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On the Flexibility of Basic Risk Attitudes in Monkeys
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Monkeys and other animals appear to share with humans two risk attitudes predicted by prospect theory: an inverse-S-shaped
probability-weighting (PW) function and a steeper utility curve for losses than for gains. These findings suggest that such preferences are
stable traits with common neural substrates. We hypothesized instead that animals tailor their preferences to subtle changes in task
contexts, making risk attitudes flexible. Previous studies used a limited number of outcomes, trial types, and contexts. To gain a broader
perspective, we examined two large datasets of male macaques’ risky choices: one from a task with real (juice) gains and another from a
token task with gains and losses. In contrast to previous findings, monkeys were risk seeking for both gains and losses (i.e., lacked a
reflection effect) and showed steeper gain than loss curves (loss seeking). Utility curves for gains were substantially different in the two
tasks. Monkeys showed nearly linear PWsin one task and S-shaped ones in the other; neither task produced a consistent inverse-S-shaped
curve. To account for these observations, we developed and tested various computational models of the processes involved in the
construction of reward value. We found that adaptive differential weighting of prospective gamble outcomes could partially account for
the observed differences in the utility functions across the two experiments and thus provide a plausible mechanism underlying flexible
risk attitudes. Together, our results support the idea that risky choices are constructed flexibly at the time of elicitation and place
important constraints on neural models of economic choice.
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We respond in reliable ways to risk, but are our risk preferences stable traits or ephemeral states? Using various computational
models, we examined two large datasets of macaque risky choices in two different tasks. We observed several deviations from
“classic” risk preferences seen in humans and monkeys: no reflection effect, loss seeking as opposed to loss aversion, and linear
and S-shaped, as opposed to inverse-S-shaped, probability distortion. These results challenge the idea that our risk attitudes are
evolved traits shared with the last common ancestor of macaques and humans, suggesting instead that behavioral flexibility is the
hallmark of risky choice in primates. We show how this flexibility can emerge partly as a result of interactions between attentional
and reward systems. j

ignificance Statement

Introduction
Humans and other animals live in a complex world in which
uncertainty is often unavoidable (Kacelnik and Bateson, 1997;
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Platt and Huettel, 2008; Pearson et al., 2014). Understanding the
strategies used to deal with risk, which we call risk attitudes, and
underlying neural mechanisms is an important quest for behav-
ioral economics, comparative psychology, foraging theory, and
neuroscience (Kahneman and Tversky, 2000; McCoy and Platt,
2005; Trepel et al., 2005; O’Neill and Schultz, 2010; So and Stu-
phorn, 2010; Paglieri et al., 2014). When a strategy for dealing
with risk is beneficial, it is liable to become selected for and can-
alized; that is, it becomes seen robustly across contexts and devel-
opmental trajectories. Consistent preferences across many or all
members of a species have often been used to suggest that those
preferences are innate and rely on similar neural substrates (Ste-
vens et al., 2005; Heilbronner et al., 2008; De Petrillo et al., 2015;
Mendelson et al., 2016; Heilbronner, 2017).

The rhesus macaque is a particularly important model organ-
ism in neuroeconomics. Macaques share many economic biases
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Experimental procedure. a, Timeline of the juice-gambling task. In each trial, two options were presented, each offering a gamble for juice reward. Gambles were represented by a

rectangle, some portion of which wasred, blue, or green, signifying no reward, medium, or large reward, respectively. The area of the colored portion indicates the probability that choosing that offer
would yield the corresponding reward. We also used a safe offer that was entirely gray and always carried a 100% probability of a small reward. b, Timeline of the token-gambling task with gains
and losses. In each trial, two options were presented, each offering a gamble for tokens. The size of each colored portion within each offer indicated the probability that choosing that offer would yield
the corresponding outcome. A small reward was administered for each completed trial. When at least six tokens were earned, a large “jackpot” reward was administered and the earned token count
was reset to 0. The inset shows the colors associated with different tokens and combinations used.

and preferences with humans, including attitudes toward coun-
terfactual outcomes, the hot handeffect, a peak end bias, framing,
cognitive dissonance, and the description-experience gap (Egan
et al., 2007; Hayden et al., 2009; Abe and Lee, 2011; Lakshmina-
rayanan et al., 2011; Beran et al., 2014; Blanchard et al., 2014a,b;
Blanchard and Hayden, 2015; Heilbronner and Hayden, 2016).
Some recent research suggests that macaques and other nonhu-
man primates share core risk attitudes as characterized by pros-
pect theory (Kahneman and Tversky, 1979). Most notably, these
include loss aversion (overweighting of possible losses compared
with gains; Chen et al., 2006), the reflection effect (simultaneous
risk aversion with gains and risk seeking with losses; Lakshmina-
rayanan etal., 2011), and an inverse-S-shaped probability-weighting
(PW) function (overweighting and underweighting of small and
large probabilities, respectively; Stauffer et al., 2015). However,
whereas humans are reliably risk averse in many contexts, ma-
caques are generally risk seeking (Heilbronner and Hayden, 2013;
but see Yamada et al., 2013). The consistency of these results
across studies and, with the exception of risk seeking, across spe-
cies, have been used to suggest that such preferences are stable
traits with common neural substrates and to motivate the use of
nonhuman primates for studying choice under risk and uncer-
tainty (Heilbronner, 2017).

Whereas risk attitudes are important, cognitive flexibility is
also important for any organism that will encounter dynamic
environments (Diamond, 2013). Flexible cognition that allows
for rapid adjustment of risky choice strategy to even subtle changes
in the environment should be selected for as well. Cognitive flex-
ibility is not necessarily inconsistent with evolved risk attitudes,
but primates’ remarkable flexibility raises the possibility that os-
tensibly shared risk attitudes may be task dependent. Specifically,
if preferences are task dependent, then comparing two species’
attitudes in the same task or one species’ attitudes across two tasks
may produce similar preferences because the computational de-
mands of the task or tasks are similar (e.g., range of reward prob-

abilities). For this reason, testing risk attitudes across multiple
contexts can be informative.

To obtain a broader view on the flexibility of risk attitudes, we
examined two large datasets supplemented with new data: one
from a juice-based gambling task in which monkeys chose be-
tween two win/nothing gambles on each trial (Strait et al., 2014,
2015) and one from a token-based gambling task in which mon-
keys selected between two mixed (win/loss) gambles (Strait et al.,
2016; Azab and Hayden, 2017, 2018). Our aim was to examine
monkeys’ behavior in light of extant findings and predictions
made under prospect theory. By fitting choice behavior with var-
ious models using cross-validation, we found that monkeys were
risk seeking in both tasks, although their utility curves for gains
had different convex shapes. Monkeys were loss seeking in the
token-gambling task and exhibited a convex utility curve for losses
shallower than the one for gains. Finally, the PW function was
S-shaped (the inverse of the previously reported shape) in the juice-
gambling task and almost linear in the token-gambling task.

Materials and Methods

Overview of the experimental procedures. Behavioral data were collected in
two separate experiments in which monkeys selected between two gam-
bles offering juice or tokens. In each trial of the juice-gambling experi-
ment, monkeys selected one of two options, each offering a simple
gamble for juice or water (Strait et al., 2014, 2015). Options were repre-
sented by a rectangular bar and offered either a gamble or a safe bet
(100% probability) for liquid reward. Gamble offers were represented by
a bar that was divided into two portions corresponding to the two pos-
sible outcomes: no reward or a medium or large reward (Fig. 1a).

In each trial of the token-gambling experiment, monkeys selected be-
tween two options, each offering a mixed gamble for tokens (Strait et al.,
2016; Azab and Hayden, 2017, 2018). Visual display of gambles was
similar to the juice-gambling task except that six colors were used corre-
sponding to six possible reward magnitudes in terms of tokens (three
gains, two losses, and zero; Fig. 1b). In addition, the probabilities of
reward outcome were limited to five values (0.1, 0.3, 0.5, 0.7, and 0.9).
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Each gamble included at least one positive or zero outcome, ensuring that
every gamble carried the possibility of a win. This decreased the number
of trivial choices presented to subjects and maintained motivation. Mon-
keys were trained to collect six tokens to receive a large (300 uL) liquid
reward (see “Token-gambling task” below for more details). Therefore,
each token corresponded to 50 uL of reward juice.

In total, three male monkeys (subject B, C, and J) performed 108,272
and 66,500 trials in the juice and token-gambling tasks, respectively.
Monkeys B and J participated in both experiments. Monkeys B, C, and J
performed 70,700, 24,700, and 12,872 trials in the juice-gambling task,
respectively. Monkeys B and ] performed 28,700 and 37,800 trials in the
token-gambling task, respectively. Subjects were initially trained on a
two-option task (Strait et al., 2014) and were later also trained on a task
that involved single-option accept-reject gambles (Blanchard et al.,
2015). Although subjects were not tested with novel colors in this study,
we have tested extensively macaques’ abilities to learn new associations
quickly. This approach to training risk tasks was explained in detail pre-
viously (Hayden et al., 2010).

Proportional gambling tasks have been used in many studies since
2010 (O’Neill and Schultz, 2010; So and Stuphorn, 2012; Yamada et al.,
2013; Strait et al., 2014; Chen and Stuphorn, 2015). There is plentiful
evidence that monkeys readily understand and correctly interpret such
displays with no special training requirements. The Hayden laboratory
has been developing methods for training macaques to perform such
tasks for over a decade and we have developed several checks and training
strategies to make sure that they understand the task. Subjects were
trained in two stages. Our subjects were first trained extensively (for 2 or
more years) on a simple gambling task with multiple possible juice (i.e.,
nontoken) reward amounts. In this stage, they were tested on multiple
variations of the gambling task and performance was validated through
multiple control tests (Hayden et al., 2010). Performance was consistent
(including two consistent biases, risk seeking, and win-stay-lose-shift)
across single option (Blanchard et al., 2015) and two option (Strait et al.,
2014) versions of the task. The token element of the task was new to us,
although it has been used in studies previously (Seo and Lee, 2009; Seo et
al., 2014). Behavior in the token version of the task was overall quite
similar to that in the juice version, indicating that the monkeys readily
learned to treat secondary rewards as reinforcing. However, the strongest
evidence for the monkeys’ understanding of the task comes from their
consistent preferences for higher probabilities of large rewards and
smaller probabilities of small rewards.

Juice-gambling task. Two offers were presented on each trial. Each offer
was represented by a rectangle 300 pixels tall and 80 pixels wide (11.35° of
visual angle tall and 4.08° of visual angle wide). Options offered either a
gamble or a safe (100% probability) bet for liquid reward. Gamble offers
were defined by two parameters, reward size and probability. Each gam-
ble rectangle was divided into two portions: one red and the other either
blue or green. The size of the green or blue portions signified the proba-
bility of winning a medium (mean 165 uL) or large reward (mean 240
L), respectively. These probabilities were drawn from a uniform distri-
bution between 0% and 100%. The rest of the bar was colored red; the
size of the red portion indicated the probability of no reward. The safe
offer was entirely gray and always carried a 100% probability of a small
reward (125 nL).

On each trial, one offer appeared on the left side of the screen and the
other appeared on the right. Offers were separated from the fixation
point by 550 pixels (4.5° of visual angle). The side of the first and second
offer (left and right) was randomized by trial. Each offer appeared for 400
ms and was followed by a 600 ms blank period. Monkeys were free to
fixate upon the offers when they appeared (and in our casual observa-
tions almost always did so). After the offers were presented separately, a
central fixation spot appeared and the monkey fixated on it for 100 ms.
After this, both offers appeared simultaneously and the animal indicated
its choice by shifting gaze to its preferred offer and maintaining fixation
on it for 200 ms. Failure to maintain gaze for 200 ms did not lead to the
end of the trial, but instead returned the monkey to a choice state; there-
fore, monkeys were free to change their mind if they did so within 200 ms
(although in our observations they seldom did so). After a successful 200
ms fixation, the gamble was immediately resolved and reward delivered.
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Trials that took >7 s were considered inattentive trials and were not
included in analysis (this removed <1% of trials). Outcomes that yielded
rewards were accompanied by a visual cue: a white circle in the center of
the chosen offer. All trials were followed by an 800 ms intertrial interval
(ITI) with a blank screen.

Token-gambling task. Monkeys performed a mixed (two option) gam-
bling task. The task was similar to one we have used previously (Strait et
al., 2014, 2015), albeit with two major differences: first, monkeys gambled for
virtual tokens rather than liquid rewards and, second, outcomes could be
losses as well as wins.

Two offers were presented on each trial. Each offer was represented
by a rectangle 300 pixels tall and 80 pixels wide (11.35° of visual angle tall
and 4.08° of visual angle wide). Twenty percent of options were safe
(100% probability of either 0 or 1 token), whereas the remaining 80%
were gambles. Safe offers were entirely red (0 tokens) or blue (1 token).
The size of each portion indicated the probability of the respective
reward. Each gamble rectangle was divided horizontally into a top and
bottom portion, each colored according to the token reward offered.
Gamble offers were thus defined by three parameters: two possible token
outcomes and probability of the top outcome (the probability of the
bottom was strictly determined by the probability of the top). The prob-
ability of the outcome was selected from the following values: 0.1, 0.3, 0.5,
0.7, 0r 0.9. The token values of the two possible outcomes were selected at
random from the values —2 (black stripe), —1 (gray stripe), 0 (red), 1
(blue), 2 (green), or 3 (purple). The combinations used are shown in the
inset of Figure 1b. Only red (0 token) and blue (1 token) were used as safe
offers. Each gamble included at least one positive or zero outcome, en-
suring that every gamble carried the possibility of a win. This decreased
the number of trivial choices presented to subjects and maintained
motivation.

Six initially unfilled circles arranged horizontally at the bottom of the
screen indicated the number of tokens to be collected before the subject
obtained a liquid reward. These circles were filled appropriately at the
end of each trial according to the outcome of that trial. When six or more
tokens were collected, the tokens were covered with a solid rectangle
while a liquid reward was delivered. Tokens beyond six did not carry
over, nor could the number of tokens fall below zero.

On each trial, one offer appeared on the left side of the screen and the
other appeared on the right. Offers were separated from the fixation
point by 550 pixels (4.5° of visual angle). The side of the first offer (left
and right) was randomized by trial. Each offer appeared for 600 ms and
was followed by a 150 ms blank period. Monkeys were free to fixate upon
the offers when they appeared (and in our observations almost always
did so). After the offers were presented separately, a central fixation spot
appeared and the monkey fixated on it for 100 ms. After this, both offers
appeared simultaneously and the animal indicated its choice by shifting
gaze to its preferred offer and maintaining fixation for 200 ms. Failure to
maintain gaze for 200 ms did not lead to the end of the trial, but instead
returned the monkey to a choice state; therefore, monkeys were free to
change their mind if they did so within 200 ms (although in our obser-
vations they seldom did so). A successful 200 ms fixation was followed by
a 750 ms delay, after which the gamble was resolved and a small “moti-
vation” reward (100 uL) was delivered, regardless of the outcome of the
gamble, to sustain motivation. This small reward was delivered within a
300 ms window. If six tokens were collected, a delay of 500 ms was
followed by a large liquid reward (300 wL) within a 300 ms window,
followed by a random ITI between 500 and 1500 ms. If six tokens were
not collected, subjects proceeded immediately to the ITL.

Surgical procedures, eye tracking, and reward delivery. All procedures
were approved by the University Committee on Animal Resources at the
University of Rochester or by the Institutional Animal Care and Use
Committee at the University of Minnesota and were designed and con-
ducted in compliance with the Public Health Service’s Guide for the Care
and Use of Animals. Three male rhesus macaques (Macaca mulatta)
served as subjects. A small prosthesis for holding the head was used. A
Cilux recording chamber (Crist Instruments) was placed over the pre-
frontal cortex. Animals were habituated to laboratory conditions and
then trained to perform oculomotor tasks for liquid reward. Animals
received appropriate analgesics and antibiotics after all procedures.
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Throughout both behavioral and physiological recording sessions, the
chamber was kept sterile with regular antibiotic washes and sealed with
sterile caps. All recordings were performed during the animals’ light cycle
between 8:00 A.M. and 5:00 P.M.

Eye position was sampled at 1000 Hz by an infrared eye-monitoring
camera system (SR Research). Stimuli were controlled by a computer
running MATLAB (The MathWorks) with Psychtoolbox (Brainard,
1997) and Eyelink Toolbox (Cornelissen et al., 2002). Visual stimuli were
colored rectangles on a computer monitor placed 57 cm from the animal
and centered on its eyes (Fig. 1a,b). A standard solenoid valve controlled
the duration of juice delivery. The relationship between solenoid open
time and juice volume was established and confirmed before, during, and
after recording.

Overview of computational models. We first used four base models,
expected value (EV), EV + probability weighting (PW), expected utility
(EU), and subjective utility (SU), for the estimation of subjective value.
In all of these models, the subjective value of each gamble (e.g., the
gamble on the left) was computed as follows:

SV, = w(py) = u(M;) + w(l — py) = u(my) (1)

where SV is the subjective value of the left gamble; M; and p; are the
magnitude (in microliters) and probability associated with the left gam-
ble’s larger magnitude outcome; m1; is the magnitude of the other left
gamble outcome (M; > m; ), which is equal to zero in the juice-gambling
task; u(m) is the utility function; and w( p) is the PW function. The four
models differed in the form of their utility and PW functions. The EV
model included linear utility and PW functions. The EU model included
only a nonlinear utility function, whereas the EV+PW included only a
nonlinear PW function. Finally, the SU included both nonlinear utility
and PW functions (see “Base models” section below for more details).

The estimated subjective values of the two options presented in each
trial were then used to compute the probability of selecting between the
two options based on a logistic function as follows:

v, —

_ SV, — SV,
logitP, = B + biasg(FO;, — FOg) + bias; (2)

where P, is the probability of choosing the left option, bias; measures a
response bias toward the left option to capture any location bias, bias,
measures a response bias toward the first offer (FO) that appeared on the
screen (order bias) and was only significant in the token-gambling task,
FO, (FOy) is 1 if the first offer appeared on the left (right) side, and ois a
parameter that measures the level of stochasticity in decision processes.

We also extended our base models to include two types of differential
weighting (DW) mechanisms (see “Models with DW mechanism” sec-
tion below for more details). First, we considered alternative “within-
option” DW mechanisms by which the gamble outcome with a larger
reward magnitude, reward probability, or EV could influence the overall
value more than the alternative outcome. This was done to investigate
how magnitudes and probabilities of the two possible gamble outcomes
can influence the weight of each gamble outcome on the overall gamble
value. These models were only used for the token-gambling task because
gambles in the juice-gambling task only had one nonzero outcome. Sec-
ond, we considered the possibility that, when comparing two gambles,
the value of the better outcome of each gamble (in terms of magnitude,
probability, or EV) could influence their overall value relative to the
other gamble (“cross-option” DW). This was done to investigate how
nonzero (or the better) outcomes of the gambles on each trial modulate
the value of these gamble in the juice-gambling (respectively, token-
gambling) task.

Base models. In the EV model, actual probabilities and a linear utility
function were used to estimate the subjective value of each gamble. How-
ever, this model also includes different slopes for gains and losses as
follows:

m m
u(m) = {Bc<m> if m=0; BL(W) if m< O}BG, BL.>0
(3)
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where B and B, are slopes for the gain and loss domains, respectively.
We normalized the juice reward magnitude by 100 uL to limit utility to
small numbers.

In the EU model, we considered a nonlinear utility function and a loss
aversion coefficient as follows:

u(m) = {(%) G, ifm=0;— A(—%) L, ifm< O} (4)

where u(m) is the SU, A is the loss aversion coefficient, and p; and p; are
the exponents of the power law function and determine risk aversion for
the gain and loss domains, respectively; p > 1 indicates risk seeking, p <
1 indicates risk aversion, and p = 1 indicates risk neutrality.

In the EV+PW model, we considered a linear utility function and
nonlinear PW function. The PW was computed using a one-parameter
Prelec function as follows:

W(p) = ¢ (log(p))¥ (5)

where w(p) is the PW and vy is a parameter that determines probability
distortion.

Finally, in the SU model, we used both nonlinear utility and nonlinear
PW functions to estimate the subjective value of each gamble.

Models with DW mechanisms. We extended our base models to include
two types of DW mechanisms. First, we considered alternative DW mecha-
nisms by which the gamble outcome with a larger reward magnitude,
reward probability, or EV could influence the overall value more than the
alternative outcome (“within-option” DW; Fig. 2a—c). Second, we con-
sidered the possibility that, when comparing two gambles, the value of
the better outcome of each gamble (in terms of magnitude, probability,
or EV) could influence their overall value relative to the other gamble
(“cross-option” DW; Fig. 2d—i).

We constructed three within-option DW models (DW by magnitude,
DW by probability, and DW by EV; Fig. 2a—c) to investigate how mag-
nitudes and probabilities of the two possible gamble outcomes can influ-
ence the weight of each gamble outcome on the overall gamble value.
These models were only used for the token-gambling task because gam-
bles in the juice-gambling task only had one nonzero outcome.

In the model with within-option DW by magnitude, the subjective
value of each gamble (say for the left gamble) was computed as follows:

SV, =DW,, = w(p;) * u(M;) + (1 — DW,,) = w(l — p;) * u(m,)
(6)

where DW, | determines the strength of DW by magnitudes; M, and p;.
are the magnitude and probability associated with the left gamble’s larger
magnitude outcome, respectively; and m; is the magnitude of the other
left gamble outcome (M, > m,).

In the model with within-option DW by probability, the subjective
value was computed as follows:

SV, = DW, # w(Py) * u(m;) + (1 — DW,) * w(1 — Py) * u(my)
(7)

where DW,, determines the strength of DW by probability and m; (my) is
the magnitude associated with the left gamble’s larger (respectively,
smaller) probability outcome (P; > 0.5).

Finally, in the model with within-option DW by EV, the subjective
value was computed as follows:

SV, = DWgy # w(pp) * u(my) + (1 — DWgy) *= w(l — py) = u(my)
(8)

where DWy,,, determines the strength of DW by EV, m; and p, are the
magnitude and probability associated with the left gamble’s outcome
with a larger EV, respectively, and ] is the magnitude associated with
the left gamble’s outcome with a smaller EV, as follows: p; # m > (1 —
pL) *my.

We also constructed three cross-option DW models (cross-option
DW by magnitude, cross-option DW by probability, and cross-option
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Figure2.  Alternative models for DW. a—c, Alternative DW between the two outcomes of each gamble (within-option) in the
token-gambling task with two nonzero reward outcomes. a—c show three mechanisms for how magnitudes and probabilities of
the two possible gamble outcomes can influence the weight of each gamble outcome on the overall gamble value: DW by
magnitude (a); DW by probability (b); and DW by EV (c). In all panels, M, and p, indicate the magnitude and probability associated
with the left gamble’s larger magnitude outcome, respectively, and m, is the magnitude of the other left gamble outcome (the
probability of this outcome is 1 — p,). The same convention is used for the right gamble. The blue box shows the outcome that is
assigned with a larger weight based on a given mechanism. The DW factors determine the strength of DW according to the reward
magnitude (DW,,), reward probability (DW,), and EV (DW() of the two outcomes. d—, Alternative DW between better outcomes
of the two alternative gambles (cross-option) in the token-gambling task with two nonzero reward outcomes. d—f show three
mechanisms for how magnitudes and probabilities of the better outcome of the two alternative gambles can modulate their
values: cross-option DW by magnitude (d), cross-option DW by probability (e), and cross-option DW by EV (f). The blue box shows
the gamble that is assigned with a larger weight based on a given mechanism. The DW factors determine the strength of DW
according to the reward magnitude (d), the reward probability (e), and EV of the two gambles (f). g—i, Alternative cross-option
DW between nonzero outcomes of the two alternative gambles in the juice-gambling task. g—i show three mechanisms for how
magpnitudes and probabilities of the nonzero outcome of the two alternative gambles can modulate their values. Importantly, as
shown in Figure 2-1 (available at https://doi.org/10.1523/JINEUR0SCI.2260-17.2018.f2-1) and Figure 2-2 (available at https://doi.
0rg/10.1523/INEUR0SCI.2260-17.2018.f2-2), our fitting method is able to identify correctly the model used to generate a given set
of data and thus can distinguish between the alternative models.
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gamble with a larger probability outcome for
which the magnitude was nonzero; for exam-
ple, the left gamble, if P, > Py, where P; de-
notes the larger probability outcome of each
gamble. Finally, in the models with cross-
option DW by EV (Fig. 2i), DW was multiplied
by the value of the gamble with a larger EV
outcome; for example, the left gamble, if m; *
(1 = pp) > My * pp, when my * (1 — p) and
My, * py are the EV of the larger EV outcomes
of the two gambles.

Fitting procedure and data analyses. To deter-
mine how monkeys constructed subjective
value for risky options, we used various models
to fit choice behavior during each gambling
task; the best model revealed the most plausible
mechanism for the construction of subjective
value for a given monkey/task. Models were fitted
to experimental data by minimizing the nega-
tive log likelihood of the predicted choice
probability given different model parameters
using the fminsearch function in MATLAB
(The MathWorks). There are two main issues
when comparing the goodness-of-fit between
models with different number of parameters:
more complex models could explain data bet-
ter by virtue of having a greater number of
parameters and models with more parameters
could overfit the data such that the fitting is not
generalizable to similar datasets. For these
reasons, we fit choice behavior with different
models based on a fivefold cross-validation
method using parameters estimated from 80%
of the data for a given monkey/task to predict
choices on the remaining 20%. Importantly,
cross-validation automatically deals with dif-
ferent numbers of model parameters because
redundant parameters result in overfitting
and thus do not add any explanatory power.
Moreover, it has been shown that, in many
cases, the cross-validation method provides
an approximation to the Akaike information
criterion (AIC), whereas the AIC does not
address the overfitting issue. The cross-
validation was done 50 times separately for
data from each monkey in a given task.

In addition, we also fit choice behavior from
each session of the experiment individually to
capture the diversity of risk attitudes on differ-
ent days of the experiment. For this analysis, we
used the interquartile range rule to remove
outlier sessions in terms of the estimated pa-

DW by EV) to investigate how nonzero (or the better) outcomes of the
gambles on each trial modulate the value of these gamble in the juice-
gambling (respectively, token-gambling) task.

In all of the models with cross-option DW, the probability of selecting
between the gambles was computed as follows (if the left gamble was
assigned with the larger weight):

logitP, = (DW * SV; — (1 — DW) * SV;)/o + bias; (9)

where DW determines the strength of DW between the two nonzero or
better outcomes of the two alternative gambles based on one of the three
alternative mechanisms: DW by magnitude; DW by probability; and DW
by EV (Fig. 2d—i).

In the models with cross-option DW by magnitude (Fig. 2g), DW was
multiplied by the value of the gamble with a larger magnitude outcome;
for example, the left gamble, if M; > My, where M; denotes the larger
magnitude outcome of each gamble. In the models with cross-option
DW by probability (Fig. 2h), DW was multiplied by the value of the

rameters. More specifically, we only included sessions that did not yield
an outlier for any of the fitting parameters. This was done to ensure a
reliable estimate for all the parameters in a given session. In the juice-
gambling task, the exclusion criterion resulted in removal of 2% and 11%
of sessions from the lower and upper outlier bounds, respectively. In the
token-gambling task, this exclusion criterion resulted in removal of 4%
and 12% of sessions from the lower and upper outlier bounds, respec-
tively. Importantly, we obtained qualitatively similar results for session-
by-session analyses even with the inclusion of outlier sessions.

To test whether our fitting procedure is able to distinguish between
alternative models and identify the correct model and to estimate model
parameters accurately, we simulated the aforementioned 16 models over
a range of parameters estimated from monkeys’ choice behavior in the
two experiments. More specifically, we generated choice data for the
juice-gambling task using the exponent of the utility function (p) ranging
from 1 to 4, the probability distortion parameter () ranging from 0.8 to
2, the differential-weighting factor (DW) ranging from 0.55 to 0.65, and
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the stochasticity in choice (o) ranging from 0.5 to 10. In the token-
gambling task, we generated choice data by adopting the following range
for model parameters: [1, 2] for the exponent of the utility function
between (p), [0.4, 1.2] for the loss aversion coefficient (A), [0.8, 1.2] for
the probability distortion parameter (vy), [0.55, 0.65] for the DW factor
(DW), and [0.4, 1] for stochasticity in choice (). We then fit the simu-
lated data with all the models to compute the goodness-of-fit (in terms of
AIC) and to estimate model parameters. Because model parameters
could take on very different values, we computed the error in estimation
of model parameters using the relative value of each estimated parameter
to its actual value. The average goodness-of-fit and estimation error were
calculated by averaging the corresponding values over all fits based on all
sets of parameters. Moreover, to account for the overall difficulty of
fitting data generated with certain models, we rescaled AIC values across
all models used to fit a given set of simulated data. This rescaling was
done by first subtracting the minimum AIC value obtained by fitting a
given set of data and then dividing the outcome by the difference between
the maximum and minimum values of AIC for that set of data.

To test correlation between model parameters, we used two methods:
the Hessian matrix and session-by-session values of fitting parameters. In
the first method, we estimated correlations between model parameters
numerically using the Hessian matrix for the base SU model and the SU
model with DW at parameter values for which we obtained of best fit.
The relationship between the matrix of correlation between model pa-
rameters and the Hessian matrix builds on the theorem that because the
maximum likelihood estimator is asymptotically normal, the distri-
bution of the maximum likelihood estimator (8,) can be approxi-
mated by a multivariate normal distribution with a certain mean (6,)

1
and a covariance matrix <Z (var [V oln( f(X; 60))])">, where 7 is the

number of model parameters. This covariance matrix can be estimated

1
by — o E[V goln( fx(X; 65))]7", where V g4ln( fx(X; 6,)) is the matrix of

the second-order partial derivatives of the log-likelihood function or the
Hessian matrix. As a result, the matrix of correlation between model
parameters can be calculated from the inverse of the Hessian matrix. To
estimate the Hessian matrix, we first computed the derivatives of the log
likelihood with respect to model parameters to form the Jacobian matrix.
Next, we calculated the derivative of the Jacobian matrix to compute the
Hessian matrix of the cost function for fitting.

In the second method, we calculated the correlation between model
parameters directly based on the estimated parameters across all sessions
using the base SU model and the SU model with DW. Using session-by-
session fitting parameters, we also calculated the correlation between model
parameters of both models. The two methods for calculating correlation
between model parameters yielded compatible results (see Results).

We also examined the likelihood surface of the model to calculate the
error associated with the estimated parameters. We calculated variability in
the estimate of negative log-likelihood function by computing the SD of this
function, std(—LL), at the global minimum across many instances of cross-
validation. We then calculated the order of magnitude (scale) of the error
associated with estimated parameters using the eigenvector associated with
the smallest eigenvalue of the Hessian matrix (as a measure of the direction
with the minimum slope of log-likelihood surface) as follows:

std(—LL)
error = \[——— V) (10)
)\min "
where A, is the smallest eigenvalue and V, is the corresponding
eigenvector.

Finally, to quantify changes in the sensitivity to reward information as
a function of the number of collected tokens (see Fig. 5), we fit the
psychometric function using a sigmoid function and estimates indiffer-
ence point () and stochasticity in choice (o) as follows:

1
(EV, — EV,) — u) ()

o

p(left) =
1+ exp< -

Farashahi et al. @ Flexible Risk Attitudes in Monkeys

a b

6 2 1

pe > 1 B 3 y>1
>3 §0.75
£ ofm<i_g= <! & g5
= / 3 y<1
BT, >1 50.25
k<
-6+ 2 o

0 025 05 075 1
probability

-4 -2 0 2
magnitude

N

0
-200 -100 O

100 200
EV|-EV,, (uL)

' Bt
-200 -100 O 100 200
EV|-EV, (ub)

Figure 3.  Standard and nonstandard evaluation of reward magnitude and probability ac-
cording to prospect theory and the overall sensitivity of monkeys' choice behavior to the differ-
ence in EVs of gambles on each trial. a, Utility function quantifying the relationship between
reward magnitude and SU. Plotted in blue is a hypothetical, standard utility function based on
prospect theory with concave and convex curves for gains and losses, respectively. In contrast,
thered curve shows a utility function that s convex for gains and losses, resulting in risk-seeking
behavior for both gains and losses and thus violating the reflection effect. Parameters p, and p,
are the exponents of the power law used to generate the utility curves for gain and loss domains,
respectively. b, PW function quantifying the transformation of actual reward probability for making
decisions. Plotted are several possible shapes of PW. Prospect theory predicts inverse-S-shaped
weighting functions (blue curves). Parameter -y determines the curvature of the function. ¢, Psycho-
metric functions in two monkeys during the juice-gambling task. Probability of choosing the left
targetis plotted as a function of the difference in EVs of two gamblesin a given trial. The inset plots the
probability (mean = SEM) of choosing a sure option againsta gamble with an equal EV (n = 32 trials)
and the probability of choosing the less risky option in pairs of gambles with equal EVs (n = 717 trials).
d, Same as ¢, but for the token-gambling task. The top inset plots the probability of choosing the sure
option of one token against a gamble with an equal EV (n = 69 trials) and the probability of choosing
the less risky option in pairs of gambles with equal EVs (n = 271 trials). The bottom inset plots the
probability of choosing the sure option with no reward overa 50/50 gamble of winning and losing one
(n = 55trials) or two tokens (n = 62 trials).

where p(left) is the probability of choosing the option on leftand EV; and
EVy are the EV of the left and right options, respectively.

Statistical analysis. MATLAB (The MathWorks) was used for all statisti-
cal analysis. Statistical comparisons of extracted model parameters within
experiments were done using two-sided sign test. Statistical comparisons of
extracted model parameters between experiments were done using the two-
sided rank-sum test. Results were considered significant at p < 0.05. The
reported effect sizes are Cohen’s d values. All extracted model parameters are
expressed as median * interquartile range (IQR). The statistics for changes
in the sensitivity of psychometric function as a function of number of col-
lected tokens were obtained using linear regression.

Results

We used various computational models to analyze monkeys’
choice behavior from two separate experiments in which subjects
chose between two (gambles or safe) options offering either
juice (juice-gambling task) or token (token-gambling task) re-
wards (Fig. 1). The juice-gambling task involved options with the
possibility of one of three reward sizes or no reward, whereas
options in the token-gambling task involved a mix of gain, loss, or
no reward possibilities (see Materials and Methods).

Monkeys exhibit risk seeking and loss seeking
We first investigated whether the animals integrated information
about reward magnitude and probability appropriately to select
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Figure 4.  Monkeys’ choices were sensitive to reward probability during both tasks. a, Plotted is the probability of choosing a gamble versus sure option as a function of the probability of the
nonzero reward outcome (medium or large) of the gamble during the juice-gambling task. Selection of the gamble increased monotonically as the probability of nonzero reward outcome increased.
b, Each panel plots the probability of choosing a gamble with the nonzero reward outcome indicated on the x-axis as a function of the reward probability of the nonzero outcome of that gamble and
the competing gamble (indicated on the y-axis) during the juice-gambling task. ¢, Same as b, but for the token-gambling task. Each panel plots the probability of choosing gamble 1 as a function
of the reward probability of the larger magnitude outcome of gamble 1 (x-axis) and gamble 2 (y-axis) for a set of gambles with a specific pairs of reward magnitudes. As indicated in the inset, the
outcome reward magnitudes of gamble 1and gamble 2 are shown next to the x-axis and y-axis, respectively. Gamble 1: M,, P,; m,, 1 — P,; gamble 2: M,, P,; m,, T — P,. Overall, the probability of
choosing a gamble increased as the probability of reward for its larger magnitude outcome increased, indicating the sensitivity of monkeys to reward probabilities provided by the length of different
portions of each bar.

between gambles. To do so, we computed the probability of choos-
ing the left gamble as a function of the difference between the
EVs (i.e., reward probability times magnitude) of the left and
right gambles (Fig. 3c¢,d). This analysis showed that all mon-
keys consistently selected the gamble with higher EV (81%,
84%, and 85% for monkeys B, C, and J in the juice-gambling

task, respectively, and 79% and 74% for monkeys B and J in
the token-gambling task, respectively; binomial test, p =
10 ~*?). Moreover, psychometric functions plotted in Figure 3,
c and d, provide strong evidence that all monkeys considered
both length (probability) and color (magnitude) of gambles
for making decisions.
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ability and smaller reward magnitude, in-
dicating significant risk-seeking behavior
(Fig. 3¢,d, insets). Moreover, in the token-
gambling task with gains and losses,
monkeys consistently selected the 50/50
gambles with equal amounts of gains and
losses over the sure option that did not
deliver reward. This indicates that mon-
keys preferred to accept, rather than re-
ject, gambles with loss and zero EV,
signifying loss-seeking behavior (Fig. 3d, inset).

To better demonstrate that monkeys understood the task and
incorporated information about both reward probability and
magnitude, we calculated choice probability separately for each
set of gambles with similar reward magnitudes as a function of
the probability of reward for the larger magnitude outcomes of
the two gambles or the only gamble when the competing choice
option was a safe one (Fig. 4). This analysis showed that the
probability of choosing a gamble increased as the probability of
reward for its larger magnitude outcome increased, indicating
that monkeys did incorporate the length of a given colored por-
tion (i.e., reward probability) in their choices.

Finally, we investigated whether monkeys understood the
structure of the token-gambling task and were sensitive to the
information about collected tokens that was presented at the bot-
tom of the screen. We reasoned that, if monkeys understood this
information, then they would necessarily show systematic
changes in behavior as a function of token number; for example,
they would exhibit more motivation to perform the task as the
number of tokens grows and the probability of winning a jackpot
reward immediately increases. To test this, we calculated psycho-
metric functions separately for different numbers of collected
tokens at the beginning of each trial (Fig. 5). The psychometric
function measures the preference between each pair of gambles as
a function of the difference in EVs of gambles and thus reflects the
sensitivity of the animal to the presented information (Eq. 11).
We found that both monkeys became less stochastic (smaller o
corresponding to a steeper psychometric function) in their deci-
sions or equivalently more sensitive to the presented informa-
tion, as they gathered more tokens (p = 0.04 for Monkey B and
p = 0.0003 for Monkey J; two-sided ¢ test). This result reflects
higher levels of motivation in performing the task and supports
the premise that monkeys can use the token information as a
symbolic scoreboard of future rewards.

Figure 5.

Monkeys exhibit convex utility curves for both gains and
losses and a task-dependent S-shaped PW

Our subjects’ overall risk-seeking and loss-seeking behavior sug-
gests utility and PW functions different from those predicted by
prospect theory. More specifically, there are three main charac-
teristics that describe the core risk attitudes of humans in pros-
pect theory (Kahneman and Tversky, 1979). First, the utility
curve is concave for gains but convex for losses, indicating risk

EV -EV,, (uL)

EV, -EV,, (ul)

Monkeys' sensitivity to reward information increased with more collected tokens at the beginning of each trial.
a, b, Each plot shows the probability of choosing the left gamble as a function of the difference in EVs of two gamblesin a given trial
separately for different numbers of collected tokens at the beginning of each trial (shown with different colors) and for individual
monkeys. The inset plots the estimated indifference point (i) and stochasticity in choice () as a function of different numbers of
collected tokens (Eq. 11). One and two stars indicate that the slope of regression line s significantly different from zero at p << 0.05
and p << 0.01, respectively (two-sided ¢ test). The stochasticity in choice decreased with more collected tokens in both monkeys.

aversion and risk-seeking behavior for gains and losses, respec-
tively (Fig. 3a, blue curve). The opposing risk attitudes for gains
and losses is known as the reflection effect. Second, the slope of
the utility curve for losses is steeper than the one for gains. This
pattern produces loss aversion, the tendency for losses to have a
more negative impact on subjective value than equivalent gains.
Third, the PW function has an inverse S-shape, resulting in over-
weighting of the value of options with small reward probability
and underweighting of options with large reward probability
(Fig. 3b, blue curve). To assess risk attitudes in monkeys directly
based on prospect theory, we first used four base models to fit
choice behavior and estimated utility and PW functions in each
of the two experiments (see Materials and Methods). The behav-
ior that we observed in our subjects better fits the red curves in
Figure 3, a and b, where a convex curve for gains as well as losses
explains risk-seeking behavior in both domains and the PW func-
tion (where significant) is S-shaped, suggesting that subjects un-
derweight options with a low probability and overweight options
with a high probability. We examine these behavioral patterns in
detail below.

Fitting choices based on cross-validation showed that the SU
model (the model with nonlinear utility and PW functions) pro-
vided the best fit in the juice-gambling task (Fig. 6a). Session-by-
session estimates of the utility functions based on this model
revealed a convex utility function (Fig. 6b, Table 1). This convex-
ity was reflected in the median of the exponent of the utility curve
(ps; see Eq. 4 in Materials and Methods) being larger than 1
(median = IQR = 2.95 £ 0.94, two-sided sign test; p = 6.3 X
1072, d = 3.15, N = 146). Monkeys also exhibited a prominent
S-shaped PW function (Fig. 6¢) reflected in the distortion param-
eter (y; see Eq. 5 in Materials and Methods) being larger than 1
(median = IQR = 1.57 £ 0.76, two-sided sign test; p = 3.5 X
107", d = 1.13, N = 146). Importantly, these results were not
model specific because fitting based on the models with either a
nonlinear utility function (EU) or the PW function (EV+PW)
also produced convex utility curves (p; median = IQR = 2.57 +
0.57, two-sided sign test; p = 2.3 X 10 7%, d = 3.59, N = 146; Fig.
6d) or a prominent S-shaped PW (y median * IQR = 2.50 *
1.68, two-sided sign test; p = 3.7 X 10 ~'*,d = 0.87, N = 146; Fig.
6-1a, available at https://doi.org/10.1523/INEUROSCI.2260-17.
2018.6-1), respectively.

We next examined choice behavior during the token-
gambling task. Fitting choice based on cross-validation showed
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Fitting of choice behavior reveals a task-dependent pattern of risk attitudes different than what is predicted by prospect theory. a, Comparison of the goodness-of-fit for choice behavior

during the juice-gambling task using four different models of subjective value: EV, EV+PW, EU, and SU. Plotted is the average negative log likelihood (—LL) per trial over all cross-validation
instances (a smaller value corresponds to a better fit). The SUmodel provided the best fit. b, Estimated utility function based on the SUmodel as a function of the reward juice. Each curve shows the
result of the fit for one session of the experiment; the thick magenta curve is based on the median of the fitting parameter. The dashed line is the unity line normalized by 100 L. The insets show
the distribution of estimated parameters for the utility curve for gains (pg). The dashed lines show the medians and a star indicates that the median of the distribution is significantly different from
1 (two-sided sign test; p << 0.05). ¢, Estimated PW function based on the SU model. The inset shows the distribution of estimated parameters for the PW function (). The dashed line is the unity
line. Subjects exhibited a pronounced S-shaped PW function. Figure 6-1 (available at https://doi.org/10.1523/JNEUR0SCI.2260-17.2018.f6-1) shows consistent results for fitting based on the
EV+PW model. d, Estimated utility function based on the EU model. Conventions are the same asin b. e—h, Same as a—d, but for the token-gambling task. The EU and SU models provided the best
fits and subjects exhibited a slightly S-shaped PW function based on the SU model. The reward magnitude in this task corresponds to the juice equivalent of a given number of tokens. The insets in
fshow the distribution of estimated parameters for the utility curves in the gain domain (p,) and loss domain (p, ), as well as the loss aversion coefficient (A). On average, subjects exhibited a convex
utility function for both gains and losses and thus were loss seeking and violated the reflection effect.

Table 1. Summary of the estimated risk preference parameters during the
juice-gambling task

SU with cross-option

DW by magnitude SU EU EV + PW
Pe 1.74 £ 1.00 2.95 =094 2.57 = 0.57 N/A
Y 155+ 0.78 157 £ 0.76 N/A 2.50 + 1.68

Reported are medians == IQR of the distribution of estimated parameters in a given model.
N/A, Not applicable.

Table 2. Summary of the estimated risk preference parameters during the
token-gambling task

SU with
within-option DW
by magnitude SU EU EV+PW RV
pe 143 £ 046 1.58 = 0.51 149 =049 N/A N/A
p. 048073 0.64 = 1.02 0.55* 1.05 N/A N/A
A 058 = 1.51 0.46 = 0.84 0.46 = 0.84 N/A (B./Bg)0.13 £ 0.17
y 11 =*£04 114 =037 N/A 1.48 = 0.58 N/A
Reported are medians == IQR of the distribution of esti dp in a given model.

N/A, Not applicable.

that the EU and SU models provided the best fit for choice during
this task (Fig. 6e). Fits for the two models were nearly equal,
suggesting that inclusion of the PW function did not improve the
fit and thus the absence of any probability distortion. Session-by-
session estimates of the utility functions based on the SU model
revealed that monkeys adopted a convex utility function for both
gains and losses (Fig. 6f, Table 2). This convexity was reflected in
the median of the exponent of the gain utility curve being larger
than 1 (median * IQR = 1.58 = 0.51, two-sided sign test; p =
2.7 X 107, d = 1.59, N = 140; Fig. 6f, bottom inset), and the

median of the exponent of the loss utility curve (p;; see Eq. 4 in
Materials and Methods) being smaller than 1 (median = IQR =
0.64 = 1.02, two-sided sign test; p = 1.0 X 1074 d=025N=
140). In addition, monkeys were loss seeking: the loss aversion
coefficient (A; see Eq. 4 in Materials and Methods) was signifi-
cantly smaller than 1 (median = IQR = 0.46 = 0.84,p = 3.3 X
10 7% d = 0.56, N = 140; Fig. 6f, top inset). Finally, monkeys
exhibited a slightly S-shaped PW function (y median = IQR =
1.14 £ 0.37, two-sided sign test; p = 5.7 X 10 °,d=057,N=
140; Fig. 6¢). This result is consistent with the finding that the
PW function did not improve the fit in the token-gambling
task (Fig. 6e).

As with the juice-gambling task, these results were not model
specific: fitting based on the models with either a nonlinear utility
function (EU) or the PW function (EV+PW) produced a quali-
tatively similar pattern of risk preference for the token-gambling
task. More specifically, parameter estimates of the utility function
based on the EU model showed convex utility curves for both gains
and losses that were steeper for the gain than the loss domain (Fig.
6h, Table 2). This was reflected in: the median of p; being larger than
1 (median = IQR = 1.49 * 0.49, two-sided sign test; p = 1.2 X
10~ %, d = 1.50, N = 140; Fig. 6}, bottom inset); the median of p;
being smaller than 1 (median * IQR = 0.55 * 1.05, two-sided sign
test; p = 4.5 X 10 7%, d = 0.34, N = 140); and the median of A
being significantly smaller than 1 (median = IQR = 0.46 = 0.84,
two-sided sign test; p = 3.4 X 108 d = 0.69, N = 140; Fig. 6h,
top inset). Finally, parameter estimates of the PW function based
on the EV+PW model revealed an S-shaped weighting function
(ymedian + IQR = 1.48 = 0.58, two-sided sign test; p = 3.2 X 10",
d = 1.16, N = 140; Fig. 6-1b, available at https://doi.org/10.1523/
JNEUROSCI.2260-17.2018.f6-1). Together, these results show
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that the observed shape of the estimated
utility and PW functions were general and
not model specific.

We also considered the possibility that
the observed loss-seeking behavior was
caused by monkeys not considering losing
a token as a real loss because, in each trial,
they were provided with a small “motiva-
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tion” reward regardless of the outcome of
the gamble (see Materials and Methods).
To test for this possibility, we fit choice
behavior with four base models similar to
those used above with the difference that a
loss of two and one tokens were consid-
ered as zero loss or a gain of one token,
respectively. The goodness-of-fit based on
these models did not reach those of the
models in which losing any token was con-
sidered as loss (Fig. 7). This result strongly
suggests that monkeys treated losing tokens
as a genuine loss and thus the observed
loss seeking was not due to a shift in the
reference point.

Finally, we compared the estimated utility and probability
functions in the two experiments. The utility function for gains
was significantly more convex in the juice-gambling task than in
the token-gambling task (comparison of pg values, two-sided
Wilcoxon rank-sum test; p = 7.4 X 10 7%, d = 2.75, N = 284).
Crucially, this difference was significant even for each of the two
monkeys who performed both experiments (Monkey B: p =
1.3 X 107%',d =3.81, N = 140, Monkey C: p = 1.0 X 10 %, d =
2.24, N = 93; Fig. 8a,c). The PW function was more distorted in
the juice-gambling task than in the token-gambling task (com-
parison of yvalues, two-sided Wilcoxon rank-sum test; p = 3.5 X
10 7'°, d = 0.96, N = 284). This pattern held true for each of the
two monkeys that performed both experiments as well (Monkey
B:p=4.9X10"°%d=1.04, N = 140, Monkey C: p = 0.02,d =
0.63, N = 93; Fig. 8b,d).

These findings show that risk attitudes, especially in terms of
the curvature of the utility function, are flexible and task depen-
dent. To further explore potential mechanisms underlying this
flexibility, we next examined additional components involved in
the construction of subjective value that could account for some
of the observed differences in risk attitudes during the two tasks.

Figure7.

DW can partially account for the difference in utility
functions across experiments

To explore additional factors that could influence the construction
of subjective value and choice, we considered two sets of mecha-
nisms for weighting possible outcomes. First, we hypothesized that
the two gamble outcomes could be weighted differently before they
are combined to form the overall subjective value. In other words,
the two possible outcomes of a given gamble compete to influ-
ence the overall gamble value. To test this hypothesis, we consid-
ered three possible “within-option” DW mechanisms by which
the gamble outcome with a larger reward magnitude, reward
probability, or EV could influence the overall value more so than
the alternative outcome (see Materials and Methods and Fig. 2a—c
for more details). Second, we hypothesized that, when comparing
two gambles, the value of the better outcome of each gamble
could influence its overall value relative to the other gamble. To
test this hypothesis, we considered alternative “cross-option”
DW mechanisms based on the magnitude, probability, or EV of
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Observed loss-seeking behavior was not due to a shiftin the reference point. a, Comparison of the goodness-of-fit for
choice behavior during the token-gambling task using four different models of subjective value in which a loss of two and one
tokens were considered as zero loss or gain of one, respectively, due to the small “motivation” reward (equivalent to two tokens)
provided in each trial. Conventions are the same asin Figure 6. Dashed line indicates the average negative log likelihood (—LL) for
the best model that considers losing any token as a loss (correspond to the cyan and magenta bars in Fig. 6e). The EU model
provided the best fit, butits goodness-of-fit was worse than the best model that considered losing any token as a loss. b, Estimated
utility function based on the SU model as a function of the reward juice. Each curve shows the result of the it for one session of the
experiment; the thick magenta curve is based on the median of the fitting parameter. The dashed line is the unity line normalized
by 100 L. The insets show the distribution of estimated parameters for the utility curve for gains (p). The dashed lines show the
medians and a star indicates that the median of the distribution is significantly different from 1 (two-sided sign test; p << 0.05).
¢, Estimated PW function based on the SUmodel. The inset shows the distribution of estimated parameters for the PW function (y).
The dashed line is the unity line.

the better outcome in each gamble (see Materials and Methods
and Fig. 2d—i for more details). We used all of these models to fit
choice behavior in the two experiments.

We found that the SU model with cross-option DW based on
reward magnitude provided the best fit in the juice-gambling task
(Fig. 9a). To study the contribution of DW to flexible risk atti-
tudes, we next compared the session-by-session estimates of the
DW factor (see Materials and Methods) and risk preference pa-
rameters based on the SU model with and without DW. This
analysis revealed a strong DW of the two gambles based on re-
ward magnitude of the better outcome (DW factor median *+
IQR = 0.63 * 0.18, two-sided sign test; p = 1.1 X 107°°, d =
1.30, N = 146; Fig. 9d) corresponding to ~102% larger weight for
the value of the gamble with the larger magnitude relative to the
other gamble. More importantly, the estimated utility function
was less steep in the SU model with DW than in the SU model
without DW (p; median = IQR = 1.74 £ 1.00 and 2.95 = 0.94
for the model with and without DW, respectively; two-sided sign
test; p = 1.1 X 107'%, d = 1.18, N = 146; Figs. 9b, 10a). This
finding suggests that DW accounts for some portion of behavior
that, unless modeled explicitly, results in an overestimation of the
convexity of the SU function. However, there was no difference be-
tween probability distortion estimates based on the model with and
without DW (y median * IQR = 1.55 * 0.78 and 1.57 * 0.76 for
the model with and without DW, respectively; two-sided sign test,
p=0.12,d = 0.17, N = 146; Figs. 9¢, 10b), suggesting that DW may
not influence estimates of this function, at least not in this task.

In contrast to the juice-gambling task, models with within-
option DW provided better fit compared with models with cross-
option DW in the token-gambling task (cf. bottom and top four
bars in Fig. 9¢). Overall, the EU and SU models with within-
option DW based on reward magnitude provided the best fit
among all models with DW. The improvement of fit based on
these models relative to the best models without DW (base EU
and SU models) was minimal (Fig. 6e). These results indicate that
DW did not strongly influence choice behavior in the token-
gambling task. Nevertheless, the session-by-session estimate of
the DW factor in the SU with DW model revealed a significant
effect of DW on valuation; DW factors were significantly larger
than 0.5 (median * IQR = 0.57 * 0.22; two-sided sign test; p =
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Figure 8.

monkey C was similar to that of monkey B in the juice-gambling task.

23X 1077,d=0.67, N = 140; Fig. 9h), corresponding to ~33%
larger weight for the value of the outcome with the larger magni-
tude relative to the outcome with the smaller reward magnitude.

Moreover, the utility functions for both gains and losses were
less steep in the SU model with DW than in the SU model without
DW (Figs. 9f, 10c, Table 2). The estimated exponents of the utility
function for gains (p.;) were significantly smaller after consider-
ing DW (median + IQR = 1.43 * 0.46 and 1.58 * 0.51 for the
model with and without DW, respectively; two-sided sign test;
p=13X10"%d = 0.52, N = 140). Similarly, the estimated
exponents of the utility function for losses (p; ) were significantly
smaller after considering DW (median = IQR = 0.48 = 0.73 and
0.64 = 1.02 for the model with and without DW, respectively;
two-sided sign test; p = 0.048, d = 0.17, N = 140). The estimated
loss aversion coefficients, however, were larger in the model with

O >
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Different utility and PW functions in the two tasks in individual monkeys. a, Estimated utility functions based on the
SU model in the juice-gambling and token-gambling tasks. Plot shows the utility curves based on the median of the fitting
parameterin the juice (pink) and token (magenta) gambling tasks for monkey B. The dashed line s the unity line normalized by 100
L. Theinsets show the distributions of estimated parameters for the utility curve for gains (p) in the two tasks. The dashed lines
show the medians and a star indicates that the medians of the two distributions are significantly different (two-sided Wilcoxon
rank-sumtest; p << 0.05). b, Estimated PW function based on the SUmodel in the two tasks. Plot shows the PW functions based on
the median of the fitting parameter in the two tasks for monkey B. The dashed line is the unity line. The insets show the distribution
of yvaluesin the two tasks. ¢, d, Same as a and b, but for monkey J. Both monkey B and J exhibited a much steeper utility curve in
thejuice-gambling task. Although both monkeys exhibited different probability distortion in the two tasks, this effect was stronger
in monkey B. e, f, Same as in a and b, but for Monkey C, which only performed the juice-gambling task. The overall behavior of

model used to generate a given set of data
provided the best overall fit (Fig. 2-1b,d,
available at https://doi.org/10.1523/
JNEUROSCI.2260-17.2018.f2-1). We also
computed the relative estimation error
(i.e., difference between the estimated and
actual parameters after normalizing each
estimated parameter by its actual value;
see Materials and Methods) and found
that fitting based on the model used to
generate a given set of data provided an
unbiased estimate of model parameters
(Fig. 2-2a,c, available at https://doi.org/
10.1523/JNEUROSCI.2260-17.2018. f 2
- 2). Moreover, we found the minimum
value of the average absolute estimation error (as a more robust
measure of variance in estimation error) for the same model used to
generate a given set of data (Fig. 2-2b,d, available at https://doi.org/
10.1523/JNEUROSCI.2260-17.2018.£2-2). Together, these results
demonstrate that our fitting method is able to identify correctly
the model used to generate a given set of data and thus can dis-
tinguish between the alternative models. In addition, our fitting
yields unbiased estimates of model parameters with relatively
small error.

These results illustrate that DW could account for part of the
observed convexity of the utility function in both experiments.
Interestingly, the amount of change in the convexity after includ-
ing DW was larger in the juice-gambling task than in the token-
gambling task (juice task: Apg median = IQR = —1.09 £ 1.52;
token task: Ap; median £ IQR = —0.09 £ 0.20; two-sided Wil-
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Figure9.  DW of gamble outcomes can account for part of the convexity of the utility functions. @, Comparison of the goodness-of-fit for choice behavior during the juice-gambling task using four
different models for the construction of reward value for each possible outcome (convention the same as in Fig. 6) and three different types of DW mechanisms (cross-opt: cross-option). Plotted is
the average negative log likelihood (—LL) per trial over all cross-validation instances (a smaller value corresponds to a better fit). Overall, the SUmodel with cross-option DW by magnitude provided
the best fit in the juice-gambling task. Dashed line indicates the average —LL for the best model without DW. b, ¢, Distributions of the estimated parameters for the utility (b) and PW function (c)
using the SU model with DW. The black dashed lines show the medians and a black star indicates that the median of a given distribution is significantly different than 1.0in band cand 0.5ind
(two-sided sign test; p << 0.05). The blue dashed line shows the median of the best model without DW (the same medians as in Fig. 6b,c). A blue star indicates that the estimated parameter was
significantly different between the best models with and without DW (two-sided sign-rank test; p << 0.05). DW can account for part of the convexity of the utility function because the model with
this mechanismiis less convex. d, Distribution of estimated DW factors using the SU model with DW. There was a significant DW in favor of the gamble with the larger reward magnitude. e—h, Same
as a—d, but for the token-gambling task. Overall, the EU and SU with within-option DW by magnitude models provided the best fit. Moreover, all models with cross-option DW by magnitude were
provided worse fits than corresponding models with within-option DW.

coxon rank-sum test, p = 1.8 X 1072, d = 1.55, N = 284),
making the utility functions more similar after the inclusion of
DW (Fig. 11a). We did not observe similar changes in the esti-

a b mates of probability distortion parameters after the inclusion of

10 = i DW (juice task: Ay median = IQR = 0.02 = 0.13; token task: Ay

8 2 median = IQR = —0.03 = 0.10; two-sided Wilcoxon rank-sum

0.75 test, p = 0.27, d = 0.45, N = 284; Fig. 11b). These results dem-

Z° i 0.5 onstrate that the DW mechanisms can partially account for the

5 4 = ' observed difference in utility function across the two tasks. More-
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= g 0 ' ible risk attitudes according to the task.
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- o = 0.75 session-by-session values of fitting parameters (see Materials and

= - > 05 Methods). These analyses revealed that, in both models, the ex-
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2260-17.2018.f11-1, and Fig. 11-2, available at https://doi.org/10.
Figure 10.  Estimated utility and PW functions for the SU model with DW by reward magni- 1523/JNEUROSCI.2260-17.2018.f11-2). This correlation could
tude. a, b, Estimated utility function (a) and PW function (b) based on the SU model with be evidence for normalization in value construction. In addition
within-option DW by magnitude for the juice-gambling task. Each curve shows the result of the we found that, in the SU model with DW, the DW factor was

fit for one session of the experiment and the thick red curve is based on the median of the fitting onifi | lated with d in the ‘ui
parameter. For comparison, the black curves show the utility function (a) and PW functions ()~ S181i1cantly correlated with pg and o. Moreover, in the juice-

based on the SUmodel without DW. The PW curves are indistinguishable in the two models. The gambling task, the DW .factor was significantly colrrelated with pg
dashedlineis the unity line normalized by 100 L in @and the unity linein b.c,d, Sameasaand ~ and to a lower extent with o. In the token-gambling task, we also
b, but for the token-gambling task using the SU model with cross-option DW. found a correlation between DW and ¢ and between DW and the



Farashahi et al. @ Flexible Risk Attitudes in Monkeys

J. Neurosci., May 2, 2018 - 38(18):4383—4398 + 4395

JNEUROSCI.2260-17.2018.f11-3). Im-

portantly, estimation errors in these pa-
rameters do not affect our results.
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Discussion

Flexible risk attitudes in monkeys

We investigated risky choices in monkeys
performing two different gambling tasks:
a token-gambling task (with both gains
and losses) and a juice-gambling task (with
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Figure11.

loss aversion coefficient (A). It is worth noting that the observed
correlations should not be concerning for the interpretation of
best-fitting models because we used cross-validation for identi-
fying those models. Cross-validation would reveal if any of the
fitting parameters in our best models were redundant.

One possible concern could be that because of the correlation
between p and o, some of the observed change in p (i.e., the
convexity of the utility function) between the two tasks could be
caused by changes in o-and not DW. To rule out such possibility,
we defined a single quantity for measuring the effect of reward
magnitude on choice behavior equal to x”/o (and Ax*"/o for
losses), where x is one of the possible reward magnitudes. The
value of x*¢/o determines the influence of reward magnitudes on
choice in a given model considering the stochasticity in choice in
that model. We then computed the distributions of x”°/o for the
best models with and without DW and found that x°/o (and
AxP'/a) values were significantly larger in the SU with DW model
(two-sided sign test; juice task: p = 7.4 X 10 7%, 4.9 X 10 ™%,
4.9 X 107*% d = 1.98, 2.28, 2.13, for small, medium, and large
rewards, respectively; N = 146; token task: p = 5.7 X 107,
1.1 X 107%%,5.7 X 10 7°%,5.7 X 10 %%, 4.0 X 10~ % d = 0.23,
0.41, 1.74, 1.58, 1.33; for —1, —2, 1, 2, and 3 tokens, respectively;
N = 140; Fig. 12). These results show that, despite correlations
between DW and pg and o, DW results in enhanced value of
reward magnitude relative to the stochasticity in choice. This
indicates that DW of possible outcomes based on the magnitude
increases the overall effect of magnitude on choice and thus can
capture some of risk-seeking behavior that is otherwise attributed
to the convexity of the utility function.

Finally, we also examined the likelihood surface of the best mod-
els to calculate the error associated with the estimated parameters.
Overall, we found small errors in the estimation of model
parameters, expect for a few parameters that were correlated
with other parameters: o in the SU with DW model in the juice-
gambling task, p; in the SU model in the token-gambling task,
and p; and A in the SU with DW model in the token-gamb-
ling task (Fig. 11-3, available at https://doi.org/10.1523/
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Comparison of the estimated utility and PW functions in the juice-gambling and token-gambling tasks based on the
SUmodel with DW. a, Estimated utility functions based on the best SU model with DW in the juice-gambling and token-gambling
tasks. Plot shows the utility curves based on the median of the fitting parameter in the juice (pink) and token (magenta) gambling
tasks. The dashed line is the unity line normalized by 100 L. The insets show the distributions of estimated parameters for the
utility curve for gains (pg) in the two tasks. The dashed lines show the medians. There was a small but significant difference
between the two distributions (two-sided Wilcoxon rank-sum test; p << 0.05). b, Estimated PW function based on the SU model
with DW in the juice-gambling and token-gambling tasks. Plot shows the PW functions based on the median of the fitting
parameter in the two tasks. The dashed line is the unity line. Other conventions are the same as in a. The star indicates that the
medians of the two distributions are significantly different (two-sided Wilcoxon rank-sum test; p << 0.05). Correlations between
estimated model parameters are plotted in Figure 11-1 (available at https://doi.org/10.1523/INEUR0SCI.2260-17.2018.f11-1)
and Figure 11-2 (available at https://doi.org/10.1523/INEUR0SCI.2260-17.2018.f11-2) and errors in the estimation of model
parameters are shown in Figure 11-3 (available at https://doi.org/10.1523/JNEUR0SCI.2260-17.2018.f11-3).

gains only). Fitting choice behavior with al-
ternative models revealed convex utility
curves for both the gain and loss domains,
a pattern that is inconsistent with the re-
flection effect. Macaques thus deviated
from humans and capuchins (Lakshmi-
narayanan et al., 2011; Santos and Rosati,
2015). Moreover, our monkeys showed a
steeper utility curve for gains than for
losses, making them loss seeking; a devia-
tion from the loss aversion observed in
humans and capuchins (Chen et al.,
2006). Finally, monkeys showed a promi-
nent S-shaped PW function in the juice-
gambling task and nearly linear (albeit
slightly S-shaped) PW in the token-
gambling task. These patterns deviate
from each other, from previous human studies, and from rhesus
macaques in two other studies (Yamada et al., 2013; Stauffer et al.,
2015).

Together, our results challenge the idea that rhesus monkeys
have a fixed and stable set of risk attitudes that are consistent
across tasks. This variety in responses to risk challenges the idea
that these risk attitudes have not changed since the time of our
most recent ancestor. Instead, our results support an alternative
view in which natural selection in the primate order has led to
robust cognitive flexibility. This flexibility, presumably, would
prevent us from having risk attitudes that are so ingrained that we
would fail to adjust our utility curves or PW rapidly to changing
task conditions. In contrast, the flexibility requires mechanisms
that can be adjusted to the task at hand; for example, different
utility and PW functions for different tasks.

Neural mechanisms of flexibility in risk attitudes

A major goal of neuroeconomics has been to understand how our
responses to uncertainty are determined by, presumably, spe-
cially dedicated neural mechanisms. It is often assumed that risk
attitudes are stable and that the goal of neuroeconomics is thus to
understand how relevant neural operations lead to these prefer-
ences. Our work points to a different possibility: if preferences are
not stable, then the neural processes that produce them may be
similarly flexible. Indeed, our results suggest a somewhat differ-
ent desideratum: that neuroeconomics ought to focus on how the
brain regulates risk attitudes in response to context and adjusts
them rapidly and adaptively when demands change. More
broadly, and more speculatively, our findings suggest that risk
attitudes may be seen as a consequence of general neural mecha-
nisms that support rapid adjustment, presumably in contexts
divorced from risk, rather than of a special and dedicated uncer-
tainty module in the brain. Our results point to attentional mod-
ulation as a plausible mechanism (see below). All of these results
are relevant for future studies into neural mechanisms of value
computations and how they are adjusted.
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Figure12.

DW of possible outcomes enhances the overall effect of magnitude on choice. a, b, Distribution of estimated values of stochasticity in choice (o) during the juice-gambling task (a) and

the token-gambling task (b). The SU models with and without DW are shown in blue and black, respectively. The dashed lines show medians and a blue star indicates that the medians of two
distributions are significantly different from each other (two-sided sign test; p << 0.05). The stochasticity in choice was significantly smaller in the SU with DW model. ¢, Distributions of x */ ovalues
for small, medium, and larger rewards during the juice-gambling task. d, e, Distribution of Ax "/ o-values for loss tokens (d) and x "¢/ o values for gain tokens (e) during the token-gambling task.
Inall cases, the x*/ o values were significantly larger in the SU with DW model, indicating that DW of possible outcomes based on the magnitude increases the overall effect of magnitude on choice.

Standard approaches to modeling choice, especially in the
neural domain, hold that different prospective outcomes of a
single offer are weighted equally in evaluation (i.e., after all, the
normative strategy as well as the simpler one). It is surprising then
that our results point to two types of DW based on reward mag-
nitude: a within-option weighting for outcomes within a risky
option and a cross-option weighting for the two options. These
findings can be explained by the idea that the weighting processes
that determine value are biased by the greater attentional weight
assigned to some prospects (Busemeyer and Townsend, 1993;
Roe et al., 2001; Shimojo et al., 2003; Hayden and Platt, 2007;
typically the more salient outcomes, Hayden et al., 2008; Ludvig
etal.,2014). In the juice-gambling task, in which there is only one
nonzero outcome per gamble, competitive DW occurs between
the two gambles, perhaps via spatial attention. In the token-
gambling task, in which there could be two nonzero outcomes in
each gamble, the competitive DW occurs within a gamble, per-
haps via feature-based attention. Even though models with a DW
mechanism only minimally improved the quality of fit in this
task, the result of the comparison of fitting parameters indicates
that this mechanism can account for part of the convexity of the
utility function. Our results therefore illustrate how attentional
mechanisms can influence economic decisions and make them
more flexible. Empirically, modeling the influence of attention
on evaluation is essential because some of the variance attributed
to utility curves may actually reflect DW instead. Traditional ap-
proaches that do not take this possibility into account may over-
estimate the convexity of the utility function.

Stable versus constructed values and comparison with
previous studies

One tradition in behavioral economics holds that preferences are
constructed at the time of elicitation and do not reveal stable
values (Lichtenstein and Slovic, 2006). The set of computations
involved in preference construction include, not only a value func-
tion, but also editing, reference dependence, reweighting, and so on.
Our results appear to be consistent with this view. These patterns are
not likely to be restricted to the domain of risk; they are also con-
sistent, for example, with an emerging body of work showing that

preferences in the time domain are highly dependent on seem-
ingly irrelevant contextual factors (Stephens and Anderson, 2001;
Pearson et al., 2010; Blanchard and Hayden, 2015; for review, see
Hayden, 2016). Together, these results suggest that both risky and
temporal preferences are constructed in animals and thus extend
the concept of preference construction beyond humans.

We have argued previously that, when playing fast repeated
gambles for small amounts, monkeys are more likely to focus on
the win than on the loss (Hayden and Platt, 2007; Heilbronner et
al., 2009; Hayden et al., 2010) and that humans may do the same
when confronted with those contexts (Hayden and Platt, 2009).
Our results here provide three pieces of evidence for this argu-
ment. First, a convex utility curve that became steeper from losses
to gains showed how larger wins were valued more. Second, we
found a strong DW based on reward magnitude across gambles in
the juice-gambling task, indicating that, indeed, a larger win
strongly influenced the behavior. Third, in the task with both
gains and losses (token-gambling task), monkeys again differen-
tially weighted possible outcomes of each gamble based on re-
ward magnitude.

One factor that could explain the shape of the PW function is
the difference between description and experience in communi-
cating the properties of the gamble (Hertwig et al., 2004; Hertwig
and Erev, 2009; Ludvig and Spetch, 2011; Camilleri and Newell,
2013). Humans, like our monkeys, exhibit S-shaped curves in
experienced gambles. It may be that monkeys in our tasks treated
the gambles as more experienced-like than described-like, espe-
cially in the juice-gambling task, in which we used a much
higher resolution for reward probability (0.02 vs 0.2 in the
juice vs token task, respectively). Monkeys could trust a larger
set of reward probabilities less and therefore rely more on expe-
rience to evaluate corresponding gambles. Reliance on experi-
ence is a useful strategy for tackling reward uncertainty
(Farashahi et al., 2017). In a recent study showing an inverse
S-shape for probability distortion in monkeys, only six values of
reward probability were used, which could have made the gam-
bles act as described previously (Stauffer et al., 2015). Note also
that, in that study, only one value for the reward magnitude was
used in gambles. This limitation could result in degeneracy in
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fitting solutions, causing the inverse-S-shaped PW to absorb
some the convexity of the utility function.

Ultimately, these results serve as a testament to the cognitive
flexibility and adaptiveness of rhesus monkeys, which are among
the most successful primate species (Strier, 2016). Indeed, the
success of the rhesus macaque is in part attributable to its ability
to adjust to changing environments, including an omnivorous
diet and a willingness to live in a variety of climates, ranging from
warm to cold and locations in both city and country. That is,
regardless of the dietary richness of the environment in which
they evolved, rhesus monkeys have thrived because they can ad-
just to new environments rapidly. Therefore, in our view, it
should not be surprising that they do not have a stable set of risk
attitudes. It remains an open question how these ideas relate to
species with narrower niches.
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