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Abstract

Purpose of review—Significant recent scientific developments have occurred in the field of 

liver repopulation and regeneration. While techniques to facilitate liver repopulation with donor 

hepatocytes and different cell sources have been studied extensively in the laboratory, in recent 

years clinical hepatocyte transplantation (HT) and liver repopulation trials have demonstrated new 

disease indications and also immunological challenges that will require the incorporation of a 

fresh look and new experimental approaches.

Recent findings—Growth advantage and regenerative stimulus are necessary to allow donor 

hepatocytes to proliferate. Current research efforts focus on mechanisms of donor hepatocyte 

expansion in response to liver injury/preconditioning. Moreover, latest clinical evidence shows that 

important obstacles to HT include optimizing engraftment and limited duration of effectiveness, 

with hepatocytes being lost to immunological rejection. We will discuss alternatives for cellular 

rejection monitoring, as well as new modalities to follow cellular graft function and near-to-

clinical cell sources.

Summary—HT partially corrects genetic disorders for a limited period of time and has been 

associated with reversal of ALF. The main identified obstacles that remain to make HT a curative 
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approach include improving engraftment rates, and methods for monitoring cellular graft function 

and rejection. This review aims to discuss current state-of-the-art in clinical HT and provide 

insights into innovative approaches taken to overcome these obstacles.
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Introduction

Hepatocyte transplantation (HT) has for some time been seen as a promising potential 

alternative to orthotopic liver transplantation (OLT) expanding the therapeutic approach to a 

collection of liver diseases. Advantages of cell transplantation compared to whole-organ 

replacement include a less invasive procedure, the ability of multiple recipients to benefit 

from a single donor, the capacity to cryopreserve cells for long-term storage and use at later 

time points, improved theoretical safety profile as graft rejection reverts the patient to their 

pretransplant state, and the inherent preservation of the native liver so as to enable potential 

recovery in cases such as acute liver failure from acetaminophen induced liver injury (1). In 

general, ideal candidate conditions for HT therapy include those where the hepatic 

scaffolding and microenvironment are preserved and vasculature remains intact. Certain 

monogenic diseases of the liver exemplify such conditions where there is primary hepatic 

expression of single gene defects without significant parenchymal damage. In such 

instances, HT is suggested to enable the replacement of a critical mass of metabolically 

normal cells with a functioning gene to support appropriate metabolic processes. Acute liver 

failure (ALF) represents another opportunity for HT therapy. Here, HT aims to temporarily 

improve liver function and allow the natural regenerative capacity of the liver to proceed or 

to stabilize and bridge affected patients to more traditional liver transplant. Indeed, 

published experiences of HT in the treatment of liver-based metabolic diseases (2–16) and 

ALF (17–21) have shown promising early results; however, only partial correction of 

metabolic disorders has been achieved and HT has not shown to reliably circumvent the 

need for traditional organ transplant in ALF (5, 6, 8, 12, 14, 21–25). Thus, in many ways HT 

has yet to live up to its expectations. This is underscored by the declining number of active 

hepatocyte transplantation programs (26, 27).

Identifying an ample source of hepatocytes for transplant, optimizing cell quality and 

storage, maximizing engraftment, controlling rejection episodes, and the ability to monitor 

the function and rejection of transplanted cells in vivo constitute the main challenges 

preventing broader implementation of HT into clinical treatment algorithms.

Hepatocyte cell transplantation involves supplementing approximately 5–10% of the native 

liver volume with human hepatocytes harvested from donor livers (28, 29). HT has been 

performed in many clinical conditions with varying success. (Table 1) A recent review of the 

clinical outcomes of the first 100 patients treated with HT has been published (30) and an 

additional 43 patient experiences have been reported (26). While a detailed clinical report is 

beyond the scope of this article, it is noted that significant barriers persist limiting broader 

HT implementation (26, 31, 32) explicitly highlighted in a recent report that included a 
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preclinical and clinical approach (25).The identification of these impediments has led to 

recent advancements looking to overcome the limitations.

The aim of this report is to critically evaluate the current state of HT, underscoring important 

advancements that have occurred in the expanding field of liver cell transplantation and 

discuss new exciting technologies that have the potential to change the landscape of liver 

replacement once and for all.

Improving Human Hepatocytes Quality

A growing interest in cell therapies has enabled multiple avenues of research investigating 

the benefits in treating a variety of liver diseases. The use of fully differentiated human 

hepatocytes is preferred to alternative cell sources, such as stem cells and their derivatives, 

due to minimizing the concern for cancerous transformation and their poor ability to 

function as primary human hepatocytes (33–36). Currently, the primary sources of 

hepatocytes for HT remains livers that have been denied for OLT, surplus tissue resulting 

from reduce-graft transplants, and normal tissue resulting from benign tumor resection 

procedures (37–39). Recent efforts looking to expand the sources of human hepatocytes 

have shown that explanted diseased livers might represent a valuable source of metabolically 

competent human hepatocytes (40). Regardless of the source, other small studies have 

shown that a variety of factors affect the yield and viability of the hepatocytes isolated from 

these donor livers, sometimes with conflicting results, and multiple factors are often present 

within a single donor specimen (39, 41–48). These findings, combined with the knowledge 

that the quality of isolated hepatocytes is directly correlated with clinical outcomes after HT, 

has led investigators to search for strategies to optimize the cell product in hepatocyte 

isolation. A recent investigation, utilizing over 1000 samples, has greatly expanded the 

understanding of the interplay among various factors affecting viability and yield of isolated 

human hepatocytes (49). (Table 2) The investigators then used the data to generate 

algorithms for the prediction of isolated hepatocyte viability and yield which have been 

made publicly available (www.klinikum.uni-uenchen.de/Chirurgische-Klinik-und-

Poliklinik-Grosshadern/de/0700-forschung/ag-leberregeneration/core-facility/

Qualitaetsrechner_Hepatozyten.html). While predictive modeling is provocative, ultimate 

hepatocyte isolation success is determined by validated methodology and protocols. 

Therefore, modifications aimed at improving the quality of isolated human hepatocytes are 

constantly being explored.

Recent introduction of liberase, an enzyme used in pancreatic islet cell isolation, and N-

acetylcysteine (NAC), an antioxidant with multiple hepatoprotective properties, into 

established isolation protocols has enabled improvements in overall isolation success from 

40% to 70% (33, 50, 51). Additional strategies such as machine perfusion techniques and 

perfusate selection have been shown to dramatically increase cell yields (52, 53). Moreover, 

machine perfusion organ reconditioning has proven valuable in improving cell viability and 

function of ischemic livers and experimentally on fatty livers (53–56). Alternatively, the 

addition of polyethylene glycol to hypothermic preservation solutions has been shown to 

improve hepatocyte survival following successful isolation (57–59). Ultimately, definitive 

assessment of hepatocyte quality is critical prior to proceeding with HT. Novel approaches 
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with the capacity to quickly and affordably assess a variety of hepatic functions, as a 

reflection of quality, are enabling more personalization of HT preparations (26, 60, 61). 

Future work aimed at the standardization of the procedural techniques ranging from 

isolation through cryopreservation, thawing, and functional assessment of hepatocytes prior 

to HT will enable the incorporation of various center experiences into longitudinal studies 

advancing the field of HT in humans.

Improving Transplanted Hepatocytes Engraftment and Repopulation

After decades of experimental and clinical trials, we now know that 1) a selective growth 

advantage over native hepatocytes and 2) regenerative stimuli are necessary to allow donor 

hepatocytes to proliferate after hepatocyte transplantation. Engraftment describes the process 

by which transplanted hepatocytes translocate from the sinusoidal space into the recipient 

liver plates following disruption of the sinusoidal endothelium and integrate into the host 

liver parenchyma. This process happens soon after the vascular delivery of hepatocytes into 

the native liver and can last for a few days, but remains relatively inefficient with potential 

loss of >70% of infused cells (62). Once hepatocytes have engrafted in the liver sinusoids, 

transplanted hepatocytes should be induced to repopulate the liver parenchymal by providing 

growth advantage and a regenerative stimulus. Published reports describe a range of 

variability (6, 11, 15, 26) and efforts to provide donor cells a selective growth advantage 

over the host liver include partial hepatectomy (26, 63) (short-term regenerative stimulus), 

preoperative portal vein occlusion (32, 64, 65) (short-term regenerative stimulus), and native 

liver irradiation (26, 66–69) (growth advantage). However, it is acknowledged that some of 

these techniques, such as major hepatectomy and chemotherapeutic irradiation, carry 

unacceptably high risks for human patients limiting their use (13, 32, 33, 68, 69). Since the 

mechanism of these approaches are essentially different; providing either regeneration 

stimulus or growth advantage, clinical approaches that seek to deliver both are desirable to 

maximize the potential of donor hepatocytes to repopulate livers.

Segmental portal embolization, by causing transitional ischemia, provides a strong 

regenerative stimulus and has demonstrated good regeneration capacity with acceptable risk 

(13, 70). In this procedure, a balloon is positioned in the left portal vein just beyond the 

bifurcation. It is inflated so as to occlude the left portal vein but allows transportal infusion 

of cells into the right lobe of the liver through the side port of the endovascular sheath (32); 

consequently, there is a contraction of remaining liver volume in which the transplanted 

hepatocytes may engraft limiting the donor cell mass that can be delivered. Volumetric portal 

embolization (VPE) is a newly described procedure aimed at addressing this barrier to 

engraftment (71). The procedure, which consists of partial and random distal embolizations 

of presinusoidal vessels, demonstrated the ability to induce appropriate regenerative signals 

yet preserved the total liver parenchyma enabling a small long-term increase in the number 

of transplanted cells and the efficacy of engraftment (71).

To address the problem of cellular engraftment and repopulation of donor hepatocytes after 

cell transplantation, liver-directed radiation has been suggested as an alternative to facilitate 

cellular repopulation by inhibiting host hepatocyte proliferation and inducing postmitotic 

hepatocyte death, allowing donor hepatocytes to preferentially proliferate and repopulate the 
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irradiated host liver (25). The timing of radiation preconditioning of the recipient liver 

related to HT can also affect engraftment. Delaying HT by 24 hours after preparative hepatic 

irradiation in mice was shown to enhance engraftment (72) and a shortened interval from 

irradiation to cell transplant resulted in a lower than anticipated engraftment rate in human 

studies (25).

Another approach to solve the engraftment and repopulation challenge is by utilizing gene 

therapy as a tool to select and provide a repopulating advantage (73). Nygaard and 

colleagues elegantly showed that by introducing a therapeutic transgene (coagulation factor 

9) with a selection marker (shRNA, that makes cells resistant to a small-molecule inhibitor 

of fumarylacetoacetate hydrolase) into transplanted hepatocytes, they could 

pharmacologically improve the transgene expression in a living animal. These liver 

preconditioning experiments indicate that it is possible to precondition liver cells using 

gene-editing approaches to facilitate repopulation of transplanted hepatocytes.

Recent investigations have also interrogated the role of the innate immune system in 

preventing engraftment. Until hepatocytes traverse the endothelium they remain vulnerable 

to processes which induce rapid immunological clearance. One such process, the instant 

blood-mediated inflammatory reaction (IBMIR) occurs in which transplanted hepatocytes 

are recognized by the innate immune system, leading to activation of both complement and 

coagulation pathways resulting in cell destruction and low engraftment (74, 75). Importantly, 

traditional immunosuppression has not been shown to ameliorate the IBMIR (76). Strategies 

aimed at manipulating the coagulation component (74), the inflammatory component (77), 

or both in combination (78) of the IBMIR have been shown to improve engraftment.

An alternative approach to prevent activation of the IBMIR following HT is to implant the 

donor cell mass outside of the portal circulation. One strategy involves the encapsulation of 

the donor cells in microbeads which provide an immune-protective coating while enabling 

the maintenance of necessary metabolic functions (75, 79–82). This approach is more 

amenable to the management of acute liver failure and recent work establishing animal 

models and developing mechanisms to create banked, cryopreserved microbeads for 

emergency use are potential advancements (83, 84). Additional techniques used to evade the 

host immune system include tissue-engineering strategies whereby liver mass constructs are 

assembled ex vivo and then inserted (usually into the peritoneal cavity) to provide a 

functional support system (85–87). Unfortunately, these approaches have been limited by 

overall functional mass efficiency; however, recent advancements have demonstrated higher 

efficiency as well as a reduction in initial cell function loss (88). Collectively, these 

advancements make the goal of bioengineered liver units for transplantation potentially more 

attainable.

Improving Transplanted Hepatocyte Survival and Monitoring

Historically, HT has only partially corrected genetic disorders with the longest registered/

published clinical improvement of about 2 years after transplantation (89). A recent report 

by our group indicates that a combination of radiation preconditioning and segmental portal 

embolization is effective to improve engraftment and repopulation of transplanted 
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hepatocytes; however, the long-term survival of the graft was hampered by rejection (25). 

With HT, it is difficult to identify transplanted cells by biopsy, which is routinely performed 

in solid organ transplant recipients. Thus, it is difficult to know definitively whether the 

donor cells are being rejected until it is too late to intervene.

Traditional organ transplantation requires regular allograft monitoring for the development 

of complications such as cell-mediated and antibody-mediated rejection in addition to 

operational tolerance, all of which assist in the immunosuppressive management of the 

transplant recipient. Currently, no consensus exists regarding optimal immunosuppressive 

regimens in HT, with most centers adopting or slightly modifying their institutional 

protocols for solid organ transplant (1, 2, 5, 6, 12, 15, 26, 29, 90). However, it is becoming 

clear that the immune responses to HT differ considerably from solid organ transplant and 

refined immunosuppression strategies are needed to improve the clinical outcome (91).

Cell mediated rejection has been shown to result in allograft loss after liver cell 

transplantation (2). Tools used in the monitoring of whole or partial liver allografts, such as 

circulating liver enzymes, are impractical in the setting of HT where only a minority of liver 

cells constitute the graft (26, 92). Additional serum biomarkers that may be more disease 

specific, such as bilirubin in Crigler-Najjar or amino acids and ammonia in metabolic 

diseases, have not been sensitive enough to detect rejection before damage to the allograft is 

irreversible (25). Routine liver biopsy may be of little use given the random nature of 

engraftment and the resulting variability in the distribution of donor cells (25, 92). Recent 

work has proposed that anti-donor activity, as measured by an allospecific CD154+ assay to 

detect recipient cytotoxic memory T cells, may be a possible strategy to monitor for early 

evidence of rejection in the setting of HT (25, 93–95). Furthermore, the assay correlated 

well with a response to a change in therapy, thus potentially identifying a solution to one of 

the major obstacles in the field of HT (25). Additionally, donor-specific antibody (DSA) 

driven rejection has recently evolved into an established pathology in solid organ liver 

transplant (96). The development and contribution of donor-specific antibodies (DSA) in HT 

is still very much unknown. The presence of de novo DSA following HT has been 

temporarily associated with graft loss (9, 25) and in one reported case was associated with 

the peak measurement of the immune reactivity index score that has been shown to enable 

the prediction rejection (25). Ultimately, a more robust understanding of the immunological 

responses induced by HT is needed to help guide therapeutic regimens that will enable 

extended cell graft survival and broader application of HT to patients who will benefit from 

this promising therapy. Investigators have looked at specific immune stimulatory and 

inhibitory signals regulating the innate immune response in HT. Researchers investigating 

the role of CD47, a member of the Ig superfamily which provides a protective signal against 

phagocytotic activity of macrophages, recently reported on the contribution of donor CD47 

in the regulation of T-cell alloresponses in hepatocyte transplantation. Thru a collection of 

innovative experiments, they were able to show the important role that CD47 plays in the 

control of not only T-cell alloresponses but also tolerance induction following HT (97). This 

work, combined with other published works, adds to the building evidence that CD47 

incompatibility may induce both innate and adaptive immune mediated rejection of 

transplanted hepatocytes (97–101).
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Additional strategies that are being explored to enable post-transplant cell monitoring 

include the use of non-invasive imaging techniques such as magnetic resonance imaging 

(MRI). These MRI-based cell tracking methods have demonstrated the ability to locate 

nano- or micro-particle tagged hepatocytes in vivo. Importantly, newer technologies, 

including the use of cells labeled with micron-sized iron oxide particles (MPIO), have 

shown the capacity to detect single cells by MRI (102–105). Recently, investigators were 

able to show that porcine hepatocytes could successfully be labeled with MPIO and still 

maintain their multitude of metabolic functions (106). However, a recurrent challenge is the 

ability to quantify the number of cells being detected and to confirm that the signal detected 

is actually an engrafted hepatocyte and not uptake by kuppfer cells or macrophages after 

hepatocytes have been destroyed. Additional imaging modalities including Cherenkov 

illumination imaging (CLI), photoacoustic imaging (PAI), surface enhanced Raman imaging 

(SERI), and theranostic imaging represent further strategies for in vivo cell transplantation 

monitoring (107–109). Very recently, the thyroidal sodium iodide symporter (NIS) gene was 

used to visualize transplanted hepatocytes. HCs were transduced ex vivo with the Slc5a5 

(NIS) gene under the control of the thyroxine-binding globulin promoter. NIS-transduced 

hepatocytes could robustly concentrate radiolabeled iodine in vitro. NIS-transduced 

hepatocytes were readily imaged in vivo by single-photon emission computed tomography, 

and this demonstrated for the first time noninvasive 3-dimensional imaging of regenerating 

tissue (110). While challenges such as the capability to assess for viability and safety in 

tagged cells remain, the ability to monitor cell location after transplant would be an 

important advancement in the development of human regenerative medicine therapies.

So, What’s next for Clinical Hepatocyte Transplantation?

Clinical trials of hepatocytes transplantation have only demonstrated that is a safe procedure. 

Questions regarding transplantation of adequate cell numbers to produce clinically 

satisfactory repopulated liver mass for the different monogenic liver diseases remain. Given 

the short-term graft survival and immunological hurdles that have been identified in the 

latest hepatocyte allotransplantation trials, autologous-gene-corrected and fully functional 

hepatocytes would be ideal. Despite progress in advancing the differentiation of human stem 

cells into hepatocytes in vitro, cells that replicate the ability of human primary adult 

hepatocytes to proliferate and completely replace livers for clinical applications has not been 

achieved. Ultimately, clinical transplantation of autologous liver cells will require the 

generation of high numbers of liver cells with functionality equal to primary human 

hepatocytes. Based on the observations that in vivo maturation has been confirmed by 

genome-wide analysis when human hepatocyte-derived cells were transplanted in the livers 

of FRG (immunocompromised Fah-deficient mouse) mice for 9 months, it is possible that 

animals could be used as in vivo bioreactors to mature and biofabricate large amounts of 

functional human hepatocytes for transplantation. One could imagine future scenarios where 

liver tissue could be collected from patients with monogenic diseases and gene correction 

could be achieved in vitro using the CRISPR/CAS9 system. Those cells which successfully 

underwent functional gene correction could then be selected and amplified in vivo using 

xenograft animal models to grow hepatocytes. A critical mass of modified, mature 

hepatocytes would be produced which would enable the original patient/donor to receive an 

Squires et al. Page 7

Curr Transplant Rep. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



autologous hepatocyte transplantation of their own genetically corrected cells. Hurdles to 

this approach would need to be overcome, including exposing patients to risky surgical 

resections and quickening the process of gene correction and selection as isolated human 

hepatocytes are known to undergo rapid dedifferentiation in vitro.

Several, alternative cell sources including induced pluripotent stem cells (iPSC) and 

immunomodulatory human amnion epithelial cells (hAEC), as well as others have been 

developed and studied. (Table 3) To be therapeutically effective, these surrogate hepatocytes 

must retain the ability to perform the complex metabolic functions and the proliferation 

capacity of primary human hepatocytes. Ideally, they are also autologous so as to eliminate 

the need for immunosuppression and the potential for rejection (111).

Protocols have been developed to differentiate human pluripotent stem cells into a fetal 

hepatocyte-like cells (HLC) (112) with studies suggesting that in vivo, these cells could go 

on to develop a more adult-like phenotype (113–115). Moreover, protocols have been 

developed that have enabled the reprogramming of somatic cells into inducible pluripotent 

stem cells (116, 117). The ability to reprogram individual patient’s somatic cells, such as 

skin fibroblasts, into iPSCs and then re-direct them to develop into HLC has several 

advantages over other cell sources. These include the generation of an infinitely expandable 

population of cells and the ability to circumvent immunologic rejection following 

transplantation. Furthermore, advances in gene editing technologies have facilitated the 

possibility of correcting the specific genetic anomaly that induce disease and subsequently 

engineer disease-free autologous cells for re-introduction via HT (118). These technologies 

are already being tested in murine xenograft models whereby human HLC are being 

differentiated from iPSCs, engrafted into livers of immunosuppressed mice, and then used to 

study physiology as well as develop new pharmacologic therapies (119, 120).

hAECs are fetal-derived cells isolated from the amnion membrane in full-term human 

placentas. Several recent developments have renewed interest in these cells, particularly as it 

relates to their use in managing liver disease. hAECs are available without the accompanied 

ethical or religious concerns. Furthermore, in contrast to other sources of pluripotent cells, 

they do not express telomerase and have not been found to be immortal or tumorigenic when 

transplanted. They have been reported to express genes normally found in mature liver and, 

because of an immune-privileged status, might enable the avoidance of immunosuppression 

in the recipient (121). Prior studies have demonstrated the feasibility of hAEC transplant in 

patients with lysosomal storage disorders (122–124) and recent work in animal models 

suggest additional benefit in managing both congenital metabolic disease and liver fibrosis 

(125).

In summary, the cumulative experience in HT has demonstrated that while partial 

corrections of metabolic liver disease can be achieved, long-term cures have been elusive. 

Acute liver failure has been successfully managed with HT and remains an attractive area for 

therapeutic expansion. Many barriers to HT have been identified and continued scientific 

and patient directed efforts will be required to identify new cell sources for transplant, 

enhance engraftment, optimize safety, and improve the outcome thus enabling a broader 

implementation of this therapy in the treatment of patients with liver disorders.
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Table 1

Experience of hepatocyte transplantation in human diseases

Inborn errors of metabolism Acute liver failure

  Acute intermittent porphyria   Acute fatty liver of pregnancy

  a1-Antitrypsin deficiency   Drug induced

  Crigler-Najjar syndrome   Idiopathic

  Factor VII deficiency   Mushroom poisoning

  Familial hypercholesterolemia   Post-surgical

  Glycogen storage diseases   Viral

  Hemochromatosis-hemosiderosis   

  Hyperlipidemia Other

  Infantile Refsum's disease   Biliary atresia

  Primary oxalosis   Cirrhosis

  Phenylketonuria

  PFIC 2, ABCB11 deficiency, Bile salt exporter pump disease

  Tyrosinemia

  Urea cycle defects

    Ornithine transcarba mylase

    deficiency

    Argininosuccinate lyase deficiency

    Carbamoylphosphate synthase type 1 deficiency

    Citrullinemia

PFIC, Progressive familial intrahepatic cholestasis
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Table 2

Factors affecting yield and viability of isolated hepatocytes

Yield Viability

Fibrosis ↓ ↓

Chemotherapy ↑

Steatosis ↓ ↓

Liver enzyme and bilirubin elevation ↓ ↓

Weight of perfused liver ↓

Cold ischemia time ↓
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Table 3

Alternative sources for future cell-based therapies

Cell Type Potential Indication Human studies

Mesenchymal Stem Cells Liver Failure Yes

Liver Cirrhosis

Embryonic Stem Cells Metabolic Liver Disease No

Liver Failure

Induced pluripotent stem cells Metabolic Liver Disease No

Liver Failure

Human amnion epithelial cells Metabolic Liver Disease Yes

Liver Cirrhosis

Lysosomal Storage Disease

Curr Transplant Rep. Author manuscript; available in PMC 2018 December 01.


	Abstract
	Introduction
	Improving Human Hepatocytes Quality
	Improving Transplanted Hepatocytes Engraftment and Repopulation
	Improving Transplanted Hepatocyte Survival and Monitoring
	So, What’s next for Clinical Hepatocyte Transplantation?
	References
	Table 1
	Table 2
	Table 3

