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Abstract
Most epigenome-wide association studies to date have been conducted in blood. However, metabolic syndrome is mediated
by a dysregulation of adiposity and therefore it is critical to study adipose tissue in order to understand the effects of this syn-
drome on epigenomes. To determine if natural variation in DNA methylation was associated with metabolic syndrome traits,
we profiled global methylation levels in subcutaneous abdominal adipose tissue. We measured association between 32 clini-
cal traits related to diabetes and obesity in 201 people from the Metabolic Syndrome in Men cohort. We performed
epigenome-wide association studies between DNA methylation levels and traits, and identified associations for 13 clinical
traits in 21 loci. We prioritized candidate genes in these loci using expression quantitative trait loci, and identified 18 high
confidence candidate genes, including known and novel genes associated with diabetes and obesity traits. Using methylation
deconvolution, we examined which cell types may be mediating the associations, and concluded that most of the loci we
identified were specific to adipocytes. We determined whether the abundance of cell types varies with metabolic traits, and
found that macrophages increased in abundance with the severity of metabolic syndrome traits. Finally, we developed a DNA
methylation-based biomarker to assess type 2 diabetes risk in adipose tissue. In conclusion, our results demonstrate that pro-
filing DNA methylation in adipose tissue is a powerful tool for understanding the molecular effects of metabolic syndrome on
adipose tissue, and can be used in conjunction with traditional genetic analyses to further characterize this disorder.
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Introduction
Metabolic syndrome traits such as obesity, dyslipidemia, insulin
resistance and hypertension underlie the common forms of
atherosclerosis, type 2 diabetes (T2D) and heart failure, which
together account for the majority of deaths in Western popula-
tions. Metabolic syndrome affects 44% of adults over the age of
50 in the United States, and people affected with metabolic syn-
drome have higher risk of heart attacks, diabetes and stroke (1).
Numerous studies have investigated the genetic basis of meta-
bolic syndrome traits such as diabetes (2), and accumulating ev-
idence suggests that epigenetics is associated with these
phenotypes (3,4).

Methylation of DNA cytosine bases is evolutionarily con-
served and plays important roles in development, cell differen-
tiation, imprinting, X-chromosome inactivation and regulation
of gene expression. Aberrant DNA methylation in mammals is
associated with both rare and complex traits including cancer,
aging (5) and imprinting disorders such as Prader–Willi syn-
drome. Recent studies have demonstrated that much like ge-
nome sequence variation, DNA methylation is variable among
individuals in human (6), plant (7) and mouse (8) populations.
Moreover, differences in DNA methylation of cytosines are in
part heritable and controlled by genetics both in cis and in trans.
However, sex and environmental factors such as smoking and
diet can also influence DNA methylation differences, leading to
changes in methylation levels over an individual’s lifetime (9).

DNA methylation states have been shown to be associated
with biological processes underlying metabolic syndrome, in-
cluding obesity, hypertension and diabetes (10). Environment-
induced changes in DNA methylation have also been associated
with fetal origins of adult disease (11), and alterations in mater-
nal diet during pregnancy can affect the methylation levels of
the placenta, inducing transcriptional changes in key metabolic
regulatory genes (12,13). Recent studies have also shown that
diet-induced obesity in adults affects methylation of obesogenic
genes such as leptin (14), SCD1 (15) and LPK (16).

Similar to genome-wide association studies (GWAS), epige-
nome-wide association studies (EWAS) aim to identify candi-
date genes for traits by using epigenetic factors instead of SNP
genotypes in the association model. EWAS have recently identi-
fied associations for gene expression and protein levels in hu-
mans (6), and complex traits such as bone mineral density,
obesity and insulin resistance in mice (17). However, to date,
most EWAS studies have been carried out in blood, which is the
tissue that is most readily collected for large-scale studies in
humans.

By contrast, in this study we examined the association of
DNA methylation with metabolic traits in humans using adi-
pose tissue samples from the Metabolic Syndrome in Men
(METSIM) cohort. Metabolic syndrome is characterized by a
clustering of three or more of the following conditions: elevated
blood pressure, elevated serum triglycerides, elevated blood
sugar, low HDL levels and abdominal obesity. As adipose is
known to be a central organ in metabolic syndrome manifesta-
tion, adipose tissue should be one of the most relevant for defin-
ing and studying metabolic syndrome traits (18). The METSIM
cohort has been thoroughly characterized for longitudinal clini-
cal data of metabolic traits including a three-point oral glucose
tolerance test (OGTT), cardiovascular disorders, diabetes com-
plications, drug and diet questionnaire, as well as high-density
genotyping and genome-wide expression in adipose (19,20). We
performed EWAS on clinical traits using reduced representation
bisulfite sequencing (RRBS) data and identified 51 significant

associations for metabolic syndrome traits, corresponding to 21
loci. These associations include previously known genes, FASN
(21–23) and RXRA (24–26), as well as loci harboring 22 new candi-
date genes for diabetes and obesity in humans. We identify the
types of cells that are likely to be mediating these associations,
and conclude that adipocytes are involved. We also examine
the abundance of cell types and show that macrophages in-
crease with the severity of metabolic syndrome traits. Finally,
we developed a biomarker to assess T2D status in adipose tis-
sue. Our results demonstrate that DNA methylation profiling is
both useful and complementary to GWAS for characterizing the
molecular and cellular basis of metabolic syndrome.

Results
METSIM cohort

The METSIM cohort consists of 10 197 men from Kuopio Finland
between 45 and 73 years of age. Laakso and colleagues (20) have
characterized this cohort for numerous clinical traits involved
in diabetes and obesity, and genome-wide expression levels in
adipose tissue biopsies (19). In this study, we examined 32 clini-
cal traits related to metabolic syndrome (Supplementary
Material, Table S1), adipose tissue expression levels using mi-
croarrays and DNA methylation profiles from adipose tissue bi-
opsies in 201 individuals from the METSIM cohort.

DNA methylation of adipose biopsies

To examine methylation patterns in the METSIM cohort we con-
structed RRBS libraries from adipose tissue biopsies, corre-
sponding to 228 individuals. The sequences obtained from RRBS
libraries are enriched in genes and CpG islands, and cover 4.6
million CpGs out of the �30 million CpGs in the human genome
(�15%). We sequenced the libraries using the Illumina HiSeq
platform and obtained on an average of 34.3 6 6.7 million reads
per sample. We aligned the data to the human genome using
BSMAP (27) and obtained on an average of 21.9 6 4.6 million
uniquely aligned reads per sample (Supplementary Material,
Fig. S1A), corresponding to 64% average mappability
(Supplementary Material, Fig. S1B), and 19� average coverage
(Supplementary Material, Fig. S1B). We focused our analyses on
CpGs, since CHG and CHH (H¼A, C or T) methylation in mam-
mals is on an average of only 1–2%, which makes it difficult to
detect significant variation in our samples (17,28). We and
others have previously validated RRBS data relative to tradi-
tional bisulfite sequencing by cloning DNA fragments into bac-
terial colonies followed by Sanger sequencing and found a high
degree of concordance between RRBS and traditional bisulfite
sequencing results in mice (8,12) and humans (29). RRBS shows
limited overlap with the Illumina 450k arrays, a small study
(n¼ 11) found an overlap between 24 000 and 120 000 CpG sites
(30).

We filtered our dataset for CpGs with at least 10� coverage,
and present in at least 75% of the samples, corresponding to
2 320 297 CpGs. However, the methylation state of individual
CpGs may be subject to stochastic variation or measurement er-
ror, and we observed a single or a few outlier samples with
methylation levels that are very different from the rest of the
population (Supplementary Material, Fig. S1C). This variability
is likely to lead to spurious associations between methylation
and traits, and we observed that was indeed the case when we
performed EWAS using individual CpGs. In contrast to individ-
ual CpGs, the methylation level of a CpG methylation region
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(a unit comprised of several CpGs) is a much more robust mea-
sure of DNA methylation levels (e.g. see Supplementary
Material, Fig. S1D). Methylation regions are likely a more biologi-
cally relevant genomic unit than individual CpGs, and methyla-
tion levels of proximal CpGs tend to be correlated over
distances of a few hundred bases to 1 kb, roughly the typical
size of CpG islands (31). Therefore, we defined 149 191 methyla-
tion regions, where each region is defined as the average meth-
ylation of multiple CpGs that are near each other and highly
correlated. We require that a region have a minimum of 2 CpGs
whose methylation is correlated (Pearson’s r>¼ 0.9), and the re-
gion has a maximum size of 3 kb. The distribution of methyla-
tion levels for these regions is shown in Supplementary
Material, Figure S1E, with average methylation levels of 58.4% 6

4.7. The range of methylation across all individuals can vary be-
tween 0 and 100%. The average range was 33% for individual
CpGs, and 25% for methylation regions (Supplementary
Material, Fig. S1F). These regions are located throughout the ge-
nome with no major gaps in coverage, with the exception of
centromeric and acrocentric regions, and in the y-chromosome
where there was minimal coverage (Supplementary Material,
Fig. S2).

EWAS

We performed EWAS between CpG methylation regions and 32
clinical traits related to obesity and diabetes, including body
weight, body mass index (BMI), body fat percentage, OGTT, glu-
cose and insulin measurements (Supplementary Material, Table
S1). All clinical traits were transformed using inverse normal
transformation (see Materials and Methods), as is common
practice for GWAS of quantitative traits (32). We used the linear
mixed-model package pyLMM to determine associations be-
tween DNA methylation patterns and phenotypes. Others and
we have previously demonstrated that this approach corrects
for spurious associations due to population structure (17,33)
and tissue heterogeneity (34). Associations were considered sig-
nificant if the P-value for the association was below 1 � 10�7,
based on the Bonferroni correction for the number of CpG re-
gions tested.

In total, we found 51 significant associations, corresponding
to 21 distinct methylation loci and 15 unique phenotypes (Fig. 1
and Table 1) where the P-value was below 1 � 10�7. Of the 21
distinct loci, 15 methylation loci were intragenic, and 6 loci
were intergenic. The distance between intergenic loci and
nearby flanking genes ranged between 23 and 440 kb. Candidate
genes listed for each association in Table 1 correspond to the
gene itself for intragenic associations, and the two nearest
flanking genes by distance for intergenic associations, with the
distance between the locus and each flanking gene listed for
intergenic associations (Table 1). Figure 1 summarizes the geno-
mic distribution of all EWAS hits, where each dot represents an
association between a phenotype and a methylation region.

Some may argue that a significance threshold of 1 � 10�7 is
insufficiently low, since we tested for 32 traits. Of the 51 associ-
ations described above, 26 associations would remain signifi-
cant using a Bonferroni correction (P< 1 � 10�8) which accounts
for both CpG regions and the 32 traits. However, we believe the
additional Bonferroni correction for 32 traits would be too strin-
gent given that several of the traits are not independent, for ex-
ample BMI and fat mass, or plasma insulin and glucose levels.
Alternatively, 40 associations would remain significant at the
commonly used GWAS significance threshold (P< 5 � 10�8).

We found no evidence of inflation in our EWAS results,
where the inflation factor lambda was on an average of 0.99,
and maximum of 1.01 (Table 1). Sample EWAS P-value distribu-
tions and qq plots are shown in Supplementary Material, Figure
S3A–C.

Candidate genes

We initially identified a total of 24 candidate genes and non-
coding RNAs by proximity to an EWAS signal (Table 1). To priori-
tize candidate genes, we examined adipose expression associa-
tions from 770 individuals of the METSIM cohort previously
published by our laboratories (19,35). We asked if there were sig-
nificant expression quantitative trait loci that overlapped with
the methylation loci identified in the EWAS. We narrowed down
the candidate gene list from 24 to 18 (75%) high-confidence can-
didate genes that had significant cis- expression quantitative
trait loci (eQTL) in adipose tissue samples from the METSIM co-
hort (Table 1). The cis-eQTL were significant for the candidate
gene reported.

We identified 3 loci where multiple clinical traits mapped to
the same methylation region. These loci include chromosome
17 at the FASN gene (Fig. 2A and B), in chromosome 2 near
SLC1A4, and in chromosome 5 near CPEB4 (Fig. 1 and Table 1).
The FASN gene has a cis-eQTL (P¼ 9.3 � 10�10, Fig. 2C), suggest-
ing that genetic variation in the population affects expression
levels of this gene. One of the traits associated with this locus is
BMI, and we observed a positive correlation between methyla-
tion levels in the FASN locus and BMI (Fig. 2D). Remarkably, the
observed correlation of 0.4 suggests that the methylation of
FASN alone is able to capture 16% of the variation in BMI ob-
served in our cohort. Moreover, we also observed an inverse cor-
relation between methylation and FASN expression in adipose
tissue biopsies (Fig. 2E), and an inverse correlation between
FASN expression and BMI (Fig. 2F).

A second locus is located upstream of SLC1A4 and was asso-
ciated with waist circumference, lean mass, fat mass, plasma
insulin levels, BMI, and indices of insulin resistance and insulin
sensitivity MATSUDA, and HOMAIR (Fig. 3A and B). SLC1A4 has
a cis-eQTL (P¼ 1.6 � 10�10, Fig. 3C), and we observed an inverse
correlation between methylation at this locus and the insulin
resistance index HOMAIR (Fig. 3D), an inverse correlation be-
tween methylation and expression of SLC1A4 (Fig. 3E), and a
positive correlation between SLC1A4 expression and HOMAIR
(Fig. 3F). A third locus is located upstream of CPEB4, and was as-
sociated with basal plasma insulin levels, OGTT plasma insulin
and the indices of insulin resistance and insulin sensitivity
MATSUDA, and HOMAIR (Table 1). A cis-eQTL for CPEB4 expres-
sion in adipose tissue biopsies (P¼ 2.4 � 10�174) makes this gene
strong candidate gene for this locus.

Cell-type decomposition of adipose tissue

Whenever we examine molecular phenotypes such as DNA
methylation and gene expression in tissues, the question arises,
what cell-types within the tissue are responsible for the signal
we observe? We know that subcutaneous adipose tissue is com-
posed primarily of adipocytes, but also contains endothelial
cells and immune cells such as resident and infiltrating macro-
phages. Moreover, we know that obese individuals show in-
creased macrophage content in their adipose tissue, and hence
that heterogeneity in people’s phenotypes can influence cell-
type composition in the adipose tissue biopsies (36). To examine
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macrophage content in the adipose tissue biopsies, we exam-
ined expression levels of genes expressed in adipocytes, namely
PPARG, CFD, ADIPOQ, FABP4, CIDEC, LEP and TNMD, and genes
highly expressed in macrophages including TLR1, TLR2, TLR3,
TLR4, ABCG, IL10 and TNF. We found high expression levels of
adipocyte-specific genes and low expression of macrophage-
specific genes (Supplementary Material, Fig. S3D). These results

suggest that there is minimal macrophage content in the adi-
pose biopsies. However, the genes selected may not fully reflect
the transcriptome of adipocytes and macrophages, or additional
cell-types that may be present in adipose tissue.

To further explore the contribution of different cell-types to
the METSIM adipose tissue biopsies, we performed cell-type
deconvolution using BS-seq methylation data from our samples

Figure 1. Epigenome-wide association of metabolic clinical traits. Association between DNA CpG methylation and clinical traits. (A) “PheWAS” plot showing association

of each of the methylation loci (Met 1–21) and the clinical traits. The genomic location of the CpG is on the x-axis and the association significance is on the y-axis.

Different colors represent different traits. (B) The effect size for each association shown in (A). (C) For each methylation locus on the x-axis, the range of methylation

across individuals in the population is shown on the y-axis.
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and from multiple reference cell types including adipocytes, en-
dothelial cells, macrophages, neutrophils, NK-, T- and B-cells.
Using this approach, we can determine the relative content of
different cell types by comparing DNA methylation at cell-
specific methylation markers in our test samples, to DNA meth-
ylation signatures derived from purified cell types (see Materials
and Methods). Consistent with our previous analysis of gene ex-
pression in adipose- and macrophage-specific genes, we found
that the highest cell type represented in our adipose biopsies

was indeed adipocyte (Fig. 4A), but we also found evidence of
macrophage and neutrophil content.

Since highly expressed genes are often correlated with lower
methylation levels in their promoters, we hypothesize that if
our genes with significant associations with metabolic syn-
drome are expressed in adipose tissue, they will also have lower
methylation levels in the cell types in which they are expressed.
When we examine DNA methylation levels in CpG regions asso-
ciated with traits in our EWAS, we find that adipocytes tend to

Figure 2. FASN is associated with multiple clinical traits. (A) Manhattan plot showing EWAS results for BMI. Each dot represents a CpG region with the genomic location

of each CpG region on the x-axis and chromosomes shown in alternating colors. The association significance is on the y-axis and significant hits are shown as red dots.

(B) Association results for multiple phenotypes near the FASN locus. Each dot represents a different association to a CpG region and different colored points represent

distinct clinical traits. The genomic location of each CpG region is on the x-axis and the association significance is on the y-axis. Red vertical bars denote the transcrip-

tion start and end of FASN. The dotted significance threshold line is drawn at 5 � 10�8. (C) cis-eQTL results for FASN expression in adipose tissue biopsies. Each dot rep-

resents a SNP. The genomic location of each SNP is on the x-axis and the association significance is on the y-axis. Significant SNPs are shown as red dots. Red vertical

bars denote the transcription start and end of FASN. The dotted significance threshold line is drawn at 5 � 10�8. (D–F) Each point represents an individual in the cohort,

showing correlation between (D) methylation levels for the peak associated CpG region and BMI, (E) methylation levels for the peak CpG region and expression of FASN

and (F) expression of FASN and BMI.
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have lower methylation levels at these loci, relative to other cell
types, suggesting that many of them may be specific to adipo-
cytes. However, two associated loci at RXRA and RAP1GAP2
genes also show decreased methylation levels in macrophages
and neutrophils, suggesting that DNA methylation at these loci
may be derived from macrophages and/or neutrophils.

Finally, although the relative content of cell types such as
macrophages may be small, they can still contribute to expres-
sion and methylation levels, and to clinical phenotypes. We
studied the correlation between the cell-type content and clini-
cal traits across all individuals, and found that macrophage con-
tent was positively correlated with the clinical traits associated
in our EWAS (Fig. 4C). These results support the notion that

both adipocytes and macrophages contribute to DNA methyla-
tion signatures, and to associations between DNA methylation
and clinical traits. The correlation between neutrophil content
and traits is minimal, suggesting that methylation levels de-
rived from neutrophils are potentially derived from blood con-
tamination during collection of biopsies.

Chormatin states at candidate loci

We used the Roadmap (37) and RegulomeDB databases to exam-
ine chromatin marks and chromatin states in adipocytes or adi-
pose tissue in each of the EWAS loci. The chromatin marks

Figure 3. SLC1A4 is associated with multiple clinical traits. (A) Manhattan plot showing EWAS results for insulin resistance index HOMAIR. Each dot is a CpG region, the

genomic location of each CpG region is on the x-axis with chromosomes shown in alternating colors, the association significance is on the y-axis, significant hits are

shown as red dots. (B) Association results for multiple phenotypes near the SLC1A4 locus. Each dot represents a different association to a CpG region, different colored

points represent distinct clinical traits, the genomic location of each CpG region is on the x-axis, the association significance is on the y-axis. Red vertical bars denote

the transcription start and end of SLC1A4. The dotted significance threshold line is drawn at 5 � 10�8. (C) cis-eQTL results for SLC1A4 expression in adipose tissue biop-

sies. Each dot represents a SNP, the genomic location of each SNP is on the x-axis, the association significance is on the y-axis, significant SNPs are shown as red dots.

Red vertical bars denote the transcription start and end of SLC1A4. The dotted significance threshold line is drawn at 5 � 10�8. (D–F) Each point represents an individual

in the cohort, showing correlation between (D) methylation levels for the peak associated CpG region and HOMAIR, (E) methylation levels for the peak CpG region and

expression of SLC1A4 and (F) expression of SLC1A4 and HOMAIR.
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found in each locus are summarized in Supplementary
Material, Figure S4. The sites group into three clusters. The first
represents regions of active transcription that contain
H3K36me3. The third cluster likely contains enhancers, which
are marked by H4K4me1 and H3K27ac. The second cluster is
more heterogeneous and has generally fewer marks, with a few
sites showing no marks at all.

DNA methylation biomarker for type 2 diabetes

DNA methylation is a useful biomarker for assessing the age
(38,39) and BMI (4) of an individual. We asked whether we could
develop a biomarker for adipose tissue that could be used to as-
sess a metabolic health outcome, T2D. To this end, we first de-
veloped an aggregate measure of T2D by combining multiple

Figure 4. Cell-type deconvolution. (A) Sample composition by cell type is shown for different cell types (columns), across all METSIM samples (rows). The color in the

heatmap represents the relative fraction that each cell-type contributes to the total in each sample. (B) For each methylation locus (rows), the methylation levels in

METSIM samples or for different cell types (columns) are shown in the heatmap, the color represents the methylation levels. (C) Correlation between cell-type composi-

tion and clinical trait. Traits are plotted in rows, and cell types are plotted in columns. The color in the heatmap represents Spearman correlation between the fractions

derived from each cell type and a clinical trait for and an individual, across all individuals in the METSIM samples.
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clinical traits measured in the METSIM cohort using principal
component analysis. Briefly, we split phenotype data into train-
ing (n¼ 6103) and testing (n¼ 4069) sets. We selected traits for
inclusion into the aggregate measure of metabolic health using
a greedy algorithm that considered combinations of features
that produced the largest Welch’s test statistic in the first prin-
cipal component, when comparing healthy individuals to indi-
viduals who had received a T2D diagnosis at baseline
examination in the training dataset. Our final measure consists
of a linear combination of six traits: two measurements of glu-
cose at baseline and at 2 hours during an OGTT, a binary mea-
sure of elevated blood glucose, two measurements of urine
albumin levels at the start and end of collection and one mea-
surement of LDL levels (Table 2). We decomposed the testing
data using the trained linear combination of the six selected
features.

This first principal component allows us to effectively segre-
gate individuals by T2D status as baseline (Fig. 5A). A follow-up
examination was conducted on METSIM participants an average
of 53.2 months (std¼ 12.6) after the baseline examination. This
allows us to identify a subpopulation that was healthy at base-
line but develops T2D at follow-up. Based on the PC1 score this
group has baseline levels that are intermediate between the
healthy and T2D group (Fig. 5A). This suggests that our ap-
proach is also able to detect individuals at risk of developing
T2D. Additionally, the first principal component outperforms
individual metabolic metrics commonly used for diagnosis of
T2D (40) in the classification of T2D status at baseline or follow-
up examination (Fig. 5B). These results suggest that PC1 is a use-
ful metric for assessing risk of developing T2D.

Finally, we asked whether we could predict the value of PC1
using DNA methylation, in order to develop a biomarker to as-
sess T2D risk. We split methylation data into a training set
(n¼ 213) and a testing set (n¼ 15) ran the model separately three
times. We used randomized lasso to select CpG sites used to
generate a linear model that predicts the PC1 value of each indi-
vidual, and selected 24 CpG sites across the runs
(Supplementary File). We used a 5-fold cross-validation ap-
proach to fit a model with the training data. We measured the
accuracy of this approach using the testing data across three
separate runs, and found that the average R-squared between
our predicted and measured PC1 values was 0.4034.

This suggests that using a subset of CpG sites measured in
adipose tissue we are able to predict the risk of developing
diabetes.

Discussion
In this study, we utilized natural variation in DNA methylation
in the adipose tissue of a human population to explore the rela-
tionship between DNA methylation and complex clinical traits

associated with metabolic syndrome. We chose to focus our
analysis on adipose tissue, as it is believed to be the central tis-
sue mediating metabolic syndrome traits. While metabolic syn-
drome surely involves a complex interplay between adipose
tissue, liver and immune cells, it is likely that adipose tissue
undergoes the most dramatic epigenetic changes during the ad-
vancement of metabolic syndrome. In fact, previous studies
have shown that adipose tissue has significant epigenetic differ-
ences between lean and obese individuals (41).

Using epigenome-wide analysis we identified 21 novel asso-
ciations for diabetes and obesity phenotypes, corresponding to
24 candidate genes. We further narrowed our candidates to 18
high-confidence candidate genes based on presence of cis-eQTL
for these genes in adipose tissue (Table 1). Our results demon-
strate the power of EWAS to identify significant associations for
metabolic traits in humans using only 201 individuals, and
highlight how epigenetic factors such as DNA methylation
could be considered in conjunction with genetic variation to
elucidate the complex cellular mechanisms that ultimately lead
to observable phenotypes.

We found three loci where multiple clinical traits mapped to
the same methylation region and associated gene, SLC1A4 on
chromosome 2 (Fig. 3), CPEB4 on chromosome 5 (Table 1) and
FASN on chromosome 17 (Fig. 2). FASN is a known regulator of
fatty acid metabolism (42), and its expression is associated with
mature adipocytes replete with the downstream products of
FASN. We observed that DNA methylation in the FASN gene
was correlated with multiple metabolic syndrome clinical traits.
Remarkably, we show that the variation in DNA methylation
levels of FASN capture approximately 16% of the variation of
metabolic traits such as BMI (Fig. 2D), a significant portion of the
variation in the trait in our population.

The mechanisms by which metabolic syndrome traits affect
methylation levels are still incompletely understood. While
transcriptional levels of FASN and other genes likely respond
quickly to insulin release, it is well established that, in contrast,
DNA methylation levels are very stable, and change on a much
slower timescale. We expect that methylation levels in the body
of a gene change on the timescale of weeks, in response to the
daily changes of insulin signaling. Thus, we hypothesize that
DNA methylation levels at or near genes may reflect the history
of insulin signaling during the previous weeks, and are thus ro-
bust markers for the average physiological state of the individ-
uals. We observed that the expression of FASN decreases with
increasing obesity, in agreement with previous multiple studies
showing that obese individuals have lower insulin sensitivity
(43), leading to lower FASN expression. The FASN regions we
identified in our study are intragenic, and associated with sev-
eral histone marks including H3k36me3, and H3k4me3 and
H3k4me1. These marks are often associated with the bound-
aries of promoters and transcribed regions. Thus, we speculate
that the reduced insulin sensitivity leads to a hypermethylation
of the promoter, which is associated with a decrease in gene
expression.

We also observed that the methylation levels near RXRA are
associated with metabolic traits. RXRA is known to form a com-
plex with PPARG, a master regulator of adipogenesis and adipo-
cytes (44). In contrast to FASN and RXRA, the amino acid
transporter SLC1A4, previously linked to metabolite levels and
atherosclerosis (45), is a novel gene associated with both diabe-
tes and obesity traits. The cytoplasmic polyadenylation ele-
ment-binding protein 4, CPEB4 has been previously associated
with obesity (46), and waist-to-hip ratio (47), but not with

Table 2. PC1 feature contribution

Variance explained¼ 0.295

Feature Contribution
Glucose baseline 0.660
Glucose 120 min 0.054
Elevated blood glucose 0.191
LDL �0.466
Urine albumin baseline 0.402
Urine albumin 60 min �0.367
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diabetes. Here we find that CPEB4 is associated with measures
of insulin sensitivity/insulin resistance.

We found several other novel gene associations such as
LINC01317 which we found to be associated with insulin sensi-
tivity (MATSUDA index) and TPCN1 which was associated with
body weight in our EWAS. In addition, we found Strawberry
Notch Homolog 2 (SBNO2) to be associated with BMI and body
weight in our study, and with BMI in a previous EWAS (4).
SBNO2 regulates inflammatory responses (48), and a Sbno2 mu-
tant mouse model shows impaired osteoclast fusion, osteoblas-
togenesis, osteopetrosis and increased bone mass (49).

As adipose tissue is a heterogeneous tissue that contains ad-
ipocytes, endothelial and immune cells, among others, we
asked whether we could determine which cell types were most
significant in our analyses. We found that most of our signifi-
cantly associated loci were hypomethylated in adipocytes com-
pared with other cell types. This suggested that most of the

methylation variation we observe is likely occurring in adipo-
cytes, which constitute the majority of cells in adipose tissue.
Using a DNA methylation-based deconvolution approach we
also estimated the abundance of each cell type in each individ-
ual. As expected, we found that adipocytes constituted around
80% of the cells in our samples. Intriguingly, however, we ob-
served that the abundance of macrophages varied across indi-
viduals in a manner that was strongly correlated with metabolic
traits. This suggests that obese individuals have higher macro-
phage counts in their adipose tissue compared with lean indi-
viduals, a result that supports pervious observations (36).

In previous studies DNA methylation has been used to de-
velop robust biomarkers for multiple traits such as age (38) and
BMI (4). We therefore asked whether we could develop an accu-
rate biomarker to assess T2D risk from our data. We first aggre-
gated clinical traits to define a metric of metabolic health that is
associated with the risk of developing T2D, by combining

Figure 5. A methylation biomarker to assess T2D. (A) Kernel density estimates of principal component 1 by T2D status at baseline and follow-up examination for

METSIM participants who received follow-up examination in the testing dataset (n¼2422). Healthy individuals had not been diagnosed with T2D at baseline or follow-

up examination, T2D follow-up individuals had not received a T2D diagnosis at baseline but were diagnosed by follow-up examination, and T2D baseline individuals

received a T2D diagnosis before or at baseline examination. (B) A combined T2D feature, PC1, outperforms individual features for classification of diabetes at baseline

or follow-up examination among METSIM participants in the testing dataset who received follow-up examination (n¼2422). (C) Measured and predicted PC1 values for

a single cross-validated regression model fit to 18 CpG sites.
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measures of glucose, LDL and urine albumin. We showed that
this metric stratifies the population into healthy and diabetic
individuals. We also showed that high values of this metric
strongly associated with the development of T2D in follow-up
measurements in the METSIM cohort. Finally, using a limited
set of CpG sites, we developed a model that accurately predicts
the values of this metric. This result suggests that DNA methyl-
ation measurements in adipose tissue can be used to assess the
risk of developing T2D. It is important to note that an adipose
tissue biomarker may not be practical for clinical use as it ne-
cessitates the use of adipose tissue biopsies. Additional work is
required to verify whether the biomarker translates to clinically
relevant tissue types such as blood.

The current study outlines the usefulness of examining epi-
genetics in a disease-relevant tissue, but is constrained by lim-
ited genetic variability of the METSIM cohort. The METSIM
cohort is composed of middle-aged Finnish men, and it is likely
that some of our results will not extend to other ethnic popula-
tions or to female cohorts. Global methylation patterns are
known to differ between males and females in blood (50), and
these sex-specific methylation differences and their relation-
ship with metabolic traits should be explored in future work.
Furthermore, an open question is how the epigenetic profile
varies between multiple tissues under the same physiological
conditions. Comparing DNA methylation data from tissues such
as liver, muscle and visceral adipose may elucidate how these
respond differently to metabolic syndrome. Finally, our study
population was enriched for healthy individuals, future work
should focus on the epigenetic differences between diabetic/in-
sulin insensitive individuals and healthy individuals.

In conclusion, our DNA methylation profiles of adipose tis-
sue allowed us to identify loci that are likely reacting to the met-
abolic state of an individual, but whose modulation is also likely
to affect the individual’s metabolic profile. Our results demon-
strate the usefulness of utilizing population variation in DNA
methylation for identifying genes associated with complex clin-
ical traits. Here, we identified 18 novel candidate genes for met-
abolic syndrome using the adipose tissue of 201 individuals.
None of these loci could be found using GWAS in 152 individ-
uals of the same cohort. Since DNA methylation in a fraction of
CpGs is heritable and regulated by genetics in cis and in trans
(3,17,51), EWAS and GWAS can be used in a complementary
manner to uncover heritable factors contributing to the etiology
of complex traits.

Materials and Methods
Data access

RRBS sequencing data and all EWAS association results can be
obtained from GEO: GSE87893.

Clinical phenotypes on human subjects

Ethics Committee of the Northern Savo Hospital District ap-
proved the study. All participants gave written informed con-
sent. Clinical trait phenotypes for the EWAS study were
collected on 201 individuals from the METSIM cohort (19,20,35).
The population-based METSIM study included 10 197 men, aged
45–73 years, from Kuopio, Finland. After 12 h of fasting, a 2 h
oral 75 g glucose tolerance test was performed and the blood
samples were drawn at 0, 30 and 120 min. Plasma glucose was
measured by enzymatic hexokinase photometric assay
(Konelab System reagents; Thermo Fischer Scientific, Vantaa,

Finland), and insulin and pro-insulin were determined by im-
munoassay (ADVIA Centaur Insulin IRI no. 02230141; Siemens
Medical Solutions Diagnostics, Tarrytown, NY, USA). Plasma
levels of lipids were determined using enzymatic colorimetric
methods (Konelab System reagents, Thermo Fisher Scientific).
Plasma adiponectin was measured with Human Adiponectin
Elisa Kit (Linco Research, St Charles, USA), C-reactive protein
(CRP) with high sensitive assay (Roche Diagnostics GmbH,
Mannheim, Germany) and interleukin 1 receptor agonist (IL1RA)
with immunoassay (ELISA, Quantikine DRA00 Human IL-1RA,
R&D Systems Inc., Minneapolis, USA). Serum creatinine was
measured by the Jaffe kinetic method (Konelab System re-
agents, Thermo Fisher Scientific) and was used to calculate the
glomerular filtration rate (GFR). Height and weight were mea-
sured to the nearest 0.5 cm and 0.1 kg, respectively. Waist cir-
cumference (at the midpoint between the lateral iliac crest and
lowest rib) and hip circumference (at the level of the trochanter
major) were measured to the nearest 0.5 cm. Body composition
was determined by bioelectrical impedance (RJL Systems) in
participants in the supine position. Summary statistics for each
phenotype are shown in Supplementary Material, Table S1. We
then transformed the residuals using rank-based inverse-nor-
mal transformation for downstream analyses. This transforma-
tion involves ranking a given phenotype’s values, transforming
these ranks into quantiles and, converting the resulting quan-
tiles into normal deviates. The goal of this transformation is to
minimize spurious associations due deviations from the under-
lying assumption that data are normally distributed, it is com-
mon practice for GWAS of quantitative traits (32).

Evaluation of insulin sensitivity

We evaluated insulin sensitivity by the Matsuda index and in-
sulin resistance by the HOMA-IR as described previously (20).

RRBS libraries

We prepared genomic DNA from adipose tissue biopsies with
the DNeasy extraction kit (Qiagen, Valencia, CA, USA). We pre-
pared RRBS libraries as described previously (17,52), with minor
modifications. Briefly, we isolated genomic DNA from flash fro-
zen adipose biopsies using a phenol-chloroform extraction, di-
gested 500 ng of DNA with MspI restriction enzyme (NEB,
Ipswich, MA, USA), carried out end-repair/adenylation (NEB)
and ligation with TruSeq barcoded adapters (Illumina, San
Diego, CA, USA). We selected DNA fragments of size range 200–
300 bp with AMPure magnetic beads (Beckman Coulter, Brea,
CA, USA), followed by bisulfite treatment on the DNA (Millipore,
Billerica, MA, USA), and PCR amplification (Bioline, Taunton,
MA, USA). We sequenced the libraries by multiplexing four li-
braries per lane on the Illumina HiSeq2500 sequencer, with 100
bp reads.

Sequence alignment

We aligned the reads with BSMAP to the hg19 human reference
genome (27). We trimmed adapters with Trim Galore! (www.bio
informatics.babraham.ac.uk/projects/trim_galore/), allowed for
up to four mismatches and selected uniquely aligned reads. We
have previously shown that BSMAP performance is comparable
to the BS-Seq aligners BS-Seeker2, and Bsmark in terms of accu-
racy and mappability (53).
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Methylation regions

We filtered aligned data to keep only CpG cytosines with 10�
coverage or more across all samples, and with data coverage in
at least 75% of the samples. This resulted in 2 320 297 CpGs.
From these cytosines, we defined methylation regions grouping
nearby cytosines together in expanding windows using the fol-
lowing rules: (1) We treated each cytosine as a seed cytosine for
a potential methylation region and in order to expand the re-
gion methylation levels were required to be correlated across
the cohort at an R2 >¼ 0.9 for directly adjacent cytosines, (2) ex-
tension of the methylation region from the seed cytosine was
allowed to continue up to 500 bp in either direction from the
seed cytosine, (3) after region extension, only regions with
greater than two cytosines were retained, (4) overlapping or ad-
jacent regions remaining from (3) were then merged, (5) a meth-
ylation region was limited to 3 kb maximum. We chose these
parameters since the majority of CpG islands are less than 3 kb
in size (54). Methylation for resulting regions was calculated as
the average methylation of all included cytosines. The distribu-
tion of region size we observed was a minimum of 3 bp, maxi-
mum of 3 kb and median of 143 bp.

EWAS

We used the linear mixed-model package pyLMM (https://
github.com/nickFurlotte/pylmm; date last accessed March 10,
2018) to test for association and to account for potential popula-
tion structure and relatedness among individuals. This method
was previously described as EMMA (33), and we implemented
the model in python to allow for continuous predictors, such as
CpG methylation levels that vary between 0 and 1, as described
previously (17). We applied the model: y¼ l þ xb þ uþ e, where
l¼ mean, x¼CpG, b¼CpG effect and u¼ random effects due to
relatedness, with Var(u)¼ rg

2K and Var(e)¼ re
2, where K¼ IBS

(identity by state) matrix across all CpG methylation regions.
We computed a restricted maximum likelihood estimate for
rg

2K and re
2, and we performed association based on the esti-

mated variance component with an F-test to test that b does not
equal 0. Associations were considered significant if the P-value
for the association was below 1 � 10�7, based on the Bonferroni
correction for the number of CpG regions tested.

Inflation

We calculated the inflation factor lambda by taking the chi-
squared inverse cumulative distribution function for the me-
dian of the association P-values, with one degree of freedom,
and divided this by the chi-squared probability distribution
function of 0.5 (the median expected P-value by chance) with
one degree of freedom. We plotted qq plots for representative
phenotypes using the qqplot function in Matlab, with a theoreti-
cal uniform distribution with parameters 0, 1.

Adipose expression from human subjects

Expression levels from adipose tissue biopsies were collected on
770 individuals of the METSIM cohort as described previously
(19,35), and 151 of these subjects were also represented in the
current methylation dataset. Total RNA from METSIM partici-
pants was isolated from adipose tissue using the Qiagen
miRNeasy kit, according to the manufacturer’s instructions.
RNA integrity number (RIN) values were assessed with the
Agilent Bioanalyzer 2100 instrument and 770 samples with

RIN> 7.0 were used for transcriptional profiling. Expression pro-
filing using Affymetrix U219 microarray was performed at the
Department of Applied Genomics at Bristol-Myers Squibb ac-
cording to manufacturer’s protocols. The probe sequences were
re-annotated to remove probes that mapped to multiple loca-
tions, contained variants with MAF> 0.01 in the 1000 Genomes
Project European samples, or did not map to known transcripts
based on the RefSeq (version 59) and Ensembl (version 72) data-
bases; 6199 probesets were removed in this filtering step. For
subsequent analyses, we used 43 145 probesets that represent
18 155 unique genes. The microarray image data were processed
using the Affymetrix GCOS algorithm using the robust multiar-
ray (RMA) method to determine the specific hybridizing signal
for each gene.

PEER factor analysis

We corrected RMA-normalized expression levels for each gene
using probabilistic estimation of expression residuals (PEER)
factors (55). PEER factor correction is designed to detect the
maximum number of cis-eQTL. We then transformed the resid-
uals using rank-based inverse-normal transformation. We used
the inverse normal-transformed PEER-processed residuals after
accounting for 35 factors for downstream eQTL mapping.

cis-eQTL in adipose expression

eQTL studies from the adipose biopsies of the METSIM cohort
have been described previously (19). Briefly, gene expression in
770 adipose biopsy samples from the METSIM cohort was mea-
sured with Affymetrix U219 microarray. SNP genotyping was
performed with Illumina OmniExpress genotyping chip and im-
puted based on the Haplotype Reference Consortium reference
panel. Association of gene expression and SNPs were calculated
with FaST-LMM. eQTL were defined as cis if the peak association
had a Pvalue of P< 2.46� 10�4 corresponding to 1% FDR, and if it
was found within 1 Mb on either side of the exon boundaries of
the gene, as described previously (32).

GWAS for methylation loci

We performed GWAS on the same 32 clinical traits, transformed
using inverse normal transformation as described above, and
681 803 genotyped SNPs for 152 METSIM individuals where
we had both genotypes and methylation data. We used a linear
model and the R package MatrixEQTL to perform the association,
and selected associations where the P-value was below 1� 10�7.

Published histone marks

We used the Roadmap ChIP-seq datasets to look for any histone
marks in human adipocyte and adipose tissue samples. We
used the RegulomeDB database to look for evidence of tran-
scription factor footprinting, positional weight matrices (PWM)
and active transcription. We accessed the public datasets at
(http://www.roadmapepigenomics.org/data/; date last accessed
March 10, 2018) and (http://www.regulomedb.org/; date last
accessed March 10, 2018).

Published GWAS hits

Literature evidence for GWAS hits in candidate genes was ob-
tained from the NHGRI GWA Catalog.
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DNA methylation deconvolution

To estimate the methylation contribution of different leuko-
cytes to the adipose tissue, we used cell-specific methylation
markers from DNA methylation signatures across different cell
types. Cell-specific CpG methylation loci were identified from
purified leukocyte (macrophages, neutrophils, B cells, CD4þT
cells, CD8þT cells, NK cells) methylation profiles from the
Blueprint epigenome project (56). Since there was only one puri-
fied adipocyte primary cell line reference available, we also in-
cluded the average methylation profile across all adipose
samples used in this study, which ostensibly consists primarily
of adipocytes. The purified adipocyte cell reference was used as
a filter to select cell type-specific CpG loci that are hypomethy-
lated in both the adipocyte cell reference, and in the mean of
the methylation levels for the 201 adipose samples. We filtered
all cell methylomes to CpG loci that are common between the
reference methylation profiles and the METSIM adipose tissues
samples. To determine cell-specific methylation across all refer-
ences, we first used a sliding window to aggregate the methyla-
tion profiles into regions of CpG loci with similar methylation
(within 40% methylation difference across neighboring CpG
within 500 bp). Regions were selected that were uniquely hypo-
methylated for each cell types to provide 279 cell-specific hypo-
methylated regions. To estimate the proportion of each cell
type within samples, we performed a non-negative least
squares regression (57) on methylation at the cell-specific
regions.

Aggregate measure of metabolic health

The METSIM cohort metabolic phenotype data included 10 197
individuals, and 484 traits. We dropped individuals with a type
1 diabetes (n¼ 25) diagnosis from further analysis, leaving
10 172 individuals. We processed numeric data for downstream
analysis by dropping traits with greater than 10% of data points
missing. We imputed missing values using a k-nearest neigh-
bors (kNN) approach. KNN imputation of phenotype data oc-
curred as follows: (1) neighbors were ranked on Euclidean
distance, and (2) missing values were assigned the average
value of the nearest neighbor (k¼ 5). Following imputation, we
scored phenotype data for normality (scipy.stats.normaltest)
(58,59). We designated the threshold for a normally distributed
trait by randomly simulating normally distributed data of equal
length as the METSIM phenotype data 1000 times, scoring the
random distribution and setting the threshold at the 90th per-
centile score of the simulated distributions. We normalized
traits following a normal distribution (mean¼ 0, STD¼ 1), and
used rank-based inverse normalization (mean¼ 0, STD¼ 1) for
traits from a non-normal distribution.

We manually removed traits directly predictive of T2D sta-
tus, such as family history or metformin consumption.
Following data normalization, we held out 40% of the samples
(n¼ 4069) with phenotype information from feature selection,
including samples with RRBS, for downstream analysis. We
screened features for the remaining 60% of the samples
(n¼ 6103) for incorporation into the meta-trait using random-
ized logistic regression model (60). We evaluated selected fea-
tures on their ability to distinguish between individuals with
and without T2D at baseline using Welch’s t-test. Starting with
the feature that had the highest Welch’s test statistic, we con-
sidered combinations of traits by iterating through all traits that
passed the initial screen, incorporating the trait with the start-
ing trait, performing PCA on the combined traits, scoring the

first principal component using Welch’s t-test, and returning
the set of traits that produced the largest Welch’s test statistic.
We repeated the process until Welch’s test statistic no longer
increased. We selected six features for incorporation into the
meta-trait (Table 2). We decomposed the trait matrix for the
test samples using the trained linear combination of selected
features.

We implemented trait analysis pipelines in Python3.6.1, uti-
lizing scikit-learn-0.18.1 (61), numpy-1.13.1 (62), scipy-0.19.1
(63), pandas-0.20.3 (64), seaborn-0.8.1 (65) and matplotlib-2.0.1
(66) packages.

Metabolic syndrome biomarker model

We pre-processed the methylation matrix for model fitting by
dropping all CpG sites with greater than 10% of data points
missing. We imputed missing values using a kNN sliding win-
dow approach. We replaced individual CpG sites with missing
data with the average value of the 5 nearest neighbors by
Euclidean distance within a 6 Mb window. The resulting matrix
contained 1 633 360 CpG sites. To speed up processing time we
only considered CpG sites with variation greater than 0.05. We
then split the complete methylation matrix into a training set
and a testing set by randomly selecting training samples across
the PC1 distribution. Samples were placed into six equally sized
bins, 95% of samples in each bin were selected for training, re-
sulting in 215 training samples and 17 testing samples. Using
the training dataset, we selected CpG sites using randomized
lasso regression implemented in scikit-learn-0.19.1. To control
for cell-type composition differences between samples when
selecting CpG sites we decomposed the methylation matrix us-
ing PCA, and then reconstructed the methylation matrix with-
out the top three principal components, a method previously
shown to control for cell-type composition (67). We performed
randomized lasso regression for multiple subsets (n¼ 100) com-
posed of 90% of the training samples and selected CpG sites se-
lected in greater than 40% of the runs. Twenty-four CpG sites
were selected across three separate runs. We utilized a 5-fold
cross-validation strategy for model fitting on the selected CpG
sites. The fit model was then used to calculate predicted PC1
values for the held out testing samples. The final model consists
of the average coefficient for each CpG sites and the average in-
tercept across all cross-validated models. We annotated CpG
sites with GREAT-3.0.0 (68) to generate a list of index genes. See
Supplementary File S1 for a list of CpG sites, regression coeffi-
cients for the biomarker model and index genes.

Code repository

Custom code used in data processing and analysis can be found
at https://github.com/NuttyLogic/METSIM_HMG_Code.

Supplementary Material
Supplementary Material is available at HMG online.
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22. Schleinitz, D., Klöting, N., Körner, A., Berndt, J.,
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