
Sequential regulatory activity prediction across
chromosomes with convolutional neural networks

David R. Kelley,1 Yakir A. Reshef,2 Maxwell Bileschi,3 David Belanger,3 Cory Y. McLean,3

and Jasper Snoek3
1Calico Labs, South San Francisco, California 94080, USA; 2Department of Computer Science, Harvard University, Cambridge,
Massachusetts 02138, USA; 3Google Brain, Cambridge, Massachusetts 02142, USA

Models for predicting phenotypic outcomes from genotypes have important applications to understanding genomic func-

tion and improving human health. Here, we develop a machine-learning system to predict cell-type–specific epigenetic and

transcriptional profiles in large mammalian genomes from DNA sequence alone. By use of convolutional neural networks,

this system identifies promoters and distal regulatory elements and synthesizes their content to make effective gene expres-

sion predictions. We show that model predictions for the influence of genomic variants on gene expression align well to

causal variants underlying eQTLs in human populations and can be useful for generating mechanistic hypotheses to enable

fine mapping of disease loci.

[Supplemental material is available for this article.]

Although many studies show strong relationships between varia-
tion in genotype and phenotype across a range of human diseases
and traits, the mechanisms through which this relationship
operates remain incompletely understood (Boyle et al. 2017).
Noncoding variation has especially stifled progress; most genomic
loci statistically associated with phenotypes via genome-wide
association studies (GWAS) do not alter coding sequence, but
mechanisms for only a rare few have been thoroughly described
(e.g., Claussnitzer et al. 2015). Numerous lines of evidence suggest
that many noncoding variants influence traits by changing gene
expression (Maurano et al. 2012; Albert and Kruglyak 2015;
Finucane et al. 2015; O’Connor et al. 2017). In turn, gene expres-
sion determines the diversity of cell types and states in multicellu-
lar organisms (Roadmap Epigenomics Consortium et al. 2015).
Thus, gene expression offers a tractable intermediate phenotype
for which improved modeling would have great value.

Large-scale consortia and many individual laboratories have
mapped the epigenetic and expression profiles of a wide variety
of cells (The ENCODE Project Consortium 2012; Forrest et al.
2014; Roadmap Epigenomics Consortium et al. 2015). Further, it
has recently become appreciated that many of these data can be
accurately modeled as a function of underlying DNA sequence
using machine learning. Successful predictive modeling of tran-
scription factor (TF) binding, accessible chromatin, and histone
modifications has provided mechanistic insight and useful inter-
pretation of genomic variants (Ghandi et al. 2014; Alipanahi
et al. 2015; Whitaker et al. 2015; Zhou and Troyanskaya 2015;
Kelley et al. 2016). In particular, the expansive training data avail-
able from the 3 billion–nucleotide (nt) human genome has en-
abled deep learning methods with huge numbers of parameters
to make significantly more accurate predictions on held-out test
data than previous approaches (Zhou and Troyanskaya 2015; Kel-
ley et al. 2016).

Despite this progress, models to predict cell-type–specific
gene expression from DNA sequence have remained elusive in
complex organisms. Existing models use experimental annota-
tions as input (e.g., peak calls for various known regulatory attri-
butes), allowing them to shed light on the relationships between
these annotations (Cheng et al. 2012; González et al. 2015) but
not analyzing the causal role of the underlying sequence in deter-
mining those annotations. Even with intra-experiment training
data to infer the relevant sequence motifs, the complexity of distal
regulation where enhancers can interact with promoters across
hundreds of thousands of nucleotides challenges the current gen-
eration ofmethods (Levine 2010; Long et al. 2016). However, well-
established gene regulation principles from inquiry into enhancer
biology and 3D chromosomal contact domains have yet to be fully
incorporated into expressive machine-learning models (Mifsud
et al. 2015; Dekker and Mirny 2016). Modeling larger sequences
and diverse experimental data offers a path forward to improve
predictive accuracy. More effective models would enable research-
ers to profile one instance of a tissue or cell type and project that
profile to individuals with varying genomic sequence.

Here, we use novel machine-learning algorithms to learn to
predict thousands of epigenetic and transcriptional profiles from
hundreds of human cell types using only DNA sequence as input.
By using the model, we predict the difference between the two al-
leles of genomic variants for these thousands of data sets, focusing
particularly on predicted changes to gene expression. We demon-
strate the considerable potential value of this observation to iden-
tify likely causal variants and mechanisms within GWAS loci.

Results

Basenji

In previous work, we introduced a deep convolutional neural net-
work approach named Basset for modeling “peak”-based chroma-
tin profiles, focusing particularly on DNase I hypersensitivity
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(Kelley et al. 2016). Given an input sequence of 500–1000 bp, the
model makes a single binary prediction for the sequence’s activity
in any training data set provided. Here, wemodify the Basset archi-
tecture to (1) model distal regulatory interactions and (2) predict
finer-resolution, quantitative (as opposed to binary) genomic
profiles that are more appropriate for the dynamic range of gene
expression (Fig. 1). As a related approach, but one begging for met-
aphor to a more nimble and far-sighted hound, we refer to this
method as Basenji.

Themodel accepts much larger (217=) 131-kb regions as input
and, similar to Basset, performsmultiple layers of convolution and
pooling to transform the DNA to a sequence of vectors represent-
ing 128-bp regions (Methods). To share information across long
distances, we then apply several layers of densely connected dilat-
ed convolutions (Methods). After these layers, each 128-bp region
aligns to a vector that considers the relevant regulatory elements
across a large span of sequence. Finally, we apply a final width-
one convolutional layer to parameterize amultitask Poisson regres-
sion on normalized counts of aligned reads to that region for every
data set provided (Hashimoto et al. 2016). That is, the model’s ul-
timate goal is to predict read coverage in 128-bp bins across long
chromosome sequences.

Modeling count data, as opposed to peak data, required care-
ful preprocessing beyond that performed in the standard pipelines

of genomics consortium projects. For example, processed consor-
tium data discard multimapping read alignments, which leaves
half the genome incompletely annotated, despite the substantial
evidence that repetitive sequence is critical to gene regulation
(Feschotte 2008). Thus, we downloaded the original sequencing
reads for 593 ENCODE DNase-seq, 1704 ENCODE histone modifi-
cation ChIP-seq, 356 Roadmap DNase-seq, 603 Roadmap histone
modification ChIP-seq, and 973 FANTOM5 CAGE experiments.
These experiments represent 529 unique cells/tissues profiled by
DNase-seq, 1136 unique cells/tissues profiled by ChIP-seq, and
595 unique cells/tissues profiled by CAGE. We processed these
data with a pipeline that includes additional computation to
make use of multimapping reads and to normalize for GC bias
(Methods). Though additional data modalities may require slight
modification, this base pipeline will allow seamless addition of
future data.

We trained to fit the neural network parameters on one set of
genomic sequences annotated by all data sets and benchmarked
predictions on those same data sets for a held-out set of test se-
quences. We performed all analyses in this paper on the test
sequences. We used a Basenji architecture with four standard con-
volution layers, pooling in between layers by two, four, four, and
four to amultiplicative total of 128; seven dilated convolution lay-
ers; and a final convolution layer to predict the 4229 coverage data

sets. We optimized all additional hyper-
parameters using Bayesian optimization
(Methods).

Prediction accuracy

To assess how effectively the model pre-
dicts the signal in these data sets, we
compared predictions to experimental
coverage in the 128-bp bins for a set of
held-out test sequences (Fig. 2A). As pre-
viously observed, accuracy varies by the
type of data: Punctate peak data tend to
be more directly dependent on the un-
derlying sequence, making for an easier
prediction task (Fig. 2B,C; Whitaker et
al. 2015; Zhou and Troyanskaya 2015).
Accordingly, Basenji predictions explain-
ed the most variance in DNase-seq and
ChIP-seq for active regulatory regions.
Lower accuracy for the broad chromatin
domains marked by modifications like
H3K79me2 and H3K9me3 is expected
because they depend more on dis-
tant sequence signals and incompletely
understood propagation mechanisms
(Hathaway et al. 2012). In general, Base-
nji tends to overestimate at the low
coverage end and underestimate at the
high coverage end due to an implicit reg-
ularization of the noisy experimental
measurements (Fig. 2C).

To benchmark this framework
against our previous Basset (Kelley et al.
2016), we focused on the 949 DNase-
seq experiments, divided the longer se-
quences into 1024-bp subsequences,
and classified each subsequence in each
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Figure 1. Sequential regulatory activity prediction. DNA sequences come in to the model one hot en-
coded to four rows representing A, C, G, and T. The annotations are fabrications to help convey the rea-
sons for the various elements of the architecture.We apply several layers of convolution andmax pooling,
similar to previous methods (Kelley et al. 2016), to obtain representations that describe 128-bp bins. To
share information across large distances, we apply several layers of dilated convolutions. The purple
squares indicate the columns that the convolution directly sees; the teal shade is drawn proportional
to the number of operations performed on that column with respect to the center position. Dilated con-
volution layers are densely passed on to the final prediction layer, where a width-one convolution layer
makes predictions across the sequence. We compare these predictions to the experimental counts via a
Poisson regression loss function and use stochastic gradient descent with back propagation to fit the
model parameters.
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experiment with a peak calling algorithm (Methods). We trained a
Basset model using a set of hyperparameters studied in a recent ap-
plication of the method (Reshef et al. 2017). Basenji quantitative
predictions achieved a greater AUPRC for all experiments, increas-
ing the average from 0.435 to 0.577 and median from 0.449 to
0.591 (Supplemental Fig. S1). Note that these accuracy statistics
cannot be directly compared with those reported in the Basset pa-
per due to different sequence distributions; in the prior work, all
sequences were DNAse-seq peaks in some cell type, whereas here
they are unbiased genome samples.

One thousand two hundred eighty-four replicated experi-
ments allowed us to benchmark prediction–experiment correla-
tion versus experiment–experiment correlation. Determining
the exact nature of these replicates was not always possible,
but 80%–90% are biological (rather than technical) replicates.
Across these replicated experiments, the mean and median pre-
diction correlation exceeded the replicate correlation (paired t-
test P-value <2 × 10−78) (Supplemental Fig. S2). The mean and
median cross-replicate predictions (i.e., the prediction for repli-
cate one versus the experimental data for replicate two) also ex-
ceeded the correlation between replicates (paired t-test P-value
<7 × 10−7) (Fig. 2D; Supplemental Fig. S3). Prediction correla-

tion can exceed replicate–replicate correlation because the repli-
cate measurements are noisy and the predictions implicitly
denoise.

As replicate–replicate correlation increased, Basenji predic-
tion accuracy also increased, suggesting that higher quality data
enable more effective modeling of the sequence dependence of
the regulatory signal (Fig. 2D). The silencing modifications
H3K9me3 and H3K27me3 had low replicate consistency, and im-
proved data may lead to better modeling of repressive chromatin
in the future (Supplemental Figs. S2, S3). Given the limited focus
on transcriptional regulation, Basenji prediction correlations ap-
proach but fall short of the replicate–replicate correlations at the
high end for the most consistent data sets, particularly CAGE
(Fig. 2D; Supplemental Figs. S2, S3).

We hypothesized that the seven dilated convolution layers
enabled the model to capture the distal influences that are an es-
tablished feature of human gene regulation. To isolate the influ-
ence of receptive field width, we trained similar models with one
to seven dilated layers. Test accuracy increased with increasing
receptive field for all data types, confirming the value added by
the additional dilated convolution layers of the final network
(Supplemental Fig. S4). An eighth layer would reach outside the

A

B C D

Figure 2. Basenji predicts diverse epigenetic and transcriptional profiles from DNA sequence. (A) The AKT2 locus exemplifies the genome-wide accuracy
of Basenji predictions; gene promoters and the strongest distal regulatory elements are easily identified, with some false-positive and -negative predictions
for weaker elements. For each track, the darker version on top represents the experimental coverage, and the lighter version below represents Basenji pre-
dictions. (B) We computed the variance explained (R2) for each experiment and plot here the distributions classified by data set type. Basenji predicts punc-
tate peak data, but broad chromatin marks remain challenging. (C ) For the median accuracy DNase-seq experiment, mobilized CD34 cells, we plotted the
log2 predictions versus log2 experiment coverage in 128-bp bins. (D) For all replicated experiments, we plotted log–log Pearson correlation between the
replicate experiments versus the correlation between the experiment and its replicate’s prediction (averaged across replicates). Both the mean andmedian
Basenji prediction accuracy exceed the replicate accuracy.
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bounds of the sequence too frequently for this input length but
may add value for longer sequences.

Cell-type–specific gene expression

A driving goal of this research is to effectively model cell-type–spe-
cific gene expression. CAGE quantifies gene expression by captur-
ing and sequencing 5′ capped mRNAs to measure activity from
genes’ various start sites (Forrest et al. 2014). To offer a gene-centric
view from Basenji predictions, we focused on annotated TSSs
(GENCODE v25) and considered the experimental measurement
and prediction in the 128-bp bin containing each TSS. For each
gene outside the training set, we summed their various TSS values
to compute accuracy statistics. After log2 transformation, themean
Pearson correlation of gene predictions with experimental mea-
surements across cell types was 0.85 overall and 0.77 for nonzero
genes (medians 0.86 and 0.78, respectively) (Fig. 3A,B), which is
on par with models that consider measurements of the relevant
regulatory events with sequencing assays rather than predicting
them from sequence (Cheng et al. 2012). Correlation is greater
for CAGE data sets with more reads aligned to TSSs (Fig. 3A), sug-
gesting that low CAGE sequencing depth constrains accuracy for
many data sets.

Predictions varied across cell types, suggesting that themodel
learns cell-type–specific transcriptional programs (Supplemental
Fig. S5). For these analyses, we performed quantile normalization
on the predictions and experimental measurements across data
sets. To quantify concordance between cell/tissue cluster structure,

we performed Gaussian mixture model clustering of bootstrap
gene samples for the experimental and predicted expression pro-
files. The adjusted Rand index distribution (mean 0.107, median
0.104) indicated significant agreement between clusters (P-value
<1 × 10−18) (Fig. 3C).

To quantify the greater difficulty of predicting highly cell-
type–specific expression, we computed Pearson correlation for
sets of genes binned into quartiles by their coefficient of variation
across all CAGE samples (Supplemental Fig. S6). The stable
expression across cell types of housekeeping genes relies on a par-
ticular promoter architecture (Lenhard et al. 2012), which the
model learns well. Predictions for genes with medium levels of
variability across samples have similar correlation levels. Only
in the most variable quartile do we observe a deterioration in cor-
relation from mean 0.3673 (median 0.3592) across targets in the
third quartile to mean 0.2708 (median 0.2562) in the fourth.
Nevertheless, the predictions explain considerable variance for
even these most variable genes, suggesting that the model learns
some degree of cell-type specificity.

We found it instructive to closely examine genes with vari-
able expression patterns. We computed accuracy statistics inde-
pendently for each gene on their vectors of quantile normalized
predictions and experimental measurements across cell types. In
Figure 3D, we display genes at the 95th, 75th, 50th, and 25th per-
centiles ranked by correlation. Instances of effective predictions
across several orders of magnitude—such as for BIRC3 with its
greatest expression in the small intestine, stomach, and spleen—
lend credence to the model. In many cases, Basenji has learned

D

CBA

Figure 3. Basenji predicts cell-type–specific gene expression. (A) We computed Pearson correlation between the log2 prediction and experiment across
all nonzero expressed test set genes for eachCAGE data set.We plotted those correlations against the total number of reads aligned to test gene TSSs, which
measures the relevant sequencing depth. (B) For the median accuracy cell, artery endothelial cells, we plotted the experiment coverage versus Basenji pre-
diction. (C) For both the experimental measurement and Basenji prediction, the gene expression by CAGE data set matrix displays clusters. We measured
the similarity of those clusters between the experimental and predicted data by bootstrap sampling gene subsets, clustering both the experimental and
predicted data and computing the adjusted Rand index between the cluster sets (Methods). The adjusted Rand index is significantly greater than the null
model value zero (P-value <1 × 10−26). (D) We plotted gene expression versus prediction after quantile normalization across cell types for the genes ranked
in the 95th, 75th, 50th, and 25th percentiles by Pearson correlation.
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that the gene’s expression varies across cells but has underestimat-
ed the dynamic range of the variance. For example, CASP4 and
FZD1 predictions correlate with the experimental measurement
but compress the range between themost and least expressed cells.
Some degree of variance reduction is warranted because the CAGE
measurement includes stochastic noise that Basenji will implicitly
smooth out. However, poor prediction of some genes, such as
S1PR1, indicate that an inability to capture more complex regula-
tion also dampens prediction confidence.

CAGE quantifies gene expression at TSS resolution, and genes
may use distinct TSSs in different cell types (Ayoubi and Van De
Ven 1996). Tomeasure Basenji’s ability to model these TSS switch-
es, we delineated a set of 201 genes with TSSs >500 bp apart and
variance across all CAGE samples greater than one (using log2-
transformed, quantile normalized expression estimates). For each
gene’s two most variable TSSs, we computed the log2 fold change
of one TSS versus the other in each CAGE sample for both the ex-
periment and Basenji prediction. The mean Pearson correlation
between experiment and prediction fold changeswas 0.295 (medi-
an 0.288) over the set of genes (Supplemental Fig. S7), which is
greater than zero with P-value <1 × 10−90 by t-test. This analysis
suggests that Basenji predictions explain considerable variance in
alternative TSS usage across samples.

Distal regulatory elements

Distant enhancer sequences play a significant role in activating
gene expression (Long et al. 2016).

We devised a method to quantify how distal sequence influ-
ences a Basenji model’s predictions and applied it to produce sali-
encymaps for gene regions. The saliencymap scores annotate 128-
bp segments with a function of the model predictions’ gradient
with respect to that segment’s vector representation after the con-
volutional layers and before the dilated convolutions share infor-
mation across wider distances (Methods). Peaks in this saliency
score detect distal regulatory elements, and its sign indicates en-
hancing (+) versus silencing (−) influence.

The region surrounding PIM1 in the GM12878 cell line exem-
plifies this approach (Fig. 4A). The promoter region has extreme
saliency scores, including repressive segments; i.e., mutating the
regulatory sequence recognized by the model in these regions
would increase the predicted activity. Elements beyond the
promoter are also captured—we identified two enhancers annotat-
ed by ENCODE: one with a panoply of motifs highlighted by
POU2F and another with two adjacent PU.1 motifs. We searched
for perturbation data to support these regulatory interactions. In
a collection of 59 siRNA TF knockdowns performed in a similar

B

A

Figure 4. Basenji identifies distal regulatory elements. (A) ENCODE enhancer annotations for PIM1 in GM12878 specify two downstream regulatory el-
ements. Basenji saliency scores and FDR < 0.05 peaks (see Methods) mark these elements, in addition to a variety of others that lack typical enhancer chro-
matin. In silico saturation mutagenesis of these elements with respect to Basenji’s PIM1 GM12878 CAGE prediction outline the driving motifs. The
quantities in the heatmap display the change in Basenji prediction “Δ pred” (summed across the sequence) after substituting the row’s specified nucleotide
into the sequence. The line plots display the minimum (loss) and maximum (gain) change among the possible substitutions. The upstream cis-regulatory
module most prominently features a POU2F factor motif, while the downstream element consists solely of two adjacent PU.1 motifs. (B) We plotted the
cumulative distributions of the maximum saliency score for elements of various regulatory annotation classes in GM12878 released by ENCODE. Genome-
wide, each annotation class differs significantly from the background scores by Kolmogorov–Smirnov test.
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lymphoblastoid cell line GM19238, POU2F1 and POU2F2 knock-
downs resulted in differential expression of PIM1 mRNA with P-
values 0.026 and 0.066 respectively (as tested by a likelihood ratio
test within the framework of a fixed-effect linear model of batch-
corrected microarray measurements) (see detailed Methods in
Cusanovich et al. 2014).

To assess this method’s ability to detect such regulatory ele-
ments genome-wide, we downloaded several curated annotations
from ENCODE for GM12878: promoters, enhancers (not overlap-
ping promoters), and CTCF binding sites (not overlapping pro-
moters or enhancers) (The ENCODE Project Consortium 2012).
We computed the maximum saliency score overlapping instances
of these annotations and shuffled background sets. Scores for
promoters, enhancers, and CTCF sites differed significantly from
scores for the background set (Kolmogorov–Smirnov test P-values
9 × 10−64, 2 × 10−183, and 4 × 10−61, respectively;Methods) (Fig. 4B).
Promoters have more extreme scores at both the high and low
ends, suggesting that they frequently contain repressive segments
that may serve to tune the gene’s expression rate. This feature is
also present for enhancers, but at a far lesser magnitude on the
repressive end.

Expression QTLs

Functional profiling of genotyped individuals is widely used to
detect influential genomic variation in populations. The Gene-
Tissue Expression (GTEx) project offers one such data collection
(The GTEx Consortium 2017). GTEx measured RNA abundance
via RNA-seq in 44 separate human tissues post-mortem and com-
puted association tests for genomic variants significantly correlat-
ed with gene expression (eQTLs). Without observing such data, a
trained Basenji model can be used to predict which single-nucleo-
tide polymorphisms (SNPs) are eQTLs by comparingmodel output
for the different SNP alleles. To benchmark this approach, we
downloaded the GTEx V6p release and focused on 19 tissues that
were reasonable semantic matches for FANTOM5 CAGE profiles.

Given a SNP–gene pair, we define its SNP expression differ-
ence (SED) score as the difference between the predicted CAGE
coverage at that gene’s TSS (or summed across multiple alternative
TSS) for the two alleles (Fig. 5A). Linkage disequilibrium (LD) com-
plicates the comparison to eQTL statistics; marginal associations
and significance calls depend on correlated variants in addition
to the measured variant, and association scans are better powered
for variants that tag more genetic variation (Bulik-Sullivan et al.
2015). To put SED on a level plane with the eQTL statistics, we dis-
tributed the SED scores according to variant correlations to form a
signed LD profile of our SED scores, here denoted SED-LD
(Methods) (Reshef et al. 2017).

We checked whether the absolute value of SED-LD correlated
with eQTL χ2 statistics after controlling for the total amount of ge-
netic variation tagged by each SNP asmeasured by LD score (Bulik-
Sullivan et al. 2015) on a set of LD-pruned variants (Methods).
Indeed, |SED-LD| significantly correlated with the adjusted eQTL
statistics in all 19 tissues (P-values all <1 × 10−54 using LD-pruned
variants from Chromosome 1). To assess the quantitative extent
of this enrichment, we ranked variants by the difference between
their predictions from regression models including and excluding
|SED-LD| for each tissue and binned them into five quantiles. The
proportion of variants called significant eQTLs was 3.2–5.8× great-
er in the top quantile relative to the average of the bottom three in
all tissues (Fig. 5B,C). This effect was robust to controlling for dis-
tance to TSS (Supplemental Fig S8). Thus, our analyses support a

robust predictive relationship between Basenji scores and popula-
tion measurements of RNA abundance, despite the additional lay-
ers of post-transcriptional regulation captured by the eQTL
analysis and presently invisible to Basenji.

Disease-associated loci

Basenji’s utility for analyzing human genomic variation goes be-
yond intermediate molecular phenotypes like eQTLs to down-
stream ones like physical traits and disease. Basenji also offers a
substantial upside: eQTL analysis is highly informative for disease
variant interpretation, but few cell types can plausibly be sampled
to conduct such an investigation. With Basenji, a single experi-
ment is sufficient to predict a genomic variant’s influence on
gene expression in that cell type. We hypothesized that a predic-
tive view of the 973 human samples profiled by CAGEwould offer
a novel perspective on disease variants.

To test the utility of Basenji SNP scores for this application,we
acquired a curated set of disease variants studied by the successful
DeepSEA method to predict variant influence on TF binding
and chromatin (Zhou and Troyanskaya 2015). DeepSEA trained
deep convolutional neural networks to predict ENCODE and
Roadmap DNase-seq and ChIP-seq peak calls. The set includes
12,296 biallelic SNPs taken from the NIH GWAS Catalog database
(MacArthur et al. 2017) and a negative set with matched minor al-
lele frequencies that we sampled down to the same size. Because
this experiment is cell/tissue agnostic, we computed the penulti-
mate layer predictions for each SNP allele in the 128-bp bins across
the surrounding region. We assigned the SNP the maximum log2
ratio between allele values for each penultimate layer unit. One
hundred twenty-eight principal components were sufficient to
represent the full profile well (Supplemental Fig. S9). We main-
tained the same 10 cross-validation folds reported by DeepSEA to
compare methods. A logistic regression model to predict GWAS
catalog presence using these Basenji principal component features
achieved 0.666 AUROC, slightly greater than the 0.657 achieved
by DeepSEA using a more complicated regression model that also
included conservation statistics (P-value <0.10 by dependent t-
test over 10 folds) (Supplemental Fig. S9). A joint model adding
DeepSEA’s predictions as a feature to our logistic regression model
increased AUROC to 0.706 (P-value <1.6 × 10−5), supporting the
orthogonal value added by Basenji SNP scores beyond the state
of the art.

Having established meaningful signal in the predictions, we
analyzed a set of 1170 loci associatedwith 40 autoimmunediseases
and blood cell traits thatwere finemapped using the linkage-based
statistical method PICS (Farh et al. 2015). Sixty-seven loci con-
tained a variant predicted to alter a gene’s transcription in one of
the CAGE experiments by >10%, and an additional 73 contained
a variant predicted to alter one of the chromatin profiles >10% at
a gene’s start sites. rs78461372, associated with multiple sclerosis
via linkage with the lead variant rs74796499 (Lambert et al.
2013), emerged from this analysis. Basenji predicts the C>G at
rs78461372 to increase transcription of the nearby GPR65 in
many cells, most severely acute lymphoblastic leukemia cell lines,
thyroid cells, insular cortex cells, and a variety of immune cells.
GPR65 is a receptor for the glycosphingolipid psychosine and
may have a role in activation-induced cell death and differentia-
tion of T cells (Wang et al. 2004). Despite the fact that themultiple
sclerosis GWAS literature does not highlight GPR65, sphingolipid
metabolism has emerged as a therapeutic target for MS via the
drug fingolimod, a sphingosine analog that alters immune cell
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trafficking and is now in clinical use (Brinkmann et al. 2010). The
model also predicts a small expression increase for GALC, a nearby
genewhose start site is 12.9 kb away from the variant, inmany im-
mune cells. Both genes have been implicated in several immune
diseases (inflammatory bowel disease, Crohn’s disease, ulcerative
colitis) via variants independent of this set (Koscielny et al.
2017), and both genes may propagate a downstream causal influ-
ence on the disease.

PICS fine mapping assigns rs78461372 a 5% probability of
causal association with multiple sclerosis and assigns the lead var-
iant rs74796499 a 24% probability. Basenji predicts no effect for
rs74796499 or any other variants in the PICS credible set. To
validate the predicted stronger effect of rs78461372 on nearby
transcription, we consulted the GTEx eQTL analysis (The GTEx
Consortium 2017). GTEx supports Basenji’s diagnosis, detecting
significantly increased GPR65 expression for individuals with the
minor allele at rs78461372 in transformed fibroblasts (marginal
beta 0.75; P-value 1.8 × 10−9); the competing correlated variant
rs74796499 has a smaller measured effect (marginal beta 0.66; P-
value 4.9 × 10−7).

To better understand the model prediction, we performed an
in silico saturationmutagenesis (Lee et al. 2015; Kelley et al. 2016)
in several affected cell types. That is, we generated sequences that

introduce every possiblemutation at all sites in the region, predict-
ed CAGE activity, and computed the difference from the reference
prediction. The functionalmotifs that drive themodel’s prediction
emerge as consecutive sites where mutations result in large differ-
ences. rs78461372 overlaps an ETS factor motif adjacent to a
RUNX factor motif, where the G allele confers a stronger hit to
the JASPAR database PWM for ETS, discovered using the motif
search tool Tomtom (Fig. 6; Gupta et al. 2007; Mathelier et al.
2016). Basenji predicted opposite effects for these motifs in differ-
ent cell types. In immune cells, where GPR65 and GALC are
more active, disruption of the motifs decreases the prediction.
Alternatively, disruption of the same motifs increases the model’s
prediction for expression in several tissues, including insular cor-
tex. Altogether, Basenji predictions shed substantial light on this
complex and influential locus, offering several promising direc-
tions for future work to unravel the causal mechanism.

Discussion

Transcriptional regulation is the primary driver of gene expression
specificity across cell types and states (Battle et al. 2015; Grubert
et al. 2015;Waszak et al. 2015; Li et al. 2016). The genome research
community needs more effective models of how sequence

B

A

C

Figure 5. Basenji gene-specific variant scores enrich for eQTLs. (A) We defined SNP expression difference (SED) scores for each biallelic variant and gene
combination as the difference between the model prediction for the two alleles at that gene’s TSSs. (B) We computed the signed LD profile of the SED
annotations (denoted by SED-LD) tomore readily compare to eQTLmeasurements in human populations (Methods). |SED-LD| shows a strong relationship
with eQTL statistics from GTEx. Here, we binned variants into five quantiles by the difference between their regression predictions including and excluding
|SED-LD| and plotted the proportion of variants called significant eQTLs in pancreas. We chose five quantiles to represent the observed statistical trend
parsimoniously and aesthetically. The proportion rises with greater |SED-LD| to 4.2× in the highest quantile over the average of the bottom three quantiles,
which represented the median enrichment in a range of 3.2–5.8× across the 19 tissues. See Supplemental Figure S8 for all tissues and TSS-controlled anal-
ysis. (C) Plotting |SED-LD| versus the χ2 statistics reveals a highly significant correlation.
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determines transcription in largemammalian genomes in order to
understand how genomic alterations influence the downstream
physical output of those genomes. Here, we introduced a compre-
hensive model to predict epigenetic and transcriptional profiles
from DNA sequence. A deep convolutional neural network,
trained on more than 4000 data sets, shares information across
large distances with dilated layers to make sequential predictions
along the chromosomes. The model explains considerable vari-
ance in these data, including cell-type–specific activity. Predic-
tions for sequences containing different versions of variant
alleles statistically align with measurements made in human pop-
ulations and subjected to eQTL analysis.

Although we demonstrated the present utility of this ap-
proach, there are several indications that we may be scratching
the surface of what will be possible in this space. The data sets an-
alyzed vary in quality, by both signal-to-noise ratio and technical
variance from undersampling with limited sequencing. We ob-
served increasing predictive accuracy for experiments with greater
sequencing depth and greater consistency between replicates.
Thus, sequence-based modeling will benefit from improved
experimental protocols, which are an area of active research
(e.g., CUT&RUN in place of ChIP) (Skene and Henikoff 2017).
Furthermore, most of the samples describe either cell lines or het-
erogeneous tissue samples. Pending efforts to profile more pure,

Figure 6. Basenji gene-specific variant scores illuminate a multiple sclerosis–associated locus. Lead variant rs74796499 is associated with multiple scle-
rosis (International Multiple Sclerosis Genetics Consortium 2013). Among the credible set of linked variants, Basenji predicts that rs78461372 would alter
transcription of the nearby genes GPR65 and GALC. In immune cells, such as treated CD14+ cells depicted here, both genes are transcribed and the C>G
introduces an ETS factor motif that enhances transcription. In contrast, in other cell types, e.g., in the insular cortex, where GPR65 is far less transcribed,
Basenji predicts the same motifs play a role in repressing the gene.
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specific cell types and states will enhance our ability to thoroughly
detect all regulatory elements and offer precise predictions of
when and where regulatory activity will occur (Regev et al.
2017). As the number of potential data sets grows, our simplemul-
titask training scheme that treats every experiment, tissue/cell
type, replicate as an independent prediction task may not be opti-
mal; more structured multitask approaches that share information
across data set features offer a potential route to improvement
(Kang et al. 2011). Finally, our training scheme involves a simpli-
fying assumption that the reference genome specifies the DNA un-
derlying the functional annotations studied. While experiment-
specific genomes would provide more precise training data, these
are mostly unavailable and would be very challenging computa-
tionally to incorporate. Advances that enabled such genome-spe-
cific training would likely improve the model.

Dilated convolutions extended the reach of ourmodel to view
distal regulatory elements at distances beyond previous models,
achieving a 32-kb receptive field width. This distance contains
many, but certainly not all, regulatory elements (Mifsud et al.
2015; Javierre et al. 2016). Thus, extending the model’s vision
and exploring architectures to better capture the long-range logic
of gene regulation are promising avenues for future research,
with considerable potential to improve predictive accuracy and in-
terpret variants far from genes.

Despite focusing only on transcription without considering
post-transcriptional regulation and interaction across regulatory
layers (Skalska et al. 2017), we found our predictions highly infor-
mative of which genomic variants would be highlighted as eQTLs
in population studies measuring RNA abundance levels. We
foresee considerable potential in further integrating regulatory
activity models trained on functional genomics profiles with
population genotyping and phenotyping. These orthogonal
approaches both offer views into how the noncoding genome
works, and their joint consideration ought to sharpen those
views. We envision Basenji as an important step forward in this
direction.

Methods

Data preprocessing

Finer resolution analysis of large genomic regions exposes expres-
sive machine-learning models more to biases in functional geno-
mics sequencing experiments (e.g., fragment GC%) (Benjamini
and Speed 2012; Meyer and Liu 2014) and repetitive DNA. Pro-
cessed data available for download by the consortiums dispose
multimapping reads and largely ignore these biases. Thus, we car-
ried out our ownprocessing of these data, with greater care taken to
account for how these factors would influence the downstream
training algorithms.

We downloaded FASTQ files for 973 CAGE experiments per-
formed by FANTOM5 (Forrest et al. 2014), 593 DNase-seq and
1704 histone modification ChIP-seq performed by ENCODE (The
ENCODE Project Consortium 2012), and 356 DNase-seq and 603
histone modification ChIP-seq performed by the Epigenomics
Roadmap (Supplemental Table S1; Roadmap Epigenomics Consor-
tium et al. 2015). We aligned the reads with Bowtie 2, requesting
the program return a maximum of 10 multimapping alignments
(Langmead and Salzberg 2012). We proportioned thesemultireads
among those 10 positions using an EM algorithm that leverages
an assumption that coverage will vary smoothly (Zhang and Keleş
2014). In the algorithm, we alternate between estimating expected
coverage across the genome using a Gaussian filter with standard

deviation 32 and reallocating multiread weight proportionally to
those coverage estimates.

We normalized for GC% bias using a procedure that incorpo-
rates several established ideas, aiming tomodel the trend across the
GC% spectrum without precluding a GC% enrichment for active
regions (Benjamini and Speed 2012; Teng and Irizarry 2016). We
assigned each position an estimated relevant GC% value using a
Gaussian filter (to assign greater weight to nearby nucleotides
more likely to have been part of a fragment relevant to that geno-
mic position). Then we fit a third-degree polynomial regression to
the log2 coverage estimates. Finally, we reconfigured the coverage
estimates to highlight the residual coverage unexplained by the
GC% model. The parameters of the bias models exhibit a wide
range, both within and across assays, suggesting the absence of a
common sequencing bias. A Python script implementing these
procedures to transform a BAM file of alignments to a bigWig file
of inferred coverage values is available in the Basenji tool suite.

By avoiding assembly gaps and unmappable regions >1 kb,we
extracted (217=) 131-kbnonoverlapping sequences across the chro-
mosomes. We discarded sequences with >35% unmappable se-
quence, leaving 14,533 sequences. We randomly separated 5%
for a validation set, 5% for a test set, and the remaining 90% for
training. Within each sequence, we summed coverage estimates
in 128 bins to serve as the signal for the model to predict.

Model architecture and training

We implemented a deep convolutional neural network to predict
the experimental coverage values as a function of the underlying
DNA sequence. The high-level structure of the network consisted
of convolution layers, followed by dilated convolution layers and
a final convolution layer (Fig. 1). All layers applied batch normal-
ization, rectified linear units, and dropout. Standard convolution
layers applied max pooling in windows of two, four, four, and
four to reach the 128-bp bin size. We compared the predicted
and measured values via a Poisson regression log-likelihood func-
tion.We used TensorFlow implementations for these layers (Abadi
et al. 2016).

We chose 128 bp because it corresponds to the power of two
closest to the 146-bp distance between nucleosome core particles.
It offers a finer resolution view than the popular ChromHMM
method, which studies these data at 200-bp resolution (Ernst
and Kellis 2010). Greater sequencing depth for the training data
sets would enable enhanced resolution in future studies.

Dilated convolutions are convolution filters with gaps whose
size increases by a factor of two in each layer, enabling the recep-
tive field width to increase exponentially (Yu and Koltun 2016).
Dense connection of these layers means that each layer takes all
previous layers as input, as opposed to taking only the preceding
layer (Huang et al. 2017). This architecture allows for far fewer fil-
ters per layer because the incoming representation from the stan-
dard convolutional module and the subsequent refinements of
the dilated layers are all passed on; this allows each layer to focus
on modeling the residual variance not yet captured (He et al.
2016). We applied seven dilated convolution layers in order to
reach a receptive field width of ∼32 kb. This width will capture
only a subset of possible distal regulatory interactions (Mifsud
et al. 2015; Javierre et al. 2016), and we intend to engineer
methods to increase it. Nevertheless, it captures substantially
more relevant regulatory sequence than previous models, and ev-
idence that variant effect magnitude decreases with distance sug-
gests there will be diminishing returns to extension (The GTEx
Consortium 2017).

We initialized weight values using Glorot initialization
(Glorot and Bengio 2010) and optimized the loss function via
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stochastic gradient descent with learning rates adapted via ADAM
(Kingma and Ba 2015). Our TensorFlow implementation leverages
automatic differentiation and the chain rule to compute the gradi-
ent of the loss function with respect to each parameter to step to-
ward a local optimum (Abadi et al. 2016). We used Bayesian
optimization via the GPyOpt (https://github.com/SheffieldML/
GPyOpt) package to search for effective hyperparameters through-
out the model, including the convolution widths, convolution
filter numbers, dropout rates, learning rate, and momentum pa-
rameters (Snoek et al. 2012).

During training, we applied two strategies to augment the
data and reduce overfitting. Every other epoch, we reverse com-
plemented the DNA sequences and reversed the values. We also
iterated over minor sequence shifts of 0, 1, 2, and 3 nt left
and right. During testing, we averaged predictions over these
transformations.

Peaks binary classification comparison

To benchmark Basenji versus our previous approach Basset, we
transformed the training and test data sets to binary peak calls
on shorter sequences and trained a Basset model. We divided
each 131-kb sequence into 1024-bp subsequences. For each data
set, we called peaks on the smoothed, normalized counts in the
center 256 bp of the subsequences using a Poisson model parame-
terized by the maximum of a global and local null lambda similar
to the MACS2 approach, and applied a 0.01 FDR cutoff (Zhang
et al. 2008). We trained the Basset model using the most effective
hyperparameters yet discovered, whichwere used in a recent appli-
cation (Reshef et al. 2017).

Gene expression cluster comparison

To measure Basenji’s ability to recapitulate gene expression clus-
ters from the experimental data, we focused on the 2000most var-
iable genes and sampled sets of 1000 using a bootstrap procedure.
For each sample, we performedGaussianmixturemodel clustering
with 10 clusters on the experimental and predicted gene expres-
sion matrixes across cell types. We quantified the similarity of
the clusters with the adjusted Rand index statistic. The distribution
of the statistic was approximately normal; thus, we estimated the
mean and variance of the distribution to compute a P-value that
the distribution was greater than zero.

Regulatory element saliency maps

We desired a computationally efficient measurement of the influ-
ence of distal sequence on gene expression predictions, focusing
on the 128-bp resolution representations after the convolution
andpooling layers but before the dilated convolutions.Deep learn-
ing research has suggested several effective schemes for extracting
this information. Guided by the insights of prior work (Bach et al.
2015; Shrikumar et al. 2017), we computed experiment-specific
saliencymaps as the dot product of the 128-bp bin representations
and the gradient of the model prediction summed across the se-
quence with respect to those bin representations. The rectified lin-
ear unit nonlinearity guarantees that all representation values will
be positive. Thus, positive gradients indicate that stronger recogni-
tion of whatever triggered the unit would increase the prediction
(and weaker recognition would decrease it); negative gradients in-
dicate the opposite. Taking the dot product with the sequence’s
representation amplifies the signal and sums across the vector, ag-
gregating the effect into one signed value. Positive values identify
regions where activating elements were recognized, and negative
values identify repressor elements.

We applied the following procedure to compare saliency
scores to experimental regulatory element annotations.We down-
loaded ENCODE annotations for GM128768 promoter (ENCFF
492VIP), enhancer (ENCFF811LAE), and CTCF (ENCFF002COQ)
sites as BED files. We subtracted the promoters from the enhanc-
ers, and we subtracted both the promoters and enhancers from
the CTCF sites. We formed a background set by shuffling these an-
notationswithin the 131-kb regions forwhichwe computed scores
and removing instances that overlapped true elements. We com-
puted a P-value for every saliency score as the probability that a
normal distribution fit to the background scores would have a
more extreme value and corrected for multiple hypotheses with
the Benjamini–Hochberg false-discovery rate procedure to 0.05.

GTEX eQTL analysis

We downloaded the eQTL analysis in the GTEx V6p release and
primarily studied the χ2 statistics and significance calls (The
GTEx Consortium 2017). Nearby variants in the population data
can have highly correlated statistics due to LD. In contrast,
Basenji can isolate the contribution of individual variants. To place
SED scores and eQTL statistics on a level plane, we computed their
signed LD profile (Reshef et al. 2017). The signed LD profile of a
signed genomic annotation gives the expected marginal correla-
tion of each SNP to a hypothetical phenotype for which the true
causal effect of each SNP is the value of the annotation at that
SNP. It is what we would expect the GWAS summary statistics to
look like if Basenji predictions were exactly correct for each gene.
We computed the signed LD profile bymultiplying the SED scores
by a population LD matrix estimated from the 1000 Genomes
Phase 3 Europeans (The 1000Genomes Project Consortium2015).

We included several covariates that are known to influence
eQTL χ2 statistics: LD score and TSS distance (Liu et al. 2017). LD
score measures the amount of variation tagged by an individual
variant (Bulik-Sullivan et al. 2015). We found that LD score corre-
lated with the χ2 statistics. Thus, we downloaded precomputed
scores for the European 1000 Genomes from the LDSC package
(Bulik-Sullivan et al. 2015) and included them in the analyses.
We also found that distance to the nearest TSS correlated with
the χ2 statistics; variants closer to TSSs are more likely to influence
gene expression. To control for this effect, we annotated SNPswith
indicator variables classifying TSS distance as <500 bp, 500–2000
bp, 2000–8000 bp, or 8000–32,000 bp and computed LD scores
to each annotation using LD information from 1000 Genome
Phase 3 Europeans, according to the method of Finucane et al.
(2015).

Finally, we pruned the set of variants down to ensure that
there were no pairs of variants in strong LD (R2 > 0.5). In a first
analysis, we fit regression models individually for each tissue
with LD score and |SED-LD| to the χ2 statistics and considered
the significance of coefficients assigned to |SED-LD| across all var-
iants. In a second analysis, we added the TSS-LD variables to the
regression.

Software availability

The code to preprocess data, train models, and perform the analy-
ses described is available in the Supplemental Material and from
https://www.github.com/calico/basenji.
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