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HIV-associated neurocognitive disorders (HANDs) share common symptoms with Alzheimer’s disease (AD), which is characterized by
amyloid-� (A�) plaques. Plaques are formed by aggregation of A� oligomers, which may be the toxic species in AD pathogenesis, and
oligomers are generated by cleavage of amyloid precursor protein (APP) by �-site amyloid precursor protein cleaving enzyme 1 (BACE1).
BACE1 inhibitors reverse neuronal loss and cognitive decline in animal models of AD. Although studies have also found evidence of
altered APP processing in HIV � patients, it is unknown whether increased BACE1 expression or A� oligomer production is a common
neuropathological feature of HAND. Moreover, it is unknown whether BACE1 or APP is involved in the excitotoxic, NMDAR-dependent
component of HIV-associated neurotoxicity in vitro. Herein, we hypothesize that HIV-associated neurotoxicity is mediated by NMDAR-
dependent elevation of BACE1 and subsequent altered processing of APP. Supporting this, we observed elevated levels of BACE1 and A�
oligomers in CNS of male and female HIV � patients. In a model of HIV-associated neurotoxicity in which rat neurons are treated with
supernatants from HIV-infected human monocyte-derived macrophages, we observed NMDAR-dependent elevation of BACE1 protein.
NMDA treatment also increased BACE1 and both pharmacological BACE1 inhibition and genetic loss of APP were partially neuropro-
tective. Moreover, in APP knock-out (APP �/�) mouse neurons, NMDA-induced toxicity was BACE1 independent, indicating that cyto-
toxicity of BACE1 is dependent upon APP cleavage. Our findings suggest that increased BACE1 and the resultant A� oligomer production
may contribute to HIV-associated neuropathogenesis and inhibition of BACE1 could have therapeutic potential in HANDs.
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Introduction
HIV-associated neurocognitive disorders (HANDs), which per-
sist in 15–55% of HIV� individuals despite viral suppression by

antiretroviral therapy (ART), are a constellation of cognitive, be-
havioral, and motor impairments (Sacktor et al., 2016). HANDs
have certain clinical (Sacktor and Robertson, 2014) and patho-
logical (Clifford et al., 2009; Borjabad and Volsky, 2012; Levine et
al., 2013; Ortega and Ances, 2014) features in common with
Alzheimer’s disease (AD) and, in an aging HIV � populationReceived May 8, 2017; revised March 16, 2018; accepted March 20, 2018.
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Significance Statement

HIV-associated neurocognitive disorders (HANDs) represent a range of cognitive impairments affecting �50% of HIV � individ-
uals. The specific causes of HAND are unknown, but evidence suggests that HIV-infected macrophage infiltration into the brain
may cause neuronal damage. Herein, we show that neurons treated with conditioned media from HIV-infected macrophages have
increased expression of �-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protein implicated in Alzheimer’s disease
pathogenesis. Moreover, inhibition of BACE1 prevented neuronal loss after conditioned media exposure, but had no effect on
HIV-associated neurotoxicity in neurons lacking its cleavage target amyloid precursor protein. We also observed increased BACE1
expression in HIV � patient brain tissue, confirming the potential relevance of BACE1 as a therapeutic target in HANDs.
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(Valcour, 2013), it is increasingly difficult to distinguish AD from
the combined effects of age and HIV (Xu and Ikezu, 2009). Un-
derstanding the common pathways involved in neuropathology
may improve treatment efficacy in HANDs.

In AD, increased amyloid precursor protein (APP) cleavage
by �-site amyloid precursor protein cleaving enzyme-1 (BACE1)
leads to overproduction of amyloid-� (A�) peptides (MacLeod et
al., 2015). A� peptides can oligomerize and ultimately form ex-
tracellular aggregates called plaques (Trojanowski et al., 1995).
Importantly, although extracellular plaques are a defining feature
of AD, A� oligomers are more likely to be the neuropathogenic
species (Kayed and Lasagna-Reeves, 2013; Sengupta et al., 2016).
In HANDs, evidence of a role for amyloid is mixed, but numer-
ous studies (Esiri et al., 1998; Brew et al., 2005; Rempel and Pul-
liam, 2005; Achim et al., 2009; Clifford et al., 2009) have reported
altered APP processing and metabolism, even in patients on ef-
fective ART regimens (Green et al., 2005; Soontornniyomkij et
al., 2012). Unlike in AD, however, ART-treated HANDs patients
do not develop extracellular plaques. Rather, evidence suggests
diffuse intracellular accumulation of full-length APP, A� mono-
mers, or A� oligomeric species (Xu and Ikezu, 2009; Ortega and
Ances, 2014). Despite its proposed role in AD neuropathogenesis
(Kayed and Lasagna-Reeves, 2013; Sengupta et al., 2016), a lack of
antibody specificity and wide variation across study designs have
made it difficult thus far to determine whether oligomeric A�
specifically is accumulated in HANDs.

BACE1 is elevated in AD brains (Yang et al., 2003; Johnston et
al., 2005) and BACE1 inhibition effectively decreases plaque bur-
den and improves cognition in animal models of AD (Ohno et al.,
2004; Singer et al., 2005; Chang et al., 2011). Evidence from in
vitro experiments in primary rodent neurons shows that BACE1
activity and localization are also affected by treatment with the
HIV proteins transactivator of transcription (tat) and glycopro-
tein 120 (gp120) (Chen et al., 2013; Kim et al., 2013; Bae et al.,
2014). However, it remains unclear what role BACE1 plays in
HIV-associated neurotoxicity and neuropathogenesis.

Macrophages sustain productive viral infection in HIV pa-
tient brains (Koenig et al., 1986; Petito et al., 1986) and infected
macrophages may mediate HIV-associated neurotoxicity by secret-
ing factors that include viral proteins, chemokines, and glutamate
(Kaul, 2008). Glutamate release in particular has been linked to neu-
ronal damage and cognitive dysfunction in HIV both in vivo and in
vitro (Jiang et al., 2001; Zink et al., 2002). Similarly to AD pathol-
ogy (Mehta et al., 2013), in vitro evidence suggests that glutamate
may cause neuronal damage in HIV through NMDAR-dependent
mechanisms of excitotoxicity (Giulian et al., 1990; Chen et al.,
2002; O’Donnell et al., 2006). Therefore, we used a previously
developed and well characterized in vitro model of HIV-
associated neurotoxicity (Chen et al., 2002; O’Donnell et al.,
2006) in which cultured rat neurons are exposed to supernatants
collected from HIV-infected human monocyte-derived macro-
phages (HIV/MDMs). In this model, neurotoxic injury induced
by HIV/MDM supernatants is entirely dependent on NMDAR
activation (Giulian et al., 1990; Jiang et al., 2001; Chen et al., 2002;
O’Donnell et al., 2006).

Based on the similarities observed thus far between AD and
HANDs in relation to amyloid metabolism (Ortega and Ances,
2014), we hypothesized that neurotoxicity induced by HIV/MDM
supernatants is dependent upon NMDAR-mediated upregula-
tion of BACE1 and a resultant increase in amyloidogenic APP
processing. To address the potential clinical relevance of this
mechanism, we also hypothesized that A� oligomers and BACE1
protein levels are increased in HANDs patient brains.

Materials and Methods
Chemicals and reagents. The following antibodies were used in this study:
�-site amyloid precursor protein cleaving enzyme 1 (BACE1; catalog
#5606S RRID:AB_1903900), presenilin 1 (PS1; catalog #5643S RRID:
AB_10706356), and �-actin (catalog #3700 also 3700P, 3700S RRID:
AB_2242334) (all from Cell Signaling Technology); binding Ig protein
(BiP; catalog #610978 RRID:AB_398291; BD Transduction Laboratories;
APP (catalog #ab32136 RRID:AB_2289606), a disintegrin and metallo-
proteinase domain-containing protein 10 (ADAM10; catalog #ab1997
RRID:AB_302747), and microtubule-associated protein 2 (MAP2; cata-
log #ab5392 RRID:AB_2138153) (all from Abcam); actin (catalog #A2066
RRID:AB_476693; Sigma Aldrich); and MAP2 (catalog #801801 RRID:
AB_2564643; BioLegend. The mouse monoclonal antibody against
BACE1 (3d5) was developed by Dr. Robert Vassar (Feinberg School of
Medicine, Northwestern University, Chicago, IL). The antibody against
A�-oligomers (Nab61) was kindly provided by Dr. Virginia Lee (The
Perelman School of Medicine, University of Pennsylvania, Philadelphia,
PA). The following chemical reagents were used: DAPI (Citifluor); DMEM,
neurobasal medium, and B27 supplement (all from Invitrogen); Brad-
ford protein assay dye, polyvinylidene fluoride (PVDF) membrane, and
prestained broad range molecular weight ladder (all from Bio-Rad);
Tween 20, Triton X-100, Fast Green FCF, protease inhibitor mixture,
bovine serum albumin (BSA), dimethyl sulfoxide (DMSO), and cytosine
�-D-arabinofuranoside hydrochloride (AraC) (all from Sigma Aldrich);
poly-L-lysine (Peptides International); normal antibody diluent (NAD;
Scytek Laboratories); HBSS, trypsin, and GlutaMAX (all from Thermo
Fisher Scientific); Luminata Classico ECL and �-secretase inhibitor (BSI)
II and IV (all from Millipore); and amino-5-phosphonovaleric acid (AP5),
6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), dizocilpine (MK-801),
and MRK 560 (MRK) (all from Tocris Bioscience). All HRP-conjugated
secondary antibodies were obtained from Thermo Fisher Scientific and
all fluorescent dye-conjugated secondary antibodies were obtained from
Jackson ImmunoResearch Laboratories.

Preparation of primary rat cortical neuron cultures. Primary rat cortical
cultures were prepared from embryonic day 18 Sprague Dawley rat em-
bryos (Charles River Laboratories, RRID:RGD_734476). Brains were
isolated and dissected cortices were incubated for 40 min in DMEM and
0.027% trypsin as described previously (Wilcox et al., 1994). Cells were
then washed in saline, triturated, resuspended in neurobasal medium
supplemented with B27, and plated on poly-L-lysine-coated 6-well (9.4
cm 2 growth area) or 24-well (1.9 cm 2 growth area) plates (USA Scien-
tific) at a concentration of 750,000 cells/ml. After 48 h, cells were treated
with 10 �M AraC to remove dividing glial cells. Cultures were maintained
in neurobasal medium supplemented with B27 at 37°C with 5% CO2 as
described previously (Akay et al., 2011; Gannon et al., 2017). At 10 d in
vitro (DIV), 20% fresh medium was added. Cells were treated on DIV
14 –21.

Preparation of primary mouse cortical neuroglial cultures (MCCs). Pri-
mary mouse cortical cultures were prepared from embryonic day 16 –18
C57BL/6 WT or APP �/� mouse embryos (The Jackson Laboratory,
RRID:IMSR_JAX:004133). Brains were isolated and dissected cortices
were incubated for 15 min in HBSS and 0.025% trypsin. Cells were then
washed with saline, triturated, and resuspended in neurobasal medium
supplemented with B27 and GlutaMAX before plating on poly-L-lysine-
coated 6-well (9.4 cm 2 growth area) or 24-well (1.9cm 2 growth area)
plates (USA Scientific) at a concentration of 250,000 cells/ml. Cells were
maintained at 37°C in 5% CO2 as described previously (Akay et al., 2011;
Gannon et al., 2017) and treated on DIV 14.

Drug treatments. Cells were treated for the time and dose specified
for each experiment with NMDA, AP-5 (dissolved in H2O), MK-801,
CNQX, BSI II/IV, or MRK (dissolved in DMSO). Pretreatments with
MK-801, AP-5, and CNQX were 1 h before treatment with HIV/MDM
supernatant for 16 or 24 h. Pretreatments with BSI or MRK were 1 h
before 24 h treatment with HIV/MDM supernatant or NMDA.

HIV/MDM supernatants. Monocytes were isolated from healthy hu-
man donors and plated at 400,000 cells/ml density in 1.2 ml of medium
per well. Cells differentiated into macrophages over 7 d before infection
with HIV-1 as described previously (Cross et al., 2011). Briefly, macro-
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phages were exposed to 20 ng of p24/well of HIV-1 T-cell-propagated
virus (89.6) for 24 h before virus was removed and cells were rinsed
thoroughly with DMEM. Supernatants were then collected every 3 d and
macrophage infection was confirmed by HIV reverse transcriptase (RT)
assay. DIV 14 –21 rat neuronal cultures were treated with a 1:20 to 1:80
dilution of HIV/MDM supernatant; results presented are those in which
dilutions led to �50% MAP2 loss after 24 h.

Immunofluorescence. Human tissue samples were prepared and stained as
follows: paraffin-embedded tissue sections from the hippocampus of
control and HIV � human autopsy cases obtained from the National
NeuroAIDS Tissue Consortium (NNTC) were prepared for immunoflu-
orescent staining with minor modifications of previously described pro-
tocols (Lindl et al., 2007). The age, neurocognitive status, sex, and
postmortem interval of each human specimen was provided by the
NNTC (Table 1); the cohort included both males (n � 10) and females
(n � 3). Glass slides containing paraffin-embedded tissue sections (10
�M) were heated overnight to 55°C, deparaffinized in Histoclear, and
rehydrated in 100%, 95%, 90%, and 70% ethanol washes. Tissue was
then incubated in 3% H2O2 in methanol to inactivate endogenous per-
oxidase activity. Antigen unmasking was performed with target retrieval
solution at 95°C for 1 h. Sections were then blocked with 10% normal
goat serum and incubated with primary antibody overnight at 4°C, fol-
lowed by secondary antibody incubation at room temperature. Tyramide
amplification was used to detect BACE1 and DNA was visualized with
DAPI staining. Slides were washed with PBS plus 0.1% Tween 20 (PBS-T)
and mounted in Citifluor AF1 and analyzed by laser confocal microscopy
at 600� on a Radiance 2100 equipped with argon, green He/Ne, red
diode, and blue diode lasers (Bio-Rad). Postacquisition analysis was per-
formed using MetaMorph version 6.0 software (Universal Imaging). To-
tal intensity for MAP2 was determined by the measurement of integrated
pixel intensity per z-stack image, where integrated pixel intensity is
defined as total pixel intensity per image times the area of pixels with
positive MAP2 signal. Data were analyzed using GraphPad Prism statis-
tical software (version 5.0; RRID:SCR_002798) and data are expressed as
mean � SEM. Primary neuronal cultures were prepared and stained as
follows. After treatment, cells were rinsed with PBS and fixed with 4%
paraformaldehyde for 20 min. Cells were then rinsed twice in PBS and
three times in PBS-T, followed by a 30 min incubation with a blocking/
permeabilization solution containing 0.2% BSA and 0.1% Triton-X in
PBS. Cells were rinsed three times in PBS-T and incubated with MAP2
primary antibody diluted at 1:4000 in NAD for 2 h at room temperature.
After three washes in PBS-T, cells were incubated with a FITC-conjugated
goat anti-mouse secondary antibody diluted at 1:500 in NAD for 30 min
at room temperature. Cells were then imaged using a Keyence BZ-X-700
digital fluorescent microscope affixed with UV, FITC, Cy3, and Cy5
filters. Images captured at 20� magnification were analyzed with the
Keyence BZ-X software to quantify the number of neurons. Specifically,
the number of neurons, identified as cells expressing MAP2, was aver-

aged across a total of 25 fields/well, with 2– 4 wells/treatment condition
for each biological replicate.

Immunoblotting. Human tissue was prepared and immunoblotted as
follows: flash-frozen whole-brain tissue samples from HIV � control
(n � 5) and HIV � (n � 13) human autopsy cases for the first cohort and
from HIV � control (n � 20) and HIV � (n � 40) human autopsy cases
for the second cohort were obtained from the tissue banks of the NNTC.
Frontal cortex was dissected from Brodmann areas 9 or 10. Tissue was
prepared for Western blotting as described previously (Lindl et al., 2007).
Briefly, frozen brain tissue (100 mg) was homogenized and solubilized in
ice-cold tissue extraction buffer (50 mM Tris pH 7.5, 0.5 M NaCl, 1%
NP-40, 1% SDS, 2 mM EDTA, 2 mM EGTA, 5 mM NaF, 0.4 mM Na3VO4,
1 mM DTT and 1:100 protease inhibitor mixture). Extracts were then
centrifuged at 12,000 � g at 4°C for 20 min. Next, 30 �g of protein for
each sample was loaded into each lane of 10% Bis-Tris gels and trans-
ferred to PVDF membranes, followed by blocking with Tris-buffered
saline plus 0.1% Tween 20 (TBS-T) with 5% BSA for 30 min at room
temperature. Membranes were probed with various primary antibodies
overnight at 4°C, followed by secondary antibody incubation at room
temperature. Tissue culture samples were prepared and immunoblotted
as follows: cells were rinsed twice with PBS and lysed with whole-cell lysis
buffer (50 mM Tris pH 7.5, 120 mM NaCl, 0.5% NP-40, 0.4 mM NaF, 0.4
mM Na3VO4, and 1:100 protease inhibitor mixture). Protein superna-
tants were collected with centrifugation at 20,000 � g for 10 min at 4°C.
Protein concentrations were determined using the Bradford method and
3–5 �g of total protein per condition was loaded into each lane of precast
10% Bis-Tris NuPAGE Novex gels (Thermo Fisher Scientific). Proteins
were then transferred to PVDF membranes, which were blocked with 5%
BSA in TBS-T for 1 h at room temperature and incubated overnight with
primary antibodies at 4°C. After three washes in TBS-T, membranes were
incubated with HRP-conjugated secondary antibody (1:5000 in 5% BSA
and TBS-T) for 30 min at room temperature. Bands were visualized by
chemiluminescence with Luminata Classico ECL and images were cap-
tured by film development or ChemiDoc Touch imaging system (Bio-
Rad). Equal loading and even transfer of samples were confirmed using
Fast Green staining of the membranes. Densitometric analysis of band
intensities was conducted using ImageJ software version 1.44 (RRID:
SCR_003070) and all bands were normalized to Fast Green stain.

Rat A� ELISAs. Media were collected from NMDA-treated primary rat
neurons at several time points. Samples were centrifuged at 4°C 20,000

Figure 1. A� oligomers are elevated in the brains of HIV � cases. Paraffin-embedded tissue
sections from hippocampus of HIV � and HIV � individuals were prepared for immunofluores-
cent analysis and visualized by laser confocal microscopy. Representative images are shown
from hippocampal sections triple-labeled for A� oligomers (red), MAP2 (green), and nuclei
(blue). Red and green colocalization appears yellow.

Table 1. Summary of human cases used for immunofluorescence staining in
Figure 1

NNTC
ID #

HIV
status

Neurocognitive
diagnosis Age Sex

PMI
(h)

ART
� 12 mo

A�
Oligoa

3009 � Normal 53 F N/A � �
3012 � Normal 50 M N/A � �
7665 � Not Tested 47 F 19.18 � �
8087 � Normal 50 M 18 � �
6771 � Normal 46 M 2.75 � �
6568 � HAD 32 M 14 � ��
7680 � HAD 34 F 5 � ��
8270 � MCMD 49 M 67.33 � �
8382 � MCMD 37 M 11.5 � �
6683 � MCMD 31 M 8.83 � ��
6050 � HAD 40 M N/A � �
6040 � HAD 34 M N/A � ��
4002 � HAD 35 M N/A � �
aExtent of hippocampal A� oligomer burden as assessed by Nab61 staining.

N/A, Not available; PMI, postmortem interval.
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rcf for 10 min and undiluted supernatants were assayed with a rat A�42-
or A�40-specific sandwich ELISA (Wako Chemicals) according to the
manufacturer’s protocols. Luminescence was quantified using a 96-well
plate reader measuring at 450 nm. Raw concentrations (picomoles per
liter) were normalized to MAP2 � cell counts for each treatment group.

Experimental design and statistical analysis. For all rat and mouse cell
culture experiments, primary neuronal cultures prepared from one preg-
nant animal represented independent biological replicates, which were
treated with vehicle or drug in the indicated combinations. An untreated
condition (UT) was also included within each biological replicate and all
results were normalized to this UT value. Paired t tests (for two condi-
tions) and repeated-measures ANOVA (for more than two conditions)
were used to analyze these data to account for inherent correlations
present within a single biological replicate. Except where otherwise
indicated, data were analyzed using GraphPad Prism statistical software
version 7.0 (RRID:SCR_002798) and are presented graphically as fold
changes from UT � SEM, where the UT condition is represented by a
dotted line. Because all UT values were set to 1, they were not included
within statistical analyses.

Results
A� oligomers are elevated in HIV � hippocampus
Previous studies have shown accumulation of neurodegenerative
proteins, such as APP and/or its cleavage products, in the brains
of HANDs patients (Ortega and Ances, 2014). To investigate the

mechanisms underlying age-related pa-
thologies that are increasingly observed in
HANDs, we first assessed levels of A� oli-
gomers (A� oligo), the A� species sug-
gested to be responsible for CNS
neurotoxicity in AD, in the hippocampus
of HIV� patients and age-matched HIV�

controls in a cohort where eight of 10
HIV� patients had neurocognitive im-
pairment (see Table 1 for a summary of
cases). We used the Nab61 antibody that
preferentially recognizes higher-order A�
conformations including dimers and oli-
gomers but excluding full-length APP and
C-terminal fragments. We observed ele-
vated levels of intraneuronal A� oligom-
ers in HIV� patients (Fig. 1, Table 1).
Importantly, we found no evidence of se-
nile or diffuse A� plaque deposition in the
hippocampus using the A�42-specific BC05
antibody (data not shown).

BACE1 but not PS1 is increased in
frontal cortex of HIV � individuals
Because oligomeric A� is derived from
cleavage of APP by BACE1, we sought to
determine whether BACE1 expression
was altered in the same cohort of samples.
Protein levels of BACE1 in whole-brain
lysates from the midfrontal cortex of
HIV� and HIV� individuals were as-
sessed by immunoblotting. As shown in
Figure 2A, BACE1 was elevated in HIV�

individuals compared with uninfected
controls. We also replicated this result in
the frontal cortex of a second independent
cohort of 20 HIV� and 40 HIV� individ-
uals, of whom 20 patients had HANDs
(Table 2), confirming increased BACE1 in
the frontal cortex of patients with HIV

(Fig. 2B,C). In the second cohort, we assessed the levels of pre-
senilin 1 (PS1), a �-secretase core protein, which revealed that
cortical PS1 levels were comparable between HIV� and HIV�

individuals (Fig. 2B,C).

BACE1 is increased in primary neurons treated with
supernatants from HIV/MDMs
Based on our human data demonstrating a correlation between
HIV seropositive status and elevated BACE1 levels, we used an
in vitro model to investigate whether a causal relationship exists
between HIV and BACE1. In this model, which has been de-
scribed in detail previously (O’Donnell et al., 2006; Cross et al.,
2011), macrophages derived from monocytes of healthy human
donors are infected with HIV-1. Supernatants from infected macro-
phages (HIV/MDM) or uninfected macrophages (Mock) are then
used to treat primary rat cortical neurons. As shown previously,
HIV/MDM supernatant treatment caused loss of MAP2� neu-
rons after 24 h (Fig. 3A). To determine whether HIV/MDM su-
pernatants induced BACE1 in neurons, we treated neuronal
cultures with HIV/MDM supernatants for 16 or 24 h. Cultures
from each rat (independent biological replicates) were either un-
treated or treated with Mock or HIV/MDM supernatants gener-
ated from monocytes of the same human donor. By 16 h, levels of

Figure 2. BACE1 but not PS1 protein is increased in frontal cortex of HIV � individuals. A, Lysates from the midfrontal cortex of
HIV � controls (n � 5) and HIV � cases (n � 13) were prepared for immunoblot and probed for BACE1. Representative blots are
shown. FG, Fast Green loading control. B, In an additional cohort, lysates from midfrontal cortex of HIV � controls (n � 20) and
HIV � cases (n �40) were prepared for immunoblot and probed for BACE1 and PS1, with actin as a loading control. Representative
blots are shown. C, Results from the second cohort are quantified across all blots (ANOVA followed by Newman–Keuls, *p 	 0.05).
Red lines indicate mean � SEM.
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BACE1 protein were increased in HIV/MDM-treated but not
Mock-treated neurons (Fig. 3B,C). We then tested whether the ef-
fects on BACE1 were consistent across multiple supernatants
from different donors. We collected supernatants generated from
three individual healthy monocyte donors (independent biolog-
ical replicates) and treated neurons from a single rat with Mock
or HIV/MDM supernatants from each of the three donors for
16 h. Levels of BACE1 protein were increased by treatment with
all three supernatants tested (Fig. 3D,E).

BACE1 increase by HIV/MDM supernatants is dependent on
NMDAR signaling
Increased glutamate and activation of NMDAR glutamate recep-
tors are critical components of neurotoxicity in HANDs and AD
(Kaul et al., 2001; Kocahan and Doğan 2017), as well as in our
model (O’Donnell et al., 2006). Therefore, we investigated whether
NMDARs are required for BACE1 induction. To test this, we pre-
treated primary rat neurons with either the NMDAR inhibitor
MK801 or AP-5 or the glutamate receptor AMPAR inhibitor
CNQX 1 h before 16 or 24 h of treatment with HIV/MDM or
Mock supernatants. As observed previously, neurotoxicity of

HIV/MDM supernatant treatment was blocked by pretreatment
with MK801 or AP-5, whereas CNQX had no effect after 24 h
(Fig. 4A). Correspondingly, induction of BACE1 by HIV/MDM
supernatant treatment was blocked by pretreatment with MK801
or AP-5 but not CNQX after 16 h (Fig. 4B). These results are
quantified in Figure 4, C and D. Having demonstrated the necessity
for NMDAR signaling in BACE1 upregulation, we next investigated
whether NMDAR activation was sufficient for upregulation of
BACE1. Indeed, we observed a significant, dose-dependent in-
crease in BACE1 protein levels in rat primary neurons after 16 h
of treatment with NMDA alone (Fig. 4E,F).

NMDAR activation shifts APP processing toward the
amyloidogenic pathway
In neurons, full-length APP can be cleaved by either ADAM10 or
BACE1 and, in either case, is subsequently cleaved by PS1. Cleavage
by ADAM10/PS1 generates the nonamyloidogenic fragment P3,
whereas BACE1/PS1 cleavage generates A� monomers that can
oligomerize to form disease-associated peptides, fibrils, and
plaques. Because we found that NMDAR signaling was both nec-
essary and sufficient for BACE1 induction and neurotoxicity in-
duced by HIV/MDM supernatants, in the next series of
experiments, we treated primary rat neurons directly with
NMDA for 10 min or 2, 8, 16, 24, or 48 h to assess changes in APP
processing and secretase expression. Because NMDA is a syn-
thetic compound, we also treated neurons with the endogenous
NMDA ligand glutamate to ensure physiological relevance of our
results. Treatment with either NMDA or glutamate for 16 h in-
creased both BACE1 and PS1 protein levels and dramatically de-
creased ADAM10 protein levels (Fig. 5A–D). Corresponding
neuronal cultures were fixed for 10 min or 2, 8, 16, 24, or 48 h after
NMDA treatment. Consistent with changes in protein expression
playing a role in NMDA-induced neurotoxicity, significant loss
of MAP2� cells did not occur until 24 h after treatment with
NMDA (Fig. 5E). Next, we investigated whether changes in secre-
tase expression patterns were accompanied by changes in the
production of BACE1 cleavage product A�42. To test this, we
collected supernatants from primary rat neurons treated with
NMDA for 16 or 24 h and measured the concentration of secreted
monomers of A�42 with a high-sensitivity ELISA. After 24 h, A�42

concentration normalized to MAP2� cells was increased in
NMDA-treated neuron supernatants (Fig. 5F).

Neurotoxicity induced by either NMDA or HIV/MDM
supernatants is partially dependent on BACE1 and
PS1 activity
Because NMDA treatment caused both BACE1 increases and
neurotoxicity, we investigated whether BACE1 activity plays a
role in the mechanism of neuronal death induced by NMDA. Rat
primary neurons were pretreated with a pharmacological BACE1
inhibitor (BSI) for 1 h before 24 h treatment with NMDA and BSI
pretreatment significantly decreased NMDA-induced neurotox-
icity (Fig. 6A,B). To further evaluate the role of the amyloido-
genic pathway in neurotoxicity, we performed a separate set of
experiments in which primary rat neurons were pretreated with
the �-secretase inhibitor MRK 1 h before NMDA treatment.
Similarly to BACE1 inhibition, �-secretase attenuated NMDA-
induced neurotoxicity (Fig. 6C,D). Finally, to confirm the role of
BACE1 in neurotoxicity of our in vitro HIV model, we also pre-
treated rat primary neurons with BSI for 1 h before 24 h treatment
with HIV/MDM or Mock supernatants. Again, neurotoxicity was
attenuated by BSI pretreatment (Fig. 6E,F).

Table 2. Summary of human cases used for immunoblotting in Figure 2, B and C

HIV �

subject ID Age (y) Sex
PMI
(h)

HIV �

subject ID
Age
(y) Sex

PMI
(h)

ART
� 12 mo

Ctrl 1 40 M 8.5 HIV 1 35 M 11.25 �
Ctrl 2 35 M 8.5 HIV 2 38 M 3 �
Ctrl 3 46 M 17.5 HIV 3 52 M 24 �
Ctrl 4 33 M 15 HIV 4 35 M 7 �
Ctrl 5 47 F 3.25 HIV 5 45 M N/A �
Ctrl 6 47 M 9.5 HIV 6 37 M 5 �
Ctrl 7 48 M 14 HIV 7 32 M 15.25 �
Ctrl 8 44 M 9 HIV 8 34 M 6.25 �
Ctrl 9 41 M 4 HIV 9 43 M 2.75 �
Ctrl 10 43 M 7 HIV 10 42 M 5.5 �
Ctrl 11 40 M 15 HIV 11 45 F 2.5 �
Ctrl 12 33 F 7.5 HIV 12 43 F 9.33 �
Ctrl 13 39 M 7.75 HIV 13 57 M 14 �
Ctrl 14 35 F 3.5 HIV 14 43 M 12 �
Ctrl 15 46 M 16 HIV 15 31 M 8 �
Ctrl 16 45 M 3.25 HIV 16 46 M 6 �
Ctrl 17 52 M 4 HIV 17 41 M 20 �
Ctrl 18 50 M 5.75 HIV 18 34 M 19.25 �
Ctrl 19 47 M 21.5 HIV 19 33 M 3.75 �
Ctrl 20 46 F 19 HIV 20 28 M 15.5 �

HIV 21 56 M 12 �
HIV 22 42 M 27.25 �
HIV 23 41 F 6.5 �
HIV 24 39 M 6 �
HIV 25 50 M 12.5 �
HIV 26 46 F 4.75 �
HIV 27 50 M 13 �
HIV 28 34 F 29 �
HIV 29 37 M 12 �
HIV 30 55 F 7 �
HIV 31 48 F 7.5 �
HIV 32 49 M 6 �
HIV 33 50 M 18 �
HIV 34 50 M 21 �
HIV 35 54 M 12 �
HIV 36 36 M N/A �
HIV 37 41 M 13 �
HIV 38 48 M 3 �
HIV 39 36 M 2.5 �
HIV 40 44 M 22 �

N/A, Not available; PMI, postmortem interval.
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BACE1-mediated NMDA-induced neurotoxicity is dependent
on the expression of APP
BACE1 cleaves several protein targets in addition to APP, includ-
ing sodium and potassium channels, cell adhesion-related pro-
teins, and others (Kim et al., 2007; Munro et al., 2016). Therefore,
we investigated whether the critical function of BACE1 responsi-
ble for its role in NMDA-induced neurotoxicity was dependent
on the presence of APP. To test this, neuroglia were isolated
from either WT or APP�/� mouse cortex at embryonic day 16 –
18. Neuroglial cultures isolated from APP�/� mice were viable
and had undetectable levels of APP (Fig. 7A). Consistent with our
observations in rat neuronal cultures, NMDA induced BACE1
expression in both WT and APP�/� mouse neuroglia, indicating
that cells were responsive to NMDA at the level of changes in
BACE1 expression (Fig. 7B). At the level of neurotoxicity, how-
ever, APP�/� cultures showed a striking resistance to NMDA-
induced insult compared with WT cultures, with both higher
NMDA concentrations and longer treatments needed to cause
the same degree of MAP2 loss (Fig. 7C,D). Specifically, whereas
5 �M NMDA led to �50% MAP2� cell loss after 24 h of treat-
ment in WT cultures, 10 �M NMDA was required to induce the
same level of toxicity in APP�/� cells and 5 �M NMDA treatment
had no effect (Fig. 7E). To determine whether APP was specifi-
cally required for the role of BACE1 in NMDA-induced toxicity,
we then investigated whether the remaining portion of NMDA-
induced neurotoxicity in APP�/� cells was BACE1 dependent.
To test this, we first confirmed BACE1 dependence of NMDA-
induced neurotoxicity in WT mouse cultures by pretreating cells
with BSI for 1 h before 24 h treatment with 5 �M NMDA. Similar
to our observations in primary rat neurons, BACE1 inhibition
significantly decreased neurotoxicity (Fig. 7F,H). We then re-
peated this experiment in APP�/� cells, with the exception that
10 �M NMDA was used to induce a similar level of toxicity (�50%

MAP2� cell loss) as 5 �M NMDA treatment in the WT (Fig. 7E). In
APP�/� cells, BACE1 inhibition had no effect on NMDA-induced
neurotoxicity after 24 h (Fig. 7G,I).

Discussion
In the present study, we show that both BACE1 and A� oligomers
are increased in the hippocampus and frontal cortex of ART-
treated HIV� patients and demonstrate a mechanistic role for
both BACE1 and APP in HIV-associated in vitro neurotoxicity.
Moreover, by clearly showing a necessity and sufficiency of NMDAR
activation in engaging this mechanism, we implicate a role for
BACE1 in classic excitotoxicity pathways relevant not only to
HANDs, but also to neurodegenerative diseases more broadly
(Lipton and Rosenberg, 1994; Carvajal et al., 2016; Kocahan and
Doğan 2017).

These data add to a growing body of evidence that there are
overlapping neuropathological mechanisms in AD and HANDs.
A� oligomers are thought to be the toxic species promoting neu-
ropathogenesis in AD (Kayed and Lasagna-Reeves, 2013) and our
data indicate that they may play a similar role in HANDs. BACE1
is increased in postmortem brains of AD patients (Yang et al.,
2003; Johnston et al., 2005) and, in animal models of AD, BACE1
inhibitors reverse neuronal loss and cognitive deficits (Ohno et
al., 2004; Singer et al., 2005; Chang et al., 2011). To our knowl-
edge, our study provides the first evidence that BACE1 is similarly
altered in HIV� patient brains and that exposure to cultured
media from HIV-infected MDMs can increase BACE1 levels in
neurons.

First, we demonstrated differences in BACE1 levels in two
separate cohorts of HIV� patients that provided tissue from two
different brain regions, hippocampus and dorsolateral prefrontal
cortex, each of which is damaged during the course of HIV infec-
tion. Although these cohorts were not demographically matched,

Figure 3. BACE1 is increased in primary neurons after treatment with HIV/MDMs. A, Each biological replicate of primary rat neurons was treated with Mock or HIV/MDM supernatants at a dilution
causing 50% MAP2 loss after 24 h. Representative images of MAP2 (green) are shown. B, Whole-cell lysates were collected after 16 h treatment with Mock or HIV/MDM supernatants generated from
the monocytes of a single human donor and lysates were probed for BACE1. Representative blots are shown. C, Within each rat (biological replicate), BACE1/�-actin for both Mock and HIV/MDM
treatment conditions were compared with UT and fold changes from UT were averaged across all biological replicates. To account for inherent correlations within neuronal cultures generated from
the same rat, data were analyzed by paired (dependent samples) t test comparing the Mock and HIV/MDM treatment conditions. Densitometric analysis of Western blots revealed a significant
increase in BACE1/�-actin after 16 h HIV/MDM treatment (paired t test, n�5, *p	0.05). Dotted lines represent UT cultures. D, HIV/MDM supernatants were generated from three separate healthy
monocyte donors and used to treat primary neurons generated from a single rat for 16 h. The resulting blot is shown. E, Within each individual monocyte donor, BACE1/�-actin for both Mock and
HIV/MDM treatment conditions were compared with UT and fold changes from UT were averaged across all monocyte donors. Here, each donor was an independent biological replicate and data
were analyzed by paired (dependent samples) t test to account for inherent correlations between Mock and HIV/MDM supernatants generated from a single human donor. Increases in BACE1 by 16 h
HIV/MDM treatment were consistent across HIV/MDM and Mock supernatants generated from multiple monocyte donors (paired t test, n � 3, *p 	 0.05). Dotted lines represent UT cultures.
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due to availability of tissue, the data de-
rived from each supports the conclusion
that BACE1 expression is increased in
HIV-affected brain regions. In addition,
the difference in the cognitive impairment
status between the two cohorts is another
important caveat. Samples in the first co-
hort were collected earlier in the HIV pan-
demic, during which first-generation
diagnostic neurocognitive criteria were
applied. In this cohort, eight of 10 HIV�

patients (80%) were diagnosed with
symptomatic HANDs, termed at the time
as minor cognitive motor disorder and
HIV-associated dementia (HAD), with
five of the patients diagnosed with HAD,
and were compared with HIV� patients.
In our second cohort, 20 of 40 HIV� pa-
tients were diagnosed with HANDs (50%), of
whom only seven had HAD. A final caveat
is that each cohort contributed different
brain regions for examination, hippo-
campus versus frontal cortex. Therefore,
the variability observed between the cohorts
reflects the range in clinical presentation
and difference in brain regions. Despite
these caveats, our studies suggest that in-
creased BACE1 levels associated with HIV
infection affect distinct, pathologically rele-
vant brain regions.

We and others have also shown that
BACE1 is increased by antiretroviral drugs of
at least two classes (Brown et al., 2014; Gan-
non et al., 2017), implying that ART-
treated HIV� patients may have additive
increases in BACE1 due to influence of
both the viral infection and the therapeu-
tic intervention. In addition, we provided
evidence here for a mechanistic role of
BACE1 in HIV-associated neurotoxicity
in vitro. Future studies should thus inves-
tigate whether BACE1 inhibitors reverse
neuronal damage and cognitive deficits in
rodent and nonhuman primate models of
HANDs.

Interestingly, we found that the HIV-
associated increase in BACE1 was mirrored
by an increase in the APP �-secretase PS1
(Selkoe and Wolfe, 2000) and a corre-
sponding decrease in the APP �-secretase
ADAM10 (Lammich et al., 1999). Increased
PS1 after NMDAR activation has been ob-
served previously (Mitsuda et al., 2001)
and our ADAM10 observations are consistent with a previous
study linking NMDARs with increased soluble APP alpha (sAPP�)
concentration in neurons and conditioned media (Lesné et al.,
2005). To our knowledge, however, these results represent the first
evidence of a direct influence of NMDAR activation on ADAM10
protein expression. Our observation highlights another potential
similarity with neuropathogenesis in AD, given that ADAM10
is decreased in both postmortem brain and CSF of AD patients
(Colciaghi et al., 2002; Bernstein et al., 2003; Olsson et al., 2003;
Fellgiebel et al., 2009). Changes in ADAM10 are likely to play an

important role in disease given that ADAM10 cleavage product
sAPP� affords neuroprotection in a variety of contexts (Habib et
al., 2017) and, moreover, a decrease in ADAM10 likely exacerbates
the shift toward amyloidogenic APP cleavage due to increased
BACE1 and PS1. Consistent with a role for the amyloidogenic path-
way in promoting neurotoxicity, we observed that PS1 inhibition
nd BACE1 inhibition was effective to attenuate NMDA-
induced neurotoxicity in vitro. Because we observed increased
BACE1 but not PS1 in vivo, our data together suggest that in-
creases in BACE1 may primarily drive neurotoxicity, but that this

Figure 4. NMDAR signaling is necessary and sufficient for BACE1 upregulation by HIV/MDM supernatants. A, Primary rat
neurons were pretreated for 1 h with 10 �M NMDAR antogonist MK801, 100 �M NMDAR antagonist AP-5, or 30 �M AMPAR
antagonist CNQX before 24 h treatment with Mock or HIV/MDM supernatants. Representative images are double labeled for MAP2
(green) and nuclei (blue). B, Identical pretreatments were performed for a separate of cultures harvested after 16 h treatment with
Mock or HIV/MDM supernatants. Representative blots are shown. C, Number of MAP2 � cells was quantified across 24 h treatment
groups (repeated-measures two-way ANOVA followed by Dunnett’s test, n � 3, ****p 	 0.0001). D, Densitometric analysis of
BACE1/FG was used to quantify levels of BACE1 protein across 16 h treatment groups (repeated-measures two-way ANOVA
followed by Dunnett’s test, n � 3, *p 	 0.05, ***p 	 0.001, ****p 	 0.0001). E, Cultures were treated with 5, 10, or 20 �M

NMDA for 16 h and assessed for BACE1 protein levels. Representative blots are shown. F, Densitometric analysis of BACE1/FG was
used to quantify levels of BACE1 protein (repeated-measures one-way ANOVA followed by Dunnett’s test, n � 4 –5, *p 	 0.05).
Dotted lines represent UT cultures. FG, Fast Green loading control.
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neurotoxicity is also partially dependent on downstream cleavage
by PS1 to eventually form A�.

Although BACE1 is well known for its role in APP cleavage, it
has other cleavage targets, including proteins involved in devel-
opment, synaptic function, and cell– cell adhesion (Munro et al.,
2016). Therefore, it is critical that, in our study, we determined
that the mechanistic role of BACE1 in NMDA-induced neuro-
toxicity was dependent on the presence of APP, indicating that
APP cleavage was indeed the relevant BACE1 function responsi-
ble for toxicity in our model. Consistent with this, genetic loss of
APPalonealsoconferredresistanceofneuronstoNMDA-inducedtox-
icity. Within the context of abnormal APP processing observed in
brains of HIV patients here and in other studies (Green et al.,
2005; Ortega and Ances, 2014), these results indicate a potential
pathogenic role for altered APP processing in HANDs indepen-
dent of plaque formation.

In apparent contradiction, however, previous studies have
demonstrated both decreased cell viability and increased sensi-
tivity to excitotoxic insult in cultured neurons lacking APP (Perez
et al., 1997; Han et al., 2005). Others have reported no differences
in susceptibility (Harper et al., 1998; White et al., 1998) and another
study found similar results to ours, albeit with copper-induced neu-

rotoxicity rather than direct excitotoxic insult (White et al., 1999). In
addition, Verges et al. (2011) reported increased levels of PS1 in
PS1/APP transgenic mouse brain after treatment with an NMDAR
antagonist. These discrepancies may be due to critical differences
in the downstream effects of NMDAR activation depending on
the dose and time course in question. Indeed, NMDA exerts op-
posing effects on extracellular A� accumulation in vivo depend-
ing on the dose, with lower doses increasing amyloidogenic APP
processing and higher doses causing a decrease (Verges et al.,
2011). Although Han et al. (2005) used a 300 �M dose of NMDA
for 15 min, we used doses within the 5–20 �M range for longer
exposures, attempting to mimic a more chronic disease process.
Depending on the precise neuronal microenvironment and path-
ological stage, both mechanisms are likely to play a role given that
the acute protective effects of sAPP� must compete against the more
chronic detrimental effects of the amyloidogenic pathway (Hefter
and Draguhn, 2017).

Also consistent with our observation that loss of APP confers
resistance to NMDA-induced neurotoxicity, one series of studies
has demonstrated a role for APP in trafficking NMDARs to the
cell surface and increasing postsynaptic excitatory currents (Cousins
et al., 2009; Hoe et al., 2009; Innocent et al., 2012; Cousins et al.,

Figure 5. NMDAR signaling shifts APP cleavage toward the amyloidogenic pathway. A, Primary rat neurons were treated with 10 �M NMDA or 10 �M glutamate for 10 min or 2, 8, 16, 24, or 48 h.
Whole-cell lysates were collected and assessed for BACE1, PS1, and ADAM10 expression; representative blots are shown. B–D, Densitometric analysis of each secretase compared with FG was used
to quantify protein levels across time points (repeated-measures two-way ANOVA followed by Dunnett’s test, n � 3– 4, *p 	 0.05, **p 	 0.01, ***p 	 0.001, ****p 	 0.0001). FG, Fast Green
loading control. E, Number of MAP2 � cells was quantified after 10 �M NMDA treatment (repeated-measures two-way ANOVA followed by Sidak’s test, n � 4, *p 	 0.05, **p 	 0.01).
F, Conditioned media from primary rat neurons were collected after 24 h treatment with 10 �M NMDA and sample concentrations of A�42 were measured using a sandwich ELISA. Concentrations
were normalized to the number of MAP2 � cells in identically treated cultures within each biological replicate (paired t test, n � 3, *p 	 0.05). Dotted lines represent UT cultures.
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2015). This may be a contributing factor to our results as well,
particularly given that NR2B subunit localization is selectively
affected by APP (Hoe et al., 2009) and in large part NR2B sub-
units mediate the neurotoxicity in our in vitro HIV model
(O’Donnell et al., 2006). Important to note, however, is that al-
though loss of APP shifted the toxicity dose curve of NMDA, the
effect of NMDA on BACE1 expression was not changed. This
indicates that toxicity resistance was not entirely due to changes
in surface expression and may instead have resulted from de-
creased BACE1-dependent toxic mechanisms.

Classical pathways of excitotoxic injury are well characterized,
but there are several ways that a role for BACE1 may fit within
these pathways or within a parallel apoptotic or necrotic mecha-

nism. For instance, Lesné et al. (2005) found that changes in APP
cleavage product concentrations induced by NMDA were pre-
vented by either a calcium chelator or inhibition of calmodulin/
calmodulin kinase. Given our observation of increased BACE1
expression after NMDA treatment, one possibility is that BACE1
levels are directly affected by either calcium or calcium-dependent
enzymes. BACE1 is also increased in vitro by calpain (Dong et al.,
2006; Liang et al., 2010), another critical factor in excitotoxic
injury. Possible parallel mechanisms of BACE1-mediated toxicity
due to NMDAR activation include oxidative stress-dependent
pathways (Tong et al., 2005) and the unfolded protein response
(O’Connor et al., 2008), which mediates BACE1 upregulation in
response to HIV protease inhibitors (Gannon et al., 2017). Because

Figure 6. Neurotoxicity induced by either NMDA or HIV/MDM supernatants is dependent on BACE1 activity. A, Primary rat neurons were pretreated with DMSO vehicle or 100 nM BSI II for 1 h before
24 h treatment with 10 �M NMDA. Representative images are double labeled for MAP2 (green) and nuclei (blue). B, Number of MAP2 � cells was quantified across treatment groups (repeated-
measures two-way ANOVA followed by Tukey’s test, n � 4, *p 	 0.05 vs treatment vehicle, #p 	 0.05 vs pretreatment vehicle). C, Primary rat neurons were pretreated with DMSO vehicle or 0.5
�M MRK for 1 h before 24 h treatment with 10 �M NMDA. Representative images are double labeled for MAP2 (green) and nuclei (blue). D, Number of MAP2 � cells was quantified across treatment
groups (repeated-measures two-way ANOVA followed by Tukey’s test, n � 5, **p 	 0.05, ***p 	 0.01, ****p 	 0.001 vs treatment vehicle; ##p 	 0.01 vs pretreatment vehicle). E, Primary rat
neurons were pretreated with DMSO vehicle or 5 �M BSI IV for 1 h before 24 h of treatment with Mock or HIV/MDM supernatants. Representative images are double labeled for MAP2 (green) and
nuclei (blue). F, Number of MAP2 � cells was quantified across treatment groups (repeated-measures two-way ANOVA followed by Tukey’s test, n � 4, **p 	 0.01 vs Mock, #p 	 0.05 vs
pretreatment vehicle). Dotted lines represent UT cultures.
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several mechanisms can potentially increase BACE1 activity and/or
upregulate its expression, the particular pathway engaged likely de-
pends on multiple factors and the possibilities are not mutually
exclusive.

Aside from identifying a specific role for BACE1, our study
adds to a body of literature implicating critical roles for glutamate
and NMDA signaling in HIV neuropathogenesis. Indeed, NMDARs
are downregulated in brains of HIV encephalitis patients (Masliah
et al., 2004) and HIV dementia patients have increased CSF glu-
tamate levels that are correlated with the degree of neurocogni-
tive impairment (Ferrarese et al., 1997, 2001). In the recently
developed EcoHIV mouse model, HIV-stimulated release of cy-
tokines from microglia impaired astrocytic reuptake of glutamate,
increasing glutamate in the extracellular space and causing NMDA-
dependent excitotoxicity (Moidunny et al., 2016). In addition, vi-
ral proteins gp120 and tat can also activate NMDARs directly
(Fontana et al., 1997; Shin et al., 2012; Zhou et al., 2017) and

increase neuronal glutamate release (Gupta et al., 2010) and
NMDA antagonists are neuroprotective in gp120 and tat rodent
models of HIV (Mucke et al., 1995; Anderson et al., 2004). In-
deed, a set of elegant experiments by Lipton et al. in 1991 indi-
cated that both glutamate and gp120 act synergistically to induce
calcium currents and subsequent toxicity. This indicates that
both increased glutamate and free viral particles may act in par-
allel to disrupt NMDA signaling in HIV-infected individuals.

In summary, we have provided further evidence for the in-
volvement of BACE1 and altered APP cleavage in HANDs, with a
potential role for A� oligomers in particular. Few studies in the
era of combined ART have provided clear neuropathological dif-
ferences between virally suppressed HIV� individuals and HIV�

controls (Gelman, 2015), further highlighting the significance of
this work and the potential importance of BACE1 as a biomarker
or therapeutic target. Moreover, by identifying both NMDAR
signaling and altered APP processing as critical factors mediating

Figure 7. APP is required for BACE1-dependent NMDA-induced neurotoxicity. A, Primary neuroglia were isolated from WT or APP �/� mice and assessed for levels of APP by Western blot.
Representative blots are shown. B, WT or APP �/� neuroglial cultures were treated with 5 or 10 �M NMDA for 16 h and whole-cell lysates were collected and assessed for BACE1. Representative blots
are shown. FG, Fast Green loading control. C, D, WT (C) and APP �/� (D) cultures were treated with 5, 10, or 20 �M NMDA for 4, 16, or 24 h. Number of MAP2 � cells was quantified across treatment
groups (two-way ANOVA followed by Dunnett’s test, n � 3–5, **p 	 0.01, ****p 	 0.0001 vs vehicle control). E, Data from C and D 5 and 10 �M 24 h NMDA treatment groups only were replotted
to show direct comparison between WT and APP �/� responses (two-way ANOVA follows by Dunnett’s test, n � 3–5, ****p 	 0.0001 vs vehicle control). F, G, WT (F ) and APP �/� (G) cultures
were pretreated with DMSO vehicle or BSI for 1 h before 24 h treatment with 5 �M (WT) or 10 �M (APP �/�) NMDA. Representative images are double labeled for MAP2 (green) and nuclei (blue).
H, I, Number of MAP2 � cells was quantified across treatment groups (repeated-measures two-way ANOVA followed by Dunnett’s test, n � 3– 4, *p 	 0.05, **p 	 0.01, ***p 	 0.001). Dotted
lines represent UT cultures. # indicates p 	 0.05 compared with DMSO pretreatment.
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the role of BACE1 in HIV-associated neurotoxicity, we provide
support for the potential efficacy of several avenues for therapeu-
tic intervention in HANDs in addition to direct pharmacological
targeting of BACE1.
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