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RNA decay plays a major role in regulating gene expression and is tightly networked with
other aspects of gene expression to effectively coordinate post-transcriptional regulation. The
goal of this work is to provide an overview of the major factors and pathways of general
messenger RNA (mRNA) decay in eukaryotic cells, and then discuss the effective interplay of
this cytoplasmic process with the protein synthesis machinery. Given the transcript-specific
and fluid nature ofmRNA stability in response to changing cellular conditions, understanding
the fundamental networking between RNA decay and translation will provide a foundation
for a complete mechanistic understanding of this important aspect of cell biology.

RNA degradation plays a major role in regu-
lating both the quantity and quality of gene

expression in the cell. The abundance of an RNA
transcript is a reflection of both its rate of syn-
thesis and degradation. There are numerous ex-
amples in the literature regarding the regulation
of gene expression associatedwithmajor cellular
responses occurring at the level of differential
RNA stability (Chen and Shyu 2017). In addi-
tion, there is a growing body of evidence to sug-
gest that cross-communication or buffering oc-
curs between transcription and RNA decay that
contributes to the homeostasis of gene expres-
sion (Chavèz et al. 2016). The process of trans-
latingmessenger RNA (mRNA) is also intimate-
ly intertwined with the fate of the transcript
(Radhakrishnan and Green 2016). Thus, under-
standing the interplay or networking between
the RNA decay machinery and other aspects of

gene expression is needed to further elucidate
the depth of regulation that occurs in cells.
The goal of this work is to provide an up-to-
date overview of the factors and mechanisms
of general mRNA decay and then focus on the
interplay of this process with the translational
machinery. An overview of key enzymes and
factors involved in eukaryotic mRNA decay
can be found in Table 1.

THE MAJOR STEPS AND MECHANISMS
OF mRNA DECAY IN EUKARYOTES

Step One: Deadenylation/Removal
of the Poly(A) Tail

Deadenylation is the initial, and often consid-
ered rate-limiting step of the traditional exo-
nucleolytic decay pathways. Deadenylases are
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Table 1. An overview of key enzymes and factors involved in eukaryotic mRNA decay

Protein name Full name Function

Deadenylation
PAN2 Poly(A)-nuclease

deadenylation subunit 2
Enzymatically active subunit of the PAN2/3 complex that is
responsible for the preliminary poly(A) trimming

PAN3 Poly(A)-nuclease
deadenylation subunit 3

Cofactor and regulatory subunit of the PAN2/3 complex that is
responsible for the preliminary poly(A) trimming

CNOT6
(CCR4)

CCR4-NOT complex
subunit 6

30 to 50 exonuclease that is the major catalytically active
component of the CCR4-NOT complex that performs most
of mRNA deadenylation

CNOT1
(NOT1)

CCR4-NOT complex
subunit 1

Scaffolding component of the CCR4-NOT deadenylation
complex

CNOT7
(CAF1/
POP2)

CCR4-NOT complex
subunit 7

Minor deadenylase in the CCR4-NOT complex; its function is
somewhat redundant to CNOT6 (CCR4)

PARN Poly(A)-specific ribonuclease 30 to 50 exoribonuclease that interacts with the 50 cap and
preferentially degrades poly(A) tails

Decapping
DCP2 Decapping protein 2 Catalytically active component of the decapping complex that

removes the 50 mRNA cap through hydrolysis reaction
DCP1 Decapping protein 1 Primary cofactor for DCP2; it enhances hydrolysis activity of

DCP2 and interacts with other proteins to recruit DCP1/2
complex to mRNA substrates

PATL1 (Pat1) PAT1 homolog protein 1 Scaffolding protein in deadenylation-dependent decapping; it
connects decapping and deadenylation machinery

Lsm1-7 Sm-like protein complex Identifies and associates with deadenylated transcripts; it
interacts with PALT1 to recruit the DCP1/2 complex

DDX6 (Dhh1) DEAD-box helicase 6 RNA helicase enzyme that interacts with other decapping
factors and is thought to remodel the transcript to promote
efficient decapping complex assembly

LSM14 (Scd6) Sm-like protein 14 Serve as a scaffold for assembly and activation of DCP1/2
complex

EDC1,2,3 Enhancer of mRNA-
decapping proteins

Serve as a scaffold for assembly and activation of DCP1/2
complex

500000 to 300000 decay
XRN1 50-30 exoribonuclease Major 50 to 30 exoribonuclease that preferentially degrades

RNAs with a 50 monophosphate
300000 to 500000 decay
Exo9 Exosome complex

(9-subunit)
The core of the exosome that consists of nine different protein
subunits

RRP44 Exosome complex
exonuclease RRP44

Catalytically active subunit of the exosome

SKI7 Superkiller protein 7 GTP-binding protein that recruits the exosome to nonpoly(A)
mRNAs; it is involved in several, including NSD, NMD, and
antiviral activity

DCPS Decapping scavenger enzyme Catalyzes the cleavage of the residual 50 cap from short
oligonucleotide sequence following 30 to 50 decay

DIS3L2 DIS3-like exonuclease 2 30 to 50 exoribonuclease that specifically recognizes
polyuridylated RNAs and mediates their degradation

TUT4/7 Terminal uridyltransferase
4/7

Uridyltransferases that mediate terminal uridylation of
mRNAs with short poly(A) tails, thus facilitating their
degradation

Continued
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recruited to RNA substrates by a variety of RNA-
binding proteins (RBPs) and complexes (e.g.,
Du et al. 2016; Stowell et al. 2016; Yamaji et al.
2017), including the translation initiation factor
transporter 4E-T (Nishimura et al. 2015). There
are two enzymatic complexes that carry out
the majority of cytoplasmic deadenylation in
eukaryotes (Wahle and Winkler 2013). The
poly(A) nuclease (PAN) PAN2/PAN3 complex
is thought to be responsible for preliminary
poly(A) trimming (Wolf and Passmore 2014).
PAN2 functions as the catalytically active sub-
unit, whereas PAN3 is critical in recruitment of
PAN2 to the poly(A) tail and efficient poly(A)
tail shortening (Jonas et al. 2014; Schäfer et al.
2014;Wolf et al. 2014). There are two isoforms of
PAN3 (3S and 3L) that can, respectively, activate
or repress PAN2 deadenylation activity (Chen
et al. 2017). Subsequently, the bulk of deadeny-
lation is performed by the CCR4-NOT complex
(Collart and Panasenko 2017). While several
proteins comprise this complex, the three key
proteins appear to be NOT1, CCR4 (CNOT6),
and CAF1/POP2 (CNOT7). NOT1 serves as the
structural backbone of the complex (Basquin
et al. 2012), whereas CCR4 and CAF1/POP2
are the catalytically active deadenylases (Maryati
et al. 2015). Recent evidence suggests that CCR4
and CAF1/POP2 deadenylases can also remove
terminal non-adenosine residues if the complex
is anchored to the RNA substrate by upstream
adenosine tracts (Niinuma et al. 2016). Finally,
in addition to PAN2/PAN3 and CCR4-NOT,
eukaryotic cells also contain a number of addi-

tional deadenylases that can influence poly(A)
tail length (Skeparnias et al. 2017) and play roles
in small RNAbiogenesis. Of these, poly(A) ribo-
nuclease (PARN), the most extensively studied,
can interact with the 50 cap of the mRNA sub-
strate to enhance enzymatic activity/processivity
(Virtanen et al. 2013; Niedzwiecka et al. 2016).
Interestingly, mutations in PARN are associated
with human diseases, including dyskeratosis
congenita, bonemarrow failure, and hypomyeli-
nation (Dhanraj et al. 2015; Mason and Bessler
2015). Additionally, ANGEL1, ANGEL2, and
the circadian rhythm–associated Nocturnin en-
zyme are distant homologs of CCR4 that are
thought to target specific mRNAs for poly(A)
tail shortening (Kojima et al. 2015).

Step Two: Decapping/Removal
of the 50 7mGppp Modification to
Generate a 50 Monophosphate

In addition to a key role in promoting transla-
tion initiation, the 7-methylguanosine (m7G)
cap on mRNAs also serves to protect transcripts
from highly active 50 to 30 exoribonucleases that
are present in both the nucleus and cytoplasm of
eukaryotic cells (Jones et al. 2012). Thus, the
process of decapping is a crucial step in the
decay of many mRNAs, and can be either de-
adenylation-dependent or, in certain cases, de-
adenylation-independent when decay is initi-
ated by alternative mechanisms that do not
involve the poly(A) tail as outlined below. The
majority of decapping activity is thought to be

Table 1. Continued

Protein name Full name Function

Endonucleolytic decay
MCPIP1 Regnase 1/endoribonuclease

ZC3H12A
Endonuclease that facilitates mRNA decay and is linked to
various biological functions, including immune and
inflammatory responses

HRSP12 Heat-responsive protein 12 Protein with endonuclease activity that is involved in activity
and formation of the GMD complex

IRE-1 Inositol-requiring enzyme 1 Endonuclease that targets a series of mRNAs connected to
several cellular processes

RNase L Ribonuclease L or
ribonuclease 4

Inducible endoribonuclease associated with antiviral response

mRNA, Messenger RNA; NSD, nonstop decay; NMD, nonsense-mediated decay; GMD, glucocorticoid receptor-mediated
decay.
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provided by DCP2, but recent work has identi-
fied seven additional NUDIX proteins (e.g.,
NUDT3 and NUDT16) as well as DXO proteins
that act on distinct RNA subsets (Grudzien-No-
galska and Kiledjian 2017) and alternative cap
structures (Jiao et al. 2017). In addition to se-
quence context, reversible methylation of the
adenosine adjacent to the cap can have a large
influence on decapping rates and overall mRNA
stability (Mauer et al. 2017). The well-character-
ized DCP2 enzyme requires several additional
cofactors in vivo to effectivelyaccessmRNAsub-
strates as well as attain an optimally active enzy-
matic conformation (Wurm et al. 2017). Thus,
there is a rather elaborate orchestration involved
in DCP2 RNA targeting/activation. Decapping
cofactors include DCP1, the Lsm1-7 complex,
PATL1 (Pat1), DDX6 (Dhh1), LSM14 (Scd6),
and a set of EDC proteins. The DCP2/DCP1
complex (Valkov et al. 2017) catalyzes hydrolysis
of the cap structure, but generally interacts with
mRNA caps with only weak affinity (Ziemniak
et al. 2016). The Lsm1-7 complex (Wilusz and
Wilusz 2013) associates with the deadenylated
transcript and interacts with PATL1 to promote
DCP1/2 recruitment (Chowdhury et al. 2014).
The Lsm1-7-PAT1 complex can also be usurped
by viruses to promote translation (Jungfleisch
et al. 2015). EDC1, 2, and 3 proteins, as well as
the related LSM14/Scd6 protein, serve as a scaf-
fold for assembly and activation of DCP1/2 en-
zyme (Frommet al. 2012; Charenton et al. 2016).
The RNA helicase DDX6 (Dhh1) is an evolu-
tionarily conserved factor that interacts with
other decapping activators and likely remodels
the transcript for efficient complex assembly
(Sharif et al. 2013). Finally, in addition to this
multifaceted set of factors involved in direct in-
teraction of the decapping complex with RNAs,
numerous RBPs as well as terminal RNA mod-
ifications also play key roles in the initial identi-
fication of mRNAs targeted for decapping.
Terminal uridylation of anmRNA or RNA frag-
ment, for example, can effectively trigger/stim-
ulate decapping (Song and Kiledjian 2007; Riss-
land and Norbury 2009). Finally, the 7 kDa
microprotein NoBody has recently been report-
ed to associate with the decapping complex and
correlates well with mRNA decay processes

(D’Lima et al. 2016). Therefore, in addition to
conventional protein factors, small polypeptides
also appear to play a role in the assembly and
function of the decapping complex.

Step Three (Option 1): 50 to 30

Exoribonucleolytic Decay in the Cytoplasm

XRN1 is the primary 50 to 30 cytoplasmic exo-
nuclease and is well conserved throughout eu-
karyotes (Jones et al. 2012). XRN1 preferentially
degrades RNAs with a 50 monophosphate end—
precisely corresponding to the 50 termini left
following mRNA decapping or most endonu-
cleolytic RNA cleavages. XRN1 is a highly pro-
cessive enzyme that generally can only be stalled
by rather elaborate RNA structures, for example,
three helix junction knot-like structures found
in flavivirus RNAs (Chapman et al. 2014). In-
terestingly, there is growing evidence that XRN1
plays a key role in overall RNA decay and ho-
meostasis of gene expression (Chavèz et al.
2016). Repression of XRN1 by stalling on flavi-
virus structures results in a concomitant repres-
sion of decapping and deadenylation in the in-
fected cell (Moon et al. 2012, 2015). In addition,
buffering effects between mRNA transcription
and degradation rates appear to be mediated by
XRN1 in some fashion (Haimovich et al. 2013;
Sun et al. 2013).

Step Three (Option 2): 30 to 50 Exonucleolytic
Decay in the Cytoplasm

30 to 50 decay in the cytoplasm is performed
primarily by amultiunit complex called the exo-
some (Zinder and Lima 2017). The core of the
exosome (Exo9) consists of nine protein sub-
units that are highly conserved throughout eu-
karyotes, but nucleolytically inactive. Exo9
binds to the catalytically active subunit RRP44
to form the active exosome (Exo10) (Kowalinski
et al. 2016; Zinder et al. 2016). Deadenylation
generates an unprotected 30 end of an mRNA,
which the exosome can interact with to initiate
30 to 50 decay. The exosome is capable of per-
forming specific functions based on association
with different cofactors. For example, the GTP-
binding protein SKI7 (Kowalinski et al. 2015)
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recruits the exosome to mRNAs with abnormal
translation termination, thereby enabling non-
stop decay (NSD) (Graille and Séraphin 2012).
Furthermore, the RNA‐induced silencing com-
plex (RISC) recruits the exosome to degrade the
50 product of Ago2-mediated cleavages (Orban
and Izaurralde 2005). Following 30 to 50 decay,
the m7G cap is removed from the remaining
short oligonucleotide by the scavenger decap-
ping enzyme DCPS (Liu et al. 2008) along with
FHIT/Aph1 (Taverniti and Seraphin 2015).
From a biological perspective, DCPS mutations
have been associated with human neurological
diseases (Ng et al. 2015) and DCPS inhibitors
are being developed as potential therapeutics
for spinal muscular atrophy (Gopalsamy et al.
2017). DCPS has also been implicated in micro-
RNA (miRNA) turnover (Bosse et al. 2013), fur-
ther illustrating the overall importance of this
enzyme and impact on multiple pathways in
cell biology.

In addition to the exosome, 30 to 50 decay of
coding and noncoding RNAs can be accom-
plished by DIS3L2 (Łabno et al. 2016; Pirouz
et al. 2016; Ustianenko et al. 2016). DIS3L2
preferentially recognizes mRNAs with short
poly(U)-tracts at their 30 end that are added by
poly(U) polymerases (PUPs) like TUT4/7 (Vie-
gas et al. 2015). Intriguingly, DIS3L2 has been
linked to apoptosis (Thomas et al. 2015), and
mutations in DIS3L2 are associated with Perl-
man syndrome (Pashler et al. 2016). These ob-
servations further underscore the biological and
developmental importance of this 30-to-50 exor-
ibonuclease.

An Alternative Way to Create
Exoribonuclease-Sensitive mRNAs:
Endonucleolytic Decay

The generation of an accessible 50 monophos-
phate or 30 hydroxyl for an exoribonuclease is
the key step in turnoverof the bodyof themRNA
(Fig. 1). In addition to deadenylation and de-
capping, an appreciation of the extent that en-
doribonucleases contribute to general mRNA
decay has significantly increased over the years.
In addition to the well-characterized cleavage
events that occur during miRNA and small-in-

terfering RNA (siRNA)-mediated RNA inter-
ference (RNAi) (Park and Shin 2014), there are
numerous other endoribonucleases that target
and cleave mRNAs in a regulated fashion for
subsequent exonucleolytic decay. Because en-
doribonuclease activity significantly modulates
the fate of an mRNA, these enzymes are tightly
regulated. In fact, cells contain a cysteine-rich
ribonuclease inhibitor (RNH1) to protect them
from the plethora of unwanted RNase A type
ribonucleases secreted by cells in their environ-
ment (Thomas et al. 2016). Four of the major
endoribonucleases that play significant roles in
the regulation of mRNA stability in mammalian
cells are highlighted below.

MCPIP1/Regnase 1 is a CCCH zinc finger–
containing protein that plays a major role in
regulating cellular mRNA decay, including tran-
scripts encoding components of the immune
system (Uehata and Takeuchi 2017), iron ho-
meostasis (Yoshinaga et al. 2017), and body fat
accumulation (Habacher et al. 2016). Regnase 1
knockout mice develop anemia, severe systemic
inflammation, and produce high amounts of
autoantibodies. In terms of immune regulation,
a key mRNA target of Regnase 1 appears to be
the cytokine interleukin (IL)-6 (Uehata and Ta-
keuchi 2017). Regnase 1 activity is regulated by
phosphorylation, particularly through IκB ki-
nases in response to immune stimulation (Iwa-
saki et al. 2011).

The endoribonuclease HRSP12 plays a ma-
jor role in the formation and activity of the
protein complex that mediates glucocorticoid
receptor-mediated decay (GMD), a recently de-
scribed decay pathway that plays a wide role in
cell biology (Park et al. 2016). Although it is well
known to be a DNA-binding transcription fac-
tor, glucocorticoid receptor also binds in a se-
quence-selective fashion to RNA and recruits
PNCR2 and UPF1 to target the transcript for
decay (Cho et al. 2015).

Finally, recent work has expanded the bio-
logical impact of two well-studied endoribonu-
cleases, IRE-1 and RNase L. In addition to its
contributions to endoplasmic reticulum stress
and the unfolded protein response (Moore and
Hollien 2015), IRE-1 selectively targets a series
of mRNAs and plays a key role in a variety of
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systems, including dendritic cell biology, glu-
cose-responsive insulin secretion, and energy
regulation in obesity (Eletto et al. 2016; Shan
et al. 2017; Tavernier et al. 2017). RNase L, an
inducible endoribonuclease known best for its
role in antiviral responses (Cooper et al. 2015),
also selectively targets cellular mRNAs to influ-
ence overall gene expression (Brennan-Laun
et al. 2014; Rath et al. 2015).

INTERPLAY BETWEEN THE TRANSLATIONAL
AND RNA DECAY MACHINERIES

Introduction/Evidence for Co-Translational
Decay

The definitive function of an mRNA is to pro-
duce protein through translation. Building on
the advances made over the last two decades in

characterizing the pathways of mRNA decay, a
full mechanistic understanding of how mRNA
turnover is regulated and integrated into overall
gene expression is one of the next milestones in
the field. Given the extensive networking that
occurs betweenmany processes in RNA biology,
it is not surprising that the process of translation
is intertwined in several ways with RNA decay.
Thus, in this section, we focus on co-translation-
al mRNA decay (Fig. 2) and its impact on gene
expression.

Numerous early observations suggest that
the translation of an mRNA can affect its deg-
radation rate in mammalian cells. Pioneering
work in the 1980s and early 1990s on a variety
of oncogene-encoding mRNAs, including c-
myc (Dani et al. 1984; Linial et al. 1985; Laird-
Offringa et al. 1990), c-fos (Rahmsdorf et al.
1987), jun (Ryseck et al. 1988), and myb
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Endonucleases

Figure 1. The multiple pathways for exonucleases to gain access to RNAs targeted for degradation. 50-30 exo-
ribonucleases (XRN1) require a 50 monophosphate, whereas 30-50 exoribonucleases (exosome and DIS3L2)
require an accessible 30 hydroxyl. A 50 monophosphate can be generated in a regulated fashion by the process
of decapping, which can be deadenylation (poly(A) tail shortening) dependent or deadenylation independent.
Deadenylation itself generates an accessible 30 hydroxyl for exoribonucleases. Poly(U) polymerases (also called
TUTases) can uridylate the 30 end of RNA targets to increase DIS3L2 exonuclease accessibility. In the 30-50

exonuclease pathway, the scavenger decapping enzyme DCPS acts on short capped oligonucleotides to promote
full degradation. Finally, rather than remodeling the natural 50 and 30 ends of the target mRNA, endoribonu-
cleases, including the RNA-induced silencing complex (RISC) complex of the RNA interference (RNAi) path-
way, can cleave a transcript internally and generate fragments with 50 monophosphate and 30 hydroxyl ends for
exonucleolytic decay.
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(Thompson et al. 1986), indicated that blocking
translation, using small molecule drugs or the
insertion of stem-loop structures in the 50 un-
translated region (UTR) to stop ribosome scan-
ning, resulted in stabilization of these normally
very short-lived mRNAs. The phenomenon was
not limited to oncogene-related transcripts, as
mRNAs encoding growth factors (Aharon and
Schneider 1993), histones (Stimac et al. 1983),
enzymes (Altus and Nagamine 1991), and re-
ceptors (Koeller et al. 1991) could also be stabi-
lized by translational repression. In fact, an early
global analysis using differential phage plaque
hybridization extended the connection between
mRNA translation and stability by identifying
>80 mRNAs whose stability was influenced by
translational repression (Almendral et al. 1988).

The changes inmRNA stability observed us-
ing global translational inhibitors such as cyclo-
heximide, puromycin, or pactamycin must be
interpretedwith some caution, because aportion
of the effects could be the result of indirect or
“trans” effects. It is, however, abundantly clear
that translation can directly influence the stabil-
ity of an mRNA. A variety of observations sup-
port this contention, including the use of tran-
script-directed stem-loop structures in mRNAs
(Aharon and Schneider 1993), the association of
the context of the start codonwith stability of the
yeast PGK1 mRNA (LaGrandeur and Parker
1999), as well as the extensive literature on pre-
mature stop codons influencing transcript stabil-
ity via nonsense-mediated decay (NMD) (Celik
et al. 2017b; Karousis andMühlemann 2017). In

Protein/RNA trans factors
Alternative polyadenylation
Improper termination

Translation initiation rates
RNA structure
Protein/RNA trans factors

Ribosome pausing
Premature termination
Slow elongation rates
Protein/RNA trans factors

ORF5′ UTR 3′ UTR

AAAAAA

AAAAAA

Cap
Stop

Figure 2. Numerous regulatory points exist throughout the transcript to modulate co-translational messenger
RNA (mRNA) decay. A brief overview of the factors and the location on the transcript that can influence the rate
of mRNA decay in association with ribosome loading, elongation, and termination. In the 50 untranslated region
(UTR) (green), RNA structure, initiation rates, and RNA-binding protein (RBP)/RNA factors acting in trans can
co-regulate mRNA decay and translation. As ribosomes (blue) read through the open reading frame (ORF)
(black), elongation speed or lack thereof (ribosome pausing) is the primary feature that links active translation
and mRNA decay. Events such as premature termination, RNA modification, or protein/RNA trans factor
interaction can alter ribosomal speed, thus influencing mRNA stability. Finally, the 30 UTR (red) can modulate
mRNAdecay and translation via interactions with other protein/RNA factors, different 30 UTR isoforms that can
arise by alternative polyadenylation (APA), or via improper termination, which can result from a defective
ribosome or lack of a stop codon. The cell uses all of these regulatory mechanisms to ensure that accurate and
efficient translation is achieved.
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addition, extensive ribosome pausing (e.g., no-
go decay [NGD] [Simms et al. 2017]) and incor-
rect ribosome termination (i.e.,NSD[Klauerand
van Hoof 2012]) also make a substantial contri-
bution to the stability of anmRNA. There is also
an inherent complexity between the interface of
active translation and mRNA stability. A good
example of this is the observation that the place-
ment of a premature termination codon close to
the AUG initiation site fails to elicit NMD, a
phenomenon referred to as the AUG proximity
effect (Pereira et al. 2015).

There is a growing body of evidence that
supports the contention that a large portion of
mRNA decay occurs co-translationally. For ex-
ample, the decapping step of the major 50–30

decay pathway in yeast has been shown to take
place directly on polysomes (Hu et al. 2009,
2010). In addition, altering growth conditions
can cause the decapping activators DHH1 and
PAT1 to relocalize to polysomes and target
mRNAs for degradation (Drummond et al.
2011). The DHH1 RNA helicase has also been
shown to slow ribosome movement and trigger
mRNA decapping (Sweet et al. 2012). Finally,
viral endonucleases can also be directly recruit-
ed to translating mRNAs and target them for
degradation (Covarrubias et al. 2011).

Co-translational mRNA decay has also been
shown to have practical applications. It is prob-
lematic to definitively assess ribosome move-
ment/dynamics in living cells because of con-
cerns about changes that can occur during
requisite in vitro processing steps. By sequenc-
ing 50 monophosphorylated decay intermedi-
ates, Steinmetz and colleagues have used co-
translational mRNA decay as a readout for the
dynamics of ribosomal movement on mRNAs
in a variety of yeast systems (Pelechano et al.
2015, 2016). The mRNA decay intermediates
showed a three-nucleotide pattern of periodici-
ty, consistent with the co-translational decay
model in which XRN1 follows the last translat-
ing ribosome on an mRNA.

Biases in codon usage are clear in all organ-
isms, but the impact of codon choice on the rate
of translation elongation and associated mRNA
stability was not fully clear. This was because of
conflicting data from ribosome profiling studies

and an associated surprising lack of sensitivity
because of a variety of technical biases that can
influence data interpretation (Yu et al. 2015).
Using cell-free translation assays, Liu and col-
leagues recently showed a clear association be-
tween codonpreference and elongation rates (Yu
et al. 2015). The elongation rate of ribosomes
along an mRNA clearly influences the stability
of the associated transcript via the DEAD-box
protein Dhh1, which serves as a sensor for ribo-
some velocity as well as recruiting the mRNA
decay machinery (Radhakrishnan et al. 2016).
The impact of codon optimality on mRNA
stability was revealed by demonstrating that sub-
stitution of optimal codons with synonymous
but suboptimalones impacts the rateof ribosome
elongation and causes mRNA destabilization
(Presnyak et al. 2015). This observation appears
to be universal, as codon optimality has been
shown to influence RNA decay in Escherichia
coli (Boel et al. 2016) and ribosome pausing on
a transcript also results in increased rates of
mRNA decay in plants (Merret et al. 2015). In
eukaryotes, the DEAD-box protein DDX6
(which is known as Dhh1 in yeast) appears to
be a sensor for ribosome speed and connects
translation elongation rates to RNA decay (Rad-
hakrishnan et al. 2016). DDX6/Dhh1 can both
interactwith the ribosome aswell as interactwith
and regulate mRNA deadenylation and decap-
ping factors (Coller et al. 2001), making it an at-
tractive candidate for a factor that can couple
slow ribosome progression with enhanced
mRNA decay.

Multiple facets associated with the transla-
tion of an mRNA can influence its decay rate
(Neymotin et al. 2016). The following sections
will provide examples of how different parts of
an mRNA, the 50 UTR, the open reading frame
(ORF), and the 30 UTR can influence co-
translational mRNA decay.

Examples of 50 UTR Impacts on Both
Translation and RNA Decay

Hepatitis C Virus

Internal ribosome entry sites (IRESs), common-
ly found in viral RNAs but also present in some
eukaryotic transcripts (Weingarten-Gabbay et

A.M. Heck and J. Wilusz
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al. 2016), are highly structured regions in the
50 UTR that promote translation initiation in a
cap-independent fashion (Dai et al. 2015). The
50 UTR of hepatitis C virus (HCV), which con-
tains a well-characterized IRES (Khawaja et al.
2015), is thought to also hijack aspects of the
cellular RNAi machinery to stabilize its own
RNA and increase translation of viral products.
microRNA-122 (miR-122) is highly abundant
in the liver (Chang et al. 2004), the target tissue
of HCV. Binding of the seed sequence and ad-
ditional nucleotides at the 30 end of miR-122 to
multiple regions in the 50 terminus of the HCV
genome, just upstream of the IRES, stimulates
HCV translation (Roberts et al. 2011; Wilson
et al. 2011) and enhances RNA stability (Shima-
kami et al. 2012). Furthermore, it is the associ-
ation with the miR-122 RISC complex, and not
simply double-stranded RNA (dsRNA) forma-
tion between the miRNA and the HCV RNA
that results in HCV RNA accumulation (Zhang
et al. 2012). These studies, coupled with the dis-
covery that the HCV 50 UTR is capable of stall-
ing XRN1 (Moon et al. 2015), led to a model
where HCV RNA recruits the miRISC complex,
through interactions with miR-122 just up-
stream of the IRES, to act as a barrier against
XRN1 accessing the naturally uncapped HCV
RNA. This enhanced RNA stability enables ac-
cumulation of HCV RNA and increased viral
translation. The usurping of the miRNA ma-
chinery by the 50 UTR has recently been gener-
alized to another member of Flaviviviridae,
bovine viral diarrhea virus (BVDV) and its in-
teraction with miR-17 (Scheel et al. 2016).

Protein–RNA Interactions with the 50 UTR that
Play Dual Roles in Stability and Translation

RBPs are one of the key factors involved in post-
transcriptional gene regulation. RBP interac-
tions with the 50 UTRof target mRNAs can alter
RNA degradation kinetics as well as affect trans-
lation by interfacing with initiation factors. HuR
and AUF1 are well-studied RBPs that are classi-
cally known to regulate RNAdecay throughAU-
rich elements. HuR is strongly associated with
mRNA stabilization, whereas AUF1 is typically
associated with mRNA destabilization (Gram-

matikakis et al. 2017; White et al. 2017). HuR
and AUF1, along with the RISC component
Ago2, have been implicated in regulating trans-
lation of a viral IRES element. HuR and Ago2
binding promotes translational activity of the
enterovirus 71 IRES, whereas AUF1 binding re-
presses it (Lin et al. 2015). Similarly, HuR en-
hances IRES-mediated translation of the X chro-
mosome–linked inhibitor of apoptosis (XIAP)
(Durie et al. 2011), whereas Ago2 associated
withmiR-10a promotes translation of ribosomal
protein mRNAs (Ørom et al. 2008). Conversely,
HuR can repress IRES-mediated translation of
several transcripts (Kullmann et al. 2002; Meng
et al. 2005; Yeh et al. 2008). Although the precise
mechanism remains uncharacterized, it is pos-
tulated that HuR may block assembly of the
IRES-associated ribosome–IRES interacting fac-
tor (ITAF) complex or impede the complex from
initiating translation. Moreover, HuR signifi-
cantly delays cap-dependent scanning by the
43S preinitiation complex (Meng et al. 2005),
resulting in repressed translation and increased
degradation of the target mRNA. These studies,
along with others in the field, show the complex-
ity associated with RBP-mediated translation/
mRNA decay co-regulation, and add support
to the notion that RBP–mRNA interactions can-
not be defined by a simplistic linear model.

DDX6—A Key Developmental Regulator
of Translation and RNA Decay

DDX6 is a member of the DEAD-box family of
helicases that is well conserved throughout eu-
karyotes and has been implicated in mRNA
translation and decay (Ostareck et al. 2014), in-
cluding miRNA-mediated translational silenc-
ing (Kuzuoğlu-Öztürk et al. 2016). DDX6 inter-
acts with the CNOT1 component of the CCR4-
NOT complex, which interacts with TNRC6/
GW182 (Chen et al. 2014; Rouya et al. 2014).
An interaction between DDX6 and 4E-trans-
porter (4E-T) (which interacts with eIF4E), in
coordination with the CCR4-NOT complex,
mediates miRNA-dependent translational re-
pression (Ozgur et al. 2015; Kamenska et al.
2016). 4E-T has also been implicated in physi-
cally linking the two termini of mRNAs targeted
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for decay via interactionswith eIF4E at the 50 cap
and the CCR4-NOT deadenylase complex at the
30 end (Nishimura et al. 2015). The biological
relevance of DDX6 coordinating co-translation-
al decay has recently been shown by the ability of
progenitor stem cells to modulate stem cell
maintenance and differentiation. DDX6 was
shown to be up-regulated during neuronal dif-
ferentiation, and it interacts with the neuronal
cell-fate determinant protein TRIM32 to stim-
ulate activity of themiRNA Let-7a (Nicklas et al.
2015), which has previously been shown to help
induce neuronal differentiation (Schwamborn
et al. 2009). Conversely, in epidermal progenitor
cells, DDX6 is believed to control a gene expres-
sion profile that inhibits differentiation while
maintaining proliferation. Premature differenti-
ation is prevented by destabilizing KLF4mRNA
through interactions with the 50 UTR, whereas
DDX6 forms a complex with YBX1 and eIF4E to
promote translation of several self-renewal and
proliferation transcripts (Wang et al. 2015).
DDX6 is also used/usurped in a variety of ways
by viruses (Ostareck et al. 2014), making it an
interesting multifunctional protein regulator/
organizer in the cytoplasm. This further shows
the impressive networking in post-transcrip-
tional gene regulation.

Examples of ORF-Associated Impacts
on mRNA Stability

Codon Optimality/Translational Velocity
and RNA Decay

Whereas the effect of codon optimality and
mRNA stability was described in the introduc-
tion to this section, it is useful to emphasize
several aspects. First, the impact of codon opti-
mality on translational speed and mRNA decay
rates appears to be a conserved phenomenon. In
addition to fungi and plants, higher eukaryotes
also show a connection between the use of op-
timal codons and RNA decay, including zebra-
fish, Xenopus, mammals, and Drosophila (Baz-
zini et al. 2016; Chen and Coller 2016; Mishima
and Tomari 2016; Zhao et al. 2017). Second, the
DHH1 factor, which has previously been shown
to slow ribosome movement to enhance co-
translational decapping (Sweet et al. 2012), has

emerged as a key factor in monitoring codon
optimality of mRNAs in yeast (Radhakrishnan
et al. 2016). Next, even NMD rates can be influ-
enced by codon selection (Celik et al. 2017a).
This observation clearly shows the connection
between the quality control of gene expression
and ribosome elongation. Finally, recent global
analyses have suggested that both codon opti-
mality and properties of adjacent codons con-
tribute to influence mRNA decay rates, indicat-
ing that pairs or perhaps strings of suboptimal
codons can differentially regulate mRNA turn-
over (Harigaya and Parker 2017).

No-Go Decay

NGD is one of several quality-control mecha-
nisms eukaryotic cells use to recognize and elim-
inate defective mRNAs during the translation
process. Specifically, the NGD machinery re-
leases ribosomes in a prolonged elongation stall
by targeting the mRNA for endonucleolytic
cleavage and subsequent canonical mRNA de-
cay (Simms et al. 2017). Surveillance mecha-
nisms like NGD are critical because the aberrant
mRNA transcripts remove ribosomes from the
translating pool, which places a significant bur-
den on the cell. Dom34 and Hbs1 are the pri-
mary components that make up the NGD ma-
chinery (Passos et al. 2009; Chen et al. 2010).
TheDom34/Hbs1 complex, in conjunction with
ABCE1, promotes ribosome dissociation and
nascent peptide transfer RNA (tRNA) drop off
(Shoemaker et al. 2010; Pisareva et al. 2011).
While it has been reported that NGD results in
the endonucleolytic cleavage of the aberrant
mRNA (Doma and Parker 2006; Tsuboi et al.
2012), the enzyme(s) that performs the cleavage
remains elusive. Reported causes of ribosome
stalling that initiate NGD include structured
RNA (e.g., stem loops [Doma and Parker
2006]), tracts of positively charged amino acids
(Dimitrova et al. 2009), and defective ribosomes
(Cole et al. 2009). Although NGD is generally
considered a surveillance mechanism for aber-
rant translation, there are observations of natu-
ral NGD having a biological function in Dro-
sophila (Xi et al. 2005; Passos et al. 2009) and
Arabidopsis (Onouchi et al. 2005), suggesting
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that cells may use NGD to regulate gene expres-
sion in certain scenarios.

The Exon Junction Complex (EJC) and Its
Impact on General Translation/RNA Stability

The EJC has been intimately associated with
mRNA quality control and NMD (Woodward
et al. 2017). An excellent source for more infor-
mation onmRNAquality control andNMD can
be found in Karousis and Mühlemann (2017).
However, the function of this nuclear-initiated
mRNAmark is broad, and it includes an impact
on translation and conventional mRNA decay.
The core EJC protein MLN51 can bind to eIF3
and promote translation of mRNAs (Chazal
et al. 2013). However, additional core EJC pro-
teins also appear to influence translation, in-
cluding PYM (Diem et al. 2007) and Y14 (Lee
et al. 2009). Curiously, the Y14 component of
the EJC has been suggested to bind the mRNA
50 cap as well as the primary decapping enzyme
DCP2 through different domains (Chuang et al.
2013). Mutating Y14 so that it cannot bind the
cap abrogates its ability to support translation,
but does not impede the degradation of target
mRNAs (Chuang et al. 2016). This nicely illus-
trates the interplay of the EJC with cytoplasmic
post-transcriptional processes in determining
the propensity of the mRNA to be translated
as well as degraded.

Examples of 30 UTR Impacts on Both
Translation and RNA Decay

Alternative 30 UTRs andCombinatorial Actions
of RBPs on 30 UTR Elements that Co-Regulate
Decay/Translation

It is widely accepted that the 30 UTRs of eukary-
otic mRNAs contain a large proportion of the
regulatory elements and binding motifs used by
cells to regulate post-transcriptional gene ex-
pression. So it is logical to think that an addi-
tional mode of regulation that cells can use is to
generate transcript isoforms with different
30 UTRs (Bava et al. 2013). This process is termed
alternative cleavage and polyadenylation or al-
ternative polyadenylation (APA) and can have
profound effects on mRNA translation efficien-

cy and decay (Mayr 2016; Tian and Manley
2017). In a simplified model, shortening of the
30 UTR induced by APA sites can alter RNA
structure or eliminate miRNA or RBP-binding
sites, which positively or negatively affect
mRNA stability and translation. As miRNA-
mediated regulation is explained in detail in Fa-
bian (2017), wewill touch on a few notable RBPs
that co-regulate decay and translation via inter-
actions with the 30 UTR. As mentioned previ-
ously, HuR is a widely studied RBP that pro-
motes both mRNA stabilization as well as
translation by preventing the interaction of re-
pressive factors with the mRNAvia competition
for common binding regions (Lal et al. 2004;
Kim et al. 2015; Liu et al. 2015; Blackinton and
Keene 2016; Bose et al. 2016; Zhang et al. 2017).
However, several studies have also implicated
HuR in destabilization of transcripts through
recruitment of other RBPs (Chang et al. 2010)
and themiRISC complex (Kim et al. 2009). Sim-
ilar to HuR, the Pumilio or PUF family of pro-
teins is present in all eukaryotes (Zamore et al.
1997) and modulates mRNA fate through 30

UTR interactions (Morris et al. 2008; Hafner
et al. 2010). PUF proteins are potent repressors
that can accelerate deadenylation (Weidmann
et al. 2014) through interactions with POP2
(Goldstrohm et al. 2006) and inhibit translation
by blocking polypeptide elongation (Friend
et al. 2012). PUF proteins play a regulatory
role in a wide variety of biological functions,
including development (Datla et al. 2014; Mak
et al. 2016), cell proliferation (Naudin et al.
2017), stress response (Russo and Olivas
2015), and neurological processes (Sharifnia
and Jin 2014; Gennarino et al. 2015; Arvola
et al. 2017). Whereas HuR and the PUF family
of proteins are two of the most prolific examples
of how RBPs can interact with the 30 UTR to
influence mRNA translation and stability, there
are numerous other 30 UTR-binding RBPs the
cell uses to regulate gene expression globally or
on a subset of genes.

Nonstop Decay

Finally, NSD is generally considered a quality-
control mechanism that targets ribosomes
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stalled at the 30 end of mRNAs, which is often
caused by lack of a stop codon as a result of
premature transcriptional termination and pol-
yadenylation (Ito-Harashima et al. 2007; Simms
et al. 2017). Similar toNGDdiscussed above, the
potential loss of functional ribosomes because of
build-up on aberrant mRNAs and subsequent
impact on cell survival makes NSD a crucial
surveillance mechanism. A premature polyade-
nylation event on a transcript results in ribo-
some stalling as it tries to decode the poly(A)
tail into poly(Lys) residues. Consistent with this
notion, poly(A) tracts within the ORF (Ito-Ha-
rashima et al. 2007; Kuroha et al. 2010) as well
as electrostatic interactions between positively
charged lysine residues and the negatively
charged tunnel of the ribosome (Lu andDeutsch
2008; Dimitrova et al. 2009) have been shown to
elicit ribosome stalling. Several studies have im-
plied the ribosome along with the GTPase SKI7
are responsible for the initial recognition of
mRNAs with aberrantly placed poly(A) tracts
(Araki et al. 2001; vanHoof et al. 2002; Akimitsu
et al. 2007; Arthur et al. 2015; Garzia et al. 2017;
Juszkiewicz and Hedge 2017). Whereas SKI7 is
primarily associated with NSD, it is a paralog of
the NGD factor HBS1, and SKI7 deletion strains
in yeast are complemented by introducingHBS1
(van Hoof 2005). Furthermore, Dom34/Hbs1
has been linked to dissociation of ribosomes
stalled in the 30 UTR of mRNAs (Tsuboi et al.
2012; Saito et al. 2013), suggesting functional
overlap of the SKI7 protein and Dom34/Hbs1
complex. Conversely, a recent study hypothe-
sized a competitive mechanism of action be-
tween SKI7 and the Dom34/Hbs1 complex for
interactions with ribosomes in NSD (Horikawa
et al. 2016). This suggests that the relationship
between these two elements ismore complicated
than originally thought and requires further
studies.

CONCLUDING REMARKS/FUTURE
DIRECTIONS

In summary, whereas the processes of transla-
tion and mRNA decay are naturally competing
for the same parts of the mRNA, available evi-
dence indicates that translation and general

mRNA decay are not independent processes,
but are intricately networked. A variety of inter-
esting questions remain to be answered. Al-
though aspects of the 50–30 decay pathway are
linked to translational dynamics on the targeted
mRNA, what about 30–50 decay by the exosome
and or DIS3L2? How complex is the interplay
between the ribosome and the mRNA decay
machinery in terms of protein–protein interac-
tions and the range of cofactor requirements?
Although ribosome elongation rates appear to
influence mRNA decay, is the relationship mu-
tual? In other words, does RNA decay influence
ribosome dynamics on the targeted mRNA?
Does the mechanism/route of translation initi-
ation influence mRNA decay rates as well as the
rate of elongation? Are changes inmRNA stabil-
ity as a result of slower elongation rates through
suboptimal codons also associated with the
NGD pathway and Dom34/HBS1 complex, or
do these stability changes simply reflect alter-
ations in conventional mRNA decay pathways?
How extensively are associations between trans-
lation and decay regulated at the developmental
level, and are they perhaps dysregulated/discon-
nected in cancer cells to promote altered gene
expression profiles and remove controls over
cellular gene expression? Finally, from a patho-
gen perspective, how do arboviruses that flip-
flop between growth in insect vectors and verte-
brate hosts deal with major differences in codon
optimality between the two eukaryotic environ-
ments and maintain the stability of their RNA
transcripts? Elucidating these and other aspects
of the interplay between the fundamental trans-
lation apparatus and mRNA decay machinery
should yield many interesting insights in the
future.
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