MNI152) space (29) using DARTEL (30). Initially, the structural MR
images were segmented into gray matter and white matter using

SPM12 and registered to a group-average template. The group-average
template was then registered to MNI152 space. Each subject’s 18F-AV-

45 SUVr image was registered to the corresponding MR image using a

rigid-body registration. Finally, the individual’s DARTEL flow field
and template transformation were applied without modulation, result-

ing in 18F-AV-45 images in MNI152 space. The normalized maps

FIGURE 1. Logistic growth model describing Aβ PET imaging signal

over time as function of PET NS, K, T50, and r.

FIGURE 2. Sixteen logistic growth models of Aβ accumulation with

example curves from 3 distinct brain regions. Models in gray have

regionally different T50s and are consistent with spreading from seed

regions, whereas models in white are consistent with local tissue prop-

erties driving Aβ accumulation process.
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were spatially smoothed (gaussian kernel of 8 mm in full width at half
maximum). Each registration was visually assessed, with the data of

10 subjects being rejected. Therefore, the final dataset used to con-
struct the chronological data contained 769 subjects.

Calculation of SUVr Data. A neuroanatomic atlas (31) containing
90 cortical and subcortical regions, and a gray matter probability atlas in

MNI152 space, were used to calculate SUVr data. SUVr data were
quantified using the gray matter cerebellum as the reference region,

which was defined as the intersection between voxels that are in the
cerebellum region of interest in the neuroantomic atlas and voxels that

have an intensity of over 0.5 in the gray matter probability map. The
mean uptake value for the gray matter cerebellum region of interest was

obtained, and each image was divided by this mean value to generate an
SUVr image for each subject. Finally, the 90 regions of interest were

applied to this image to derive regional SUVr data for each subject.
Finally, an average cortical SUVr was obtained by calculating the mean

SUVr for all 76 cortical regions (weighted by region volume).

Construction of Population-Level Chronological Aβ Data

Jack et al. (26) presented a functional form describing the time
course of mean cortical SUVr in AD by integrating rates of change

of SUVr in a longitudinal study. Demographics for the study are
summarized in Table 1.

Conversion of Functional Form into 18F-AV-45 SUVr Units. The
functional form (kindly provided to us by Clifford Jack (26)) was derived

from longitudinal Ab imaging data using 11C-Pittsburgh compound B
rather than 18F-AV-45. Previous work scanning the same subjects with

both 11C-Pittsburgh compound B and 18F-AV-45 showed that a linear
equation can appropriately convert between the different PET tracers

(32–34): AV-45 SUVr 5 a(Pittsburgh compound B SUVr) 1 b. There-
fore, the 11C-Pittsburgh compound B–derived functional form was

transformed into 18F-AV-45 SUVr units so that the resultant function
ðCortexAV45 SUVrðtÞÞ ranged between the mean of the 2.5th and 97.5th

cortical 18F-AV-45 SUVr percentiles for the cross-sectional ADNI
dataset (a 5 0.72 and b 5 0.02). Cortex

AV45 SUVrðtÞ describes the time

course of 18F-AV-45 mean cortical SUVr in AD.
Timepoint in Chronology of AD.We used Cortex

AV45 SUVrðtÞ to determine

a time in the chronology of AD, t, for each of the 769 subjects in the
cross-sectional study by calculating their mean cortical SUVr and then

finding the value for t from Cortex
AV45 SUVrðtÞ to which that SUVr corre-

sponded in the range 0–30 y. This process generated a chronological

dataset at the population level for the spatiotemporal accumulation of
Ab with data at 769 time points over the 30-y disease cascade.

The calculated times were normally distributed, with a mean of 11.8 y

and an SD of 5.12 y. It was verified that there was no relationship
between the calculated t and SUV in the cerebellum. The test–retest

variability of mean cortical 18F-AV-45 SUVr has been calculated to be
less than 3% (35). This would translate to a variability of 0.68 y in

calculated time through the disease process, for a median SUVr of 1.3.
The coherence of the regional curves in the cross-sectional dataset

(Fig. 3) shows not only that there is a stereotypic temporal accumu-
lation at a global level but also that—relative to this stereotypic tem-

poral accumulation—each region has an accumulation curve that is
consistent across subjects.

Regional Analysis of Aβ Accumulation

The logistic growth model of Ab accumulation (Eq. 1) was then

fitted to the chronological data. To determine whether each of the 4
model parameters was constant across the whole brain or varied by

region, we investigated 16 different models corresponding to all the
permutations of using either global (the parameter is constant across

all brain regions) or local (the parameter varies by region) values for
each of the 4 model parameters. The full set of models is summarized

in Table 2 and contains between 4 and 360 parameters.
Each model was fitted using a nonlinear trust-region reflective

algorithm implemented in MATLAB (The MathWorks Inc.) that mini-
mized the residual sum of squared errors subject to an Ab(0) of less

than 0.1 (this constraint did not occur for the optimum model). The
Bayesian information criterion (BIC) (36) was used to select the most

parsimonious model, and the posterior probability that each model was
optimum was ascertained from the weights of each model (37–40).

Parametric Image Analysis of Aβ Accumulation

Having identified model 11 (global r and T50; local NS and K) as

optimal on the basis of the regional analysis, we fitted this model at the
voxel level to generate parametric images for NS and K. Parameter

values for r and T50 were fixed from the regional analyses, and the

TABLE 1
Subject Characteristics

Characteristic Jack et al. (26) ADNI

Number 260 769

Median age (y) 79 (range, 70–94) 73 (range, 55–91)

Male patients (n) 162 (62%) 438 (57%)

MCI/AD patients (n) 55 (21%) 558 (73%)

APOE*E4–positive

patients (n)

87 (33%) 342 (44%)

Median MMSE

score

28 (range, 23–30) 28 (range, 19–30)

MCI 5 mild cognitive impairment; MMSE 5 Mini Mental State

Examination.

Data from Jack et al. were combined with data from ADNI to
create cross-sectional dataset.

FIGURE 3. Model fitting of most parsimonious logistic growth model

(model 11) to chronological 18F-AV-45 Aβ PET data in 9 regions. Model

accurately describes data for regions of high (top row), medium (middle

row), and low (bottom row) accumulation. A5 anterior; D5 dorsal; inf 5
inferior.
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individual voxel time course was fitted using a linearization of the

model (supplemental material, available at http://jnm.snmjournals.org).

RESULTS

Chronological Aβ Dataset

A chronological Ab 18F-AV-45 dataset was created in stereo-
tactic space from 769 subjects who ranged from healthy individ-
uals to AD patients. The chronological data exhibited coherent but
different trajectories within individual regions, providing evidence
of a stereotypic spatiotemporal distribution at the population level
(Fig. 3).

Model Selection and Implications

Each of the logistic growth models was fitted to the chronological
in vivo PET data at a regional level to investigate the spatiotemporal
evolution of the Ab signal in the AD process. The 16 logistic growth
models were successfully fitted, and model 11 was identified as the
most parsimonious description of the data as determined by the BIC
model selection criteria (Table 1). The difference in BIC between
model 11 and all the other models was at least 267. Evidence is
considered strong when the difference in BIC is greater than 10 (41).
The posterior probability that model 11 is the best choice was also
high (P . 0.999999). The model accurately describes the time
course of Ab accumulation in all regions (Supplemental Figs. 1
and 2). A selection of 9 regions with different levels of Ab accu-
mulation is displayed in Figure 3, demonstrating the ability of the
model to accurately describe distinct regional time courses.
Model 11 requires that regional values for K and tracer NS

vary. In contrast, T50 and r are constant across brain regions in

this model. This suggests that regional variability in Ab carry-
ing capacities determines the distribution of Ab concentra-
tion, because regions with higher carrying capacities will
accumulate more amyloid over time. These results support
the hypothesis that Ab accumulation is limited by properties
of the local tissue environment. The observation that the data
are best explained by a model with a global T50 provides evi-
dence against the spreading hypothesis, as long-term spread-
ing from seed regions would imply a shorter T50 for seed
regions and therefore require a model (such as model 12) with
a local T50.
The analysis process was also run on 2 additional sets of regions

of interest: a set of 9 regions of interest that are larger and cover the
whole brain, and a parcellation that is restricted to cortical regions.
Model 11 was the optimum model for both these alternative
analyses (Supplemental Tables 2 and 3).
For model 11, the carrying capacity was highest in the anterior

cingulate gyrus, precuneus, and frontal operculum cortex (1.55,
1.50, and 1.46 SUVr units, respectively), intermediate in parts of
the frontal cortex and insular cortex (1.13 and 1.19), and low in the
thalamus and brain stem (0.48 and 0.38). The global T50 was 14.9
y, and the global r was 0.20 y21.

Parametric Imaging of K

The regional variation normally seen in AD was predicted
when model 11 was fitted at the voxel level using the fixed
global values of r (0.20 y21) and T50 (14.9 y) estimated from
the regional analysis. Parametric images were generated for K
and NS (Fig. 4).

TABLE 2
Sixteen Parameterizations of Logistic Growth Model of Aβ Accumulation Used to Analyze Chronological

18F-AV-45 SUVr PET Data at Regional Level

Model K (SUVr) r (y−1) T50 (y) NS Parameters SSQ DBICi

1 Global Global Global Global 4 3,073.7 81,500

2 Global Local Global Global 93 2,273.7 61,600

3 Local Global Global Global 93 1,324.0 24,200

4 Global Global Local Global 93 1,245.7 19,900

5 Global Global Global Local 93 1,147.2 14,200

6 Local Local Global Global 182 1,131.4 14,300

7 Local Global Local Global 182 1,079.3 11,000

8 Global Local Local Global 182 1,070.2 10,400

9 Global Global Local Local 182 1,002.6 5,910

10 Global Local Global Local 182 977.0 4,120

11 Local Global Global Local 182 920.6 0

12 Local Local Local Global 271 1,046.9 9,890

13 Local Global Local Local 271 918.9 865

14 Global Local Local Local 271 918.8 861

15 Local Local Global Local 271 911.0 267

16 Local Local Local Local 360 908.7 1,090

SSQ 5 sum of squared residuals; DBICi 5 difference in BIC between model 11 and all other models.
Ninety cortical and subcortical regions were included, and parameters were either restricted to single value across all regions (global) or

fitted individually for each region (local). DBIC gives measure of parsimony of each model in relation to smallest BIC value. Model 11 (local

K, global r, global T50 and local NS) gives most parsimonious fit to data.
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DISCUSSION

Using a logistic growth model, we have mathematically
modeled with a high degree of accuracy the spatiotemporal
distribution of amyloid in the brain as AD pathology increases.
Our results support the hypothesis that regional accumulation of
Ab originates at the same time, and has the same r, in all regions.
The implication is that the heterogeneous Ab distribution ob-
served in AD is caused by a property of the local tissue environ-
ment rather than by longer-term spreading from seed regions, as
the latter would require different values of r or T50 (e.g., for long-
term spreading, T50 would be expected to be earlier in seed re-
gions). If the T50 differed in different regions, it would have been
impossible to distinguish whether the onset of accumulation oc-
curs at different times in different regions or whether the rate of
accumulation differs in different regions. Both mechanisms would
require a heterogeneous T50 across regions. Because this hetero-
geneity was not found, one can infer that accumulation begins at
the same time and occurs at the same rate in all regions.
Our analysis shows that the spatiotemporal distribution of Ab at

the population level can be accurately modeled using a 4-parameter
logistic growth model, where K and NS vary across the brain but r
and T50 are constant. A model with these characteristics was clearly
identified as the most parsimonious model using the BIC model
selection criteria. Interestingly, this model has previously been shown
to be capable of characterizing the accumulation of Ab in vitro (25).
The current work had some limitations. First, to model the

accumulation of Ab in AD at the population level, we assumed

that there is a consistent spatiotemporal distribution for all sub-
jects within the cross-sectional ADNI cohort, which may be an
oversimplification. However, the clear coherence of individual
trajectories in all brain regions (Supplemental Figs. 1 and 2)
and previous postmortem data (6) provide confidence that this
assumption is reasonable. Second, when creating the cross-
sectional dataset, we assumed that all subjects in the longitudinal
data and in the cross-sectional study were following the same
accumulation trajectory. Table 1 shows demographics for both
studies. Both studies have scans from healthy controls, patients
with mild cognitive impairment and AD patients, and the sub-
jects are well matched on all characteristics apart from the num-
ber of cognitively impaired subjects, which was lower in the
longitudinal study. Third, the outcome measure that we have
considered (SUVr) does not account for brain atrophy during
the 30-y period and the impact that this factor may have on
Ab signal. Studies have shown that the rate of atrophy is greatest
in medial temporal regions: 0.6%/y (SD, 0.7) for healthy con-
trols, increasing to 1.5%/y (SD, 0.7) in AD patients (42). With
these atrophy rates, it is unlikely that atrophy would have a
significant impact on the model identification and conclusions
presented. Further, it has been shown that atrophy occurs after
Ab accumulates in AD (43); therefore, atrophy is not likely to
affect our result in this analysis. In the future, it will be important
to further investigate the temporal relationship between regional
Ab accumulation and atrophy.
Spatiotemporal modeling of longitudinal data with the logistic

growth model introduced here could have much wider utility. The
trajectory of Ab accumulation in dementias and neurodegenera-
tive diseases with different patterns of Ab needs to be investigated
to ascertain whether the temporal process is the same but the
topography driven by different regional carrying capacities or
whether the accumulation process is actually different.

CONCLUSION

The in vivo spatiotemporal distribution of Ab in AD can be
mathematically modeled using a logistic growth model in which
the Ab K is heterogeneous across the brain but r and T50 are
constant. This finding suggests that the heterogeneous Ab accu-
mulation in AD results from different regional carrying capacities
rather than from longer-term spreading from a small number of
seed regions.
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