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Abstract

Background: Multiple risk factors contribute to the progression of Parkinson’s disease, including oxidative stress
and neuroinflammation. Epidemiological studies have revealed a link between higher urate level and a lower risk of
developing PD. However, the mechanistic basis for this association remains unclear. Urate protects dopaminergic
neurons from cell death induced by oxidative stress. Here, we investigated a novel role of urate in microglia activation
in a lipopolysaccharide (LPS)-induced PD model.

Methods: We utilized Griess, ELISA, real-time PCR, Western blot, immunohistochemistry, and immunofluorescence to
detect the neuroinflammation. For Griess, ELISA, Western blot, and immunofluorescence assay, cells were seeded in
6-well plates pre-coated with poly-L-lysine (PLL) and incubated for 24 h with the indicated drugs. For real-time PCR
assay, cells were seeded in 6-well plates pre-coated with PLL and incubated for 6 h with the indicated drugs. For
animal experiments, rats were injected with urate or its vehicle twice daily for five consecutive days before and after
stereotaxic surgery. Rats were killed and brain tissues were harvested after 4 weeks of LPS injection.

Results: In cultured BV2 cells and rat primary microglia, urate suppressed proinflammatory cytokine production and
inducible cyclooxygenase 2 and nitric oxide synthase expression to protect dopaminergic neurons from the toxic
effects of activated microglia. The neuroprotective effects of urate may also be associated with the stimulation of
anti-inflammatory factors interleukin 10 and transforming growth factor 1. Intracellular urate level was increased
in a dose-dependent manner upon co-treatment with urate and LPS as compared with LPS alone, an effect that
was abrogated by pretreatment with probenecid (PBN), an inhibitor of both glucose transporter 9 and urate transporter 1
(URATT). PBN also abolished the anti-inflammatory effect of urate. Consistent with these in vitro observations, the number
of tyrosine hydroxylase-positive neurons was decreased and the loss of motor coordination was reversed by urate
administration in an LPS-induced rat model of PD. Additionally, increased plasma urate level abolished the reduction of
URAT1 expression, the increase in the expression of interleukin-1(3, and the number of ionized calcium-binding adaptor
molecule T-positive microglia along with changes in their morphology.

Conclusions: Urate protects neurons against cytotoxicity induced by microglia activation via modulating urate
transporter-mediated intracellular urate level.
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Background

Parkinson’s disease (PD) is a progressive neurodegenera-
tive disorder characterized by bradykinesia, resting
tremor, cogwheel rigidity, and postural instability due to
the loss of dopaminergic (DA) neurons in the substantia
nigra (SN) pars compacta and the formation of Lewy
bodies and Lewy neurites in surviving neurons. Micro-
glia activation and the consequent neuroinflammation
play important roles in PD progression. Autopsies of PD
patients have revealed DA neuron loss accompanied by
microglia activation and the release of large amounts of
nitric oxide (NO), tumor necrosis factor (TNF)-«, inter-
leukin (IL)-1B, and other proinflammatory cytokines [1-
3]. Experimental studies have confirmed that inhibiting
microglia activation blocks DA neuron degeneration in
lipopolysaccharide (LPS)-induced cells [4] and animal
models of PD [5]. It is thought that endotoxins (e.g.,
LPS) [6] induce microglia activation and production of
pro-inflammatory factors and chemokines, leading to
neurodegeneration and further activation of microglia,
which is known as a perpetuating cycle of neurotoxicity
and microglia activation to aggravate neurodegenerative
diseases [7]. Controlling microglia activation and the re-
sultant release of neurotoxins can thus have neuropro-
tective effects.

Urate (2, 6, 8-trioxy-purine) is an end product of pur-
ine metabolism in humans that is known to have pro-
tective effects in various nervous system diseases [8—10].
Urate level is considered as a biomarker for PD risk that
has therapeutic potential [9]. Epidemiological studies
have reported a correlation between urate level and a
lower risk of developing PD as well as slower disease
progression [11-13]. Accordingly, lower urate concen-
tration has been detected in the serum and SN of PD
patients [14]. Urate has been shown to confer neuropro-
tection in various cells and animal models of PD by ab-
rogating the neurotoxic effects of 6-hydroxydopamine
(6-OHDA) on DA neurons in the rat nigrostriatal path-
way [15]. It has also been shown to protect cultured
spinal cord and hippocampal neurons from glutamate-
induced excitotoxicity [16] and peroxynitrite-induced
cell death [17]. Mice lacking the urate oxidase gene have
elevated the level of urate in the brain and are resistant
to the negative effects of 6-OHDA on SN DA neuron
number, striatal DA content, and motor behavior [18]. It
was also reported that urate acts as a natural antioxidant
to eliminate superoxide anion and hydroxyl radical in
the blood and brain [19, 20] and inhibits lipid peroxida-
tion and DNA damage induced by free radicals [21].
Also, urate enhances astrocytic glutathione synthesis and
release [22]. Interestingly, it has been shown that appli-
cation of urate prevents liver neutrophil infiltration and
injury during hemorrhagic shock [23] and inhibited tyro-
sine nitration to preserve the integrity of the blood-
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brain barrier by blocking the entry of inflammatory cells
into the central nervous system (CNS) [24], suggesting
that urate might play a role in modulating neuroinflam-
mation to protect from neuron damage.

In this study, we investigated the role of urate in LPS-
induced microglia activation in vitro and in vivo. We
found that urate suppressed LPS-induced activation of
microglia and thereby prevented neuronal death. These
findings indicate that suppressing neuroinflammation
with urate can be an effective treatment for PD.

Methods

Cell culture and drug treatments

BV2 murine microglia cells were kindly provided by
Professor Xiao-Min Wang (Capital Medical University,
China) and MN9D dopaminergic neuronal cells were a
generous gift from Professor Hui Yang (Capital Medical
University, Beijing, China). BV2 cells and MN9D cells
were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM/F-12) with 10% fetal bovine serum and 1% peni-
cillin/streptomycin (Life Technologies, Carlsbad, CA,
USA). The cells were maintained in a humidified incuba-
tor with 95% air in 5% CO, at 37 °C. Cells were seeded in
6-well plates for experiments at 80% confluency.

Rat primary microglia were obtained from 0- to 24-h-
old Sprague-Dawley rats (Beijing Weitong Lihua Labora-
tory Animal Center, Beijing, China; SCXK 2012-0001)
according to a previously published protocol [25], with
minor modifications. Briefly, animals were deeply anes-
thetized and their brains were dissected. The meninges,
choroid plexus, brainstem, and cerebellum were re-
moved carefully. Brains were transferred to a 50-ml cen-
trifuge tube containing 5 ml Hank’s Balanced Salt
Solution. The tissue was dissociated by trituration with a
pipette and the cell suspension was filtered through a
40-pm pore nylon strainer. Samples were centrifuged for
10 min at 1000 rpm. The supernatant was discarded,
and the pellet was resuspended in warm DMEM/F12.
The cells were then transferred to a 75-cm? flask coated
with poly-L-lysine (PLL; Sigma-Aldrich, St. Louis, MO,
USA) and incubated at 37 °C and 5% CO,. Half of the
culture medium was changed every 3 days. After 14 days
of culture, primary microglial cells were harvested by
shaking the flask for 2 h at 180 rpm and then seeding
the cells on new PLL-coated plates. To assess the purity
of the culture, cells were immunolabeled with an anti-
body against ionized calcium-binding adapter molecule
(Iba)-1 (1:500; Wako Pure Chemical Industries, Osaka,
Japan); over 96% of the cells were immunopositive. Urate
(Sigma-Aldrich; prepared as a 1000x stock solution by
dissolving in 1 M NaOH) was applied to microglia for
30 min prior to treatment with LPS (Sigma-Aldrich; dis-
solved in double-distilled water). Probenecid (PBN)
(Sigma-Aldrich; prepared as a 1000x stock solution
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containing 1 M NaOH) was administered 30 min prior
to urate treatment. NaOH had no effect on the function
of urate (Additional file 1: Figure S1). BV2 cells and pri-
mary microglia were treated under the indicated condi-
tions to measure the inflammatory factors. Then
supernatants were collected as conditioned medium
continued to co-culture with MNID cells to examine
neuroprotection by measuring viability of MN9D cells.

Measurement of nitrite level

Nitrite release was measured as an indicator of NO pro-
duction. BV2 cells (4.0 x 10°/well) or primary rat
microglia (1.0 x 10%/well) were seeded in 6-well plates
pre-coated with PLL and incubated for 24 h with the in-
dicated drugs. The nitrite concentration in the culture
supernatant was evaluated with a Griess kit (Promega,
Madison, WI, USA) according to the manufacturer’s in-
structions. The absorbance at 540 nm was measured on
a microplate reader (EIx800; Bio-Tek Instruments,
Winooski, VT, USA).

Enzyme-linked immunosorbent assay (ELISA) measurement
BV2 cells (4.0 x 10°/well) or primary rat microglia (1.
0 x 10%/well) were seeded in 6-well plates pre-coated
with PLL and incubated for 24 h with indicated drugs.
IL-1B and IL-10, TNF-qa, prostaglandin (PG)E2, and
transforming growth factor (TGEF)-f1 levels in the
medium were measured with ELISA kits (ExCell Bio,
Shanghai, China) according to the manufacturer’s
protocol. The absorbance at 450 nm was measured on
a microplate reader.

Tissues were homogenized in ice-cold tissue lysis buf-
fer containing 137 mM NaCl, 20 mM Tris (pH 8.0), 1%
(v/v) glycerol, 1% (v/v) Nonidet P-40 (NP40), 1 mM
phenylmethylsulfonyl fluoride, and 0.5 mM sodium
vanadate. The homogenate was centrifuged at 1500xg
for 15 min at 4 °C. The levels of TNF-a were detected
using rat TNF-a enzyme-linked immunosorbent assay
(ELISA) kits (Shanghai ExCell Biology Inc., Shanghai,
China), according to the manufacturer’s instructions.
The absorbance at 450 nm was measured on a micro-
plate reader.
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Protein extraction and Western blotting

Cells were washed three times with cold phosphate-
buffered saline (PBS) and lysed in lysis buffer. Tissues
were lysed with RIPA lysis buffer (Solarbio, Beijing,
China). The protein concentration was determined with
a bicinchoninic acid assay kit (Thermo Fisher Scientific,
Rockford, IL, USA) according to the manufacturer’s in-
structions. Proteins were separated by sodium dodecyl
sulfate—polyacrylamide gel electrophoresis and then
transferred to a polyvinylidene difluoride membrane that
was blocked with 10% skim milk at room temperature
for 1 h and then probed overnight at 4 °C with primary
antibodies against cyclooxygenase (COX)-2 (1:1000, Cell
Signaling Technology, Danvers, MA, USA), inducible ni-
tric oxide synthase (iNOS) (1:250), and glucose trans-
porter member (Glut) 9 (1:800) (both from Abcam,
Cambridge, MA, UK) and urate transporter (URAT) 1
(1:500, Proteintech, Rosemont, IL, USA), IL-1f (1:400,
R&D Systems, Minneapolis, MN, USA), and GAPDH (1:
1000, Cell Signaling Technology, Danvers, MA, USA).
The following day, the membrane was washed three
times with Tris-buffered saline with Tween-20 and then
incubated with the appropriate horseradish peroxidase-
conjugated secondary antibody (Cell Signaling Technol-
ogy) for 1 h at room temperature. Immunoreactivity was
visualized by enhanced chemiluminescence (Millipore
Corporation, Billerica, MA, USA), and the signal inten-
sity was quantified using Image] software (National In-
stitutes of Health, Bethesda, MD, USA).

Real-time PCR analysis

BV2 cells (4.0 x 10°/well) or primary rat microglia (1.0 x
10°%/well) were seeded in 6-well plates and treated with the
indicated drugs for 6 h. Total RNA was extracted using an
RNeasy kit (Qiagen, Duesseldorf, Germany), and 1 pg was
reverse transcribed into cDNA using the ImProm-II
Reverse Transcription System (Promega, Madison, W1,
USA) in a total volume of 20 pl. TNF-a, IL-1B, B-actin
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
genes were amplified using the forward and reverse
primers (200 nM each) listed in Table 1 along with 20 ng
¢DNA template and 10 pl SYBR FAST qPCR Kit Master
Mix (2x) (Kapa Biosystems, Wilmington, MA, USA) in a

Table 1 Real-time PCR primers (F, forward primer; R, reverse primer) and size of amplicon

Primer Forward (5-3") Reverse (5'-3")

Mouse IL-13 CTgTgTCTTTCCCgTggACC CAgCTCATATgggTCCgACA
Mouse TNF-a CAGCCGATGGGTTGTACCTT TGTGGGTGAGGAGCACGTAGT
Mouse B-actin TgCTgTCCCTgTATgCCTCT TTgATgTCACgCACGATTTC

Rat IL-1B TCTGTGACTCGTGGGATGAT GGAGAATACCACTTGTTGGC
Rat TNF-a ACTCCCAGGTTCTCTTCAAG CAGAGAGGAGGCTGACTTTC
Rat GAPDH TGACATCAAGAAGGTGGTGAAGC GGAAGAATGGGAGTTGCTGTTG

TNF-q, IL-1B, B-actin, and GAPDH genes were amplified using the forward and reverse primers listed in the above
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total reaction volume of 20 pl. Amplification was per-
formed over 40 cycles of 95 °C for 3 s and 60 °C for 30 s
on a CFX96 real-time PCR detection system (Bio-Rad,
Hercules, CA, USA). Target gene expression levels were
normalized to that of GAPDH using the data analysis soft-
ware provided with the system.

Measurement of urate level

For in vitro experiments, BV2 cells (1.0 x 10%/well) were
seeded in 100-mm culture dishes pre-coated with PLL.
Once they reached 70-80% confluence, the cells were
treated with the indicated drugs for 24 h, washed three
times with PBS, and lysed in urate assay buffer. For in vivo
experiments, 10 days after urate injection and 4 weeks
after LPS injection, blood was collected via the caudal vein
into an anticoagulant tube within 1 h of the final injection.
The blood was centrifuged for 10 min at 800xg, and the
plasma was transferred to tubes and stored at — 80 °C until
use. Intracellular and plasma urate concentration was
measured with a urate colorimetric/fluorometric assay kit
(BioVision, Milpitas, CA, USA) according to the manufac-
turer’s protocol. The absorbance at 570 nm was deter-
mined on a microplate reader.

MTS assay

Cell viability was evaluated with the 3-(4, 5-dimethyl-
thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-
phenyl)-2H-tetrazolium (MTS) assay (Cell Tilter 96
Aqueous Assay; Promega). Cells were seeded on PLL-
coated 96-well plates (8.0 x 10° cells /well). Once they
reached 70-80% confluence, the cells were treated with
conditioned medium or the indicated drugs. After 24 h,
MTS solution was added followed by incubation for 1 h at
37 °C, and the absorbance at 490 nm was measured on a
microplate reader.

Animals and treatment

Male Sprague-Dawley rats (5-week-old, weighing
180-220 g) were housed in cages under standard labora-
tory conditions at 20-22 °C on a 12:12-h light/dark cycle
with free access to food and tap water. Animals were
maintained in the housing facilities for at least 1 week
prior to experiments. All procedures were performed in
accordance with the guidelines of the Animal Care and
Use Committee of Capital Medical University, Beijing,
China (2006—0009), and conformed to the Guide for the
Care and Use of Laboratory Animals published by the
National Institutes of Health (NIH Publications No.
8023, revised 1978).

The sample sizes used in this study were based on esti-
mations by a power analysis. Rats (n=45) were ran-
domly divided into four groups: sham (PBS+
intraperitoneal [i.p.] injection of vehicle; n=12), LPS
(LPS + i.p. injection of vehicle; n = 14), LPS + urate (LPS
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+1.p. injection of urate; n = 15), and urate (i.p. injection
of urate; n = 4). Rats were injected with 200 mg/kg urate
(40 mg/ml, dissolved in 0.9% NaCl solution) or vehicle
twice daily, with 1 h between two injections. Rats were
anesthetized by intraperitoneal injection of chloral hy-
drate (300 mg/kg; Tianjin Guang Fu Fine Chemical
Research Institute, Tianjin, China) and placed in a
stereotaxic apparatus. LPS (5 pg/ul in PBS, for a total
dose of 10 pg/300 g) was injected into the right SN
(5.5 mm posterior and 1.5 mm lateral to bregma, and
8.3 mm down from the dural surface) at a flow rate
of 0.5 pl/min. The needle was kept in place for over
5 min before slow retraction to prevent reflux along
the injection tract. The mortality rate of rats in the
LPS injection group was <10%. Rats were sacrificed
by anesthetization with chloral hydrate followed by
decapitation 4 weeks after LPS administration.

Behavioral tests

The rotarod test was carried out at three time points: be-
fore drug treatment and at 3 and 4 weeks after the surgery.
Rats were tested under accelerating rotor mode (constant
acceleration from 5 to 40 rpm for 2 min). The length of
time that the animal remained on the rod was noted.

Immunohistochemical and immunofluorescence analyses
Animals were anesthetized with chloral hydrate and then
transcardially perfused with 4% paraformaldehyde (pH 7.
4). The brains were removed and post-fixed overnight in
the same solution then sequentially placed in 15 and
30% sucrose at 4 °C. Serial coronal sections were cut at a
thickness of 40 pm on a freezing microtome, and a 1:6
series of sections was used for quantitative analysis as
previously described (Xia et al., 2015). Sections were
permeabilized for 20 min with PBS containing 0.3%
Triton X-100 and incubated overnight at 4 °C with mouse
anti-tyrosine hydroxylase (TH, 1:5000; Sigma-Aldrich)
and rabbit anti-Iba-1 (1:500; Wako Pure Chemical Indus-
tries) antibodies. An ABC kit (Vector Laboratories,
Burlingame, CA, USA) was used for immunohistochemi-
cal detection. For immunofluorescence labeling, sections
were incubated with tetramethylrhodamine- or fluorescein
isothiocyanate-conjugated goat anti-mouse or anti-rabbit
antibodies (ZSGB-BIO, Beijing, China; both 1:100) for 1 h.
Quantification of TH-positive cells in SN was counted by
sterology using Stereo Investigator software (MBF
Bioscience, USA). TH-positive fibers in STR and Iba-1
positive cells in the striatum and SN were performed
using Image Pro Plus v5.0 image analysis software
(Datacell, UK).

Statistical analysis
Data are expressed as the mean + SD and were analyzed
using Prism 5.0 software (GraphPad Inc., La Jolla, CA,
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USA). Where parametric tests were used, we checked
normal distribution and difference in variance by the
Shapiro—Wilk test and an F test, respectively. One-way
ANOVA followed by Dunnetts test was used for
multiple-group comparisons. At least three independent
experiments were performed for each assay. p < 0.05 was
considered significant throughout the study.

Results

Urate suppressed LPS-induced microglia activation in BV2
cells

Microglia release proinflammatory cytokines and also pro-
duce anti-inflammatory factors in response to LPS stimu-
lation [26, 27]. To investigate the effect of urate on LPS-
induced toxicity in microglia, BV2 cells were pretreated
with urate prior to exposure to LPS for 24 h. NO, TNF-q,
and PGE2 levels were markedly upregulated by LPS treat-
ment, whereas urate dose-dependently inhibited the
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release of proinflammatory factors, NO from 11.7% (p = 0.
0057) to 30.0% (p < 0.0001), TNF-a from 8.8% (p = 0.0028)
to 35.8% (p <0.0001), and PGE2 from 24.8% (p < 0.0001)
to 57.3% (p <0.0001) (Fig. 1la—c). Inducible COX-2 is an
important contributor to neuroinflammatory disease,
while PGE?2 is synthesized through the activity of COX-2
[28]. COX-2 expression was upregulated after LPS treat-
ment whereas urate reversed this effect in a dose-
dependent manner (Fig. 1d). Activated microglia undergo
significant changes in morphology, from a small cell body
with long branches to a round shape with short branches
[29]. Immunofluorescence detection of Iba-1 revealed that
LPS stimulation decreased the length of cell branches
(from 30.00 + 3.135 um to 8.942 + 0.8293 um, p < 0.0001)
and increased cell body diameter (from 5.600 + 0.7627 pm
to 11.32+£0.5922 um, p =0.0002) as compared to the
control group; these changes were reversed (length of cell
branches from 8.942 +0.8293 pum to 20.30 + 1.518 pm,
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Fig. 1 Urate inhibits LPS-induced microglia activation in BV2 cells. a-c BV2 cells were pretreated for 30 min with 50, 100, or 200 uM urate followed by
100 ng/ml LPS for 24 h; NO (a, n=4), TNF-a (b, n=5), and PGE2 (c, n = 3) levels in the culture supernatant were measured by ELISA. d BV2 cells were
pretreated with indicated concentrations of urate and LPS, and COX-2 level was detected by Western blotting (up, n =4). Protein band intensity was
normalized to 3-actin and is expressed as fold difference relative to the control group (down). e BV2 cells were pretreated with 200 uM urate followed
by LPS, and microglia activation was evaluated by immunofluorescence detection of Iba-1 (red) and cell nuclei were stained with DAPI (blue) (left,
n = 3). Branch length and cell body diameter were quantified with ImageJ software (right). Scale bar= 10 um. f, g BV2 cells were pretreated for 30 min
with indicated concentrations of urate followed by LPS for 24 h; IL-10 (f, n=4) and TGF-31 (g, n = 3) levels in the culture supernatant were measured
by ELISA. Untreated cells served as the control (ctr). Data represent the mean +SD. “p <001, p < 0.001 vs. control group; “p < 0.05, *p < 001,
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p <0.0001; cell body diameter from 11.32 +0.5922 pum
to 8.531 £0.7181, p =0.0171) by urate treatment (Fig. le).
To determine whether urate affected the production of
anti-inflammatory factors, we measured the levels of IL-
10 and TGF-p1 by ELISA. Urate slightly increased the
levels of IL-10 and TGF-P1 induced by LPS in BV2 cell
cultures, although the difference relative to the LPS treat-
ment was non-significant (p = 04158, p = 0.2282) (Fig. 1f,
g). The proliferation of BV2 cells was not altered signifi-
cantly by treatment under the indicated conditions (Add-
itional file 1: Figure S1). These data indicated that urate
played a protective role against inflammation induced by
microglia activation in BV2 cells.

Urate suppressed LPS-induced microglia activation in rat
primary microglia

The anti-inflammatory effect of urate on LPS-induced
microglia activation was also examined in rat primary
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microglia. Treatment with LPS for 24 h stimulated the re-
lease of NO, IL-1B, and TNF-a, whereas urate dose-
dependently suppressed the production of proinflamma-
tory cytokines induced by LPS, NO from 8.3% (p = 0.0516)
to 28.2% (p <0.0001), TNF-a from 10.4% (p =0.1961) to
36.4% (p =0.0004), and IL-1f from 10.6% (p =0.0835) to
38.2% (p <0.0001) (Fig. 2a—c). NO is produced by iNOS
and contributes to microglia activation [30, 31]. We there-
fore examined the effect of urate on iNOS expression in
LPS-stimulated rat primary microglia. After 24 h of LPS
treatment, iNOS expression was increased; however, this
was abrogated in a dose-dependent manner by urate treat-
ment (Fig. 2d). Primary microglia exhibited morphological
changes that were comparable to those observed in BV2
cells: the length of branches was decreased (from 34 + 2.
717 pm to 19.97 £1.950 pum, p <0.0053) and cell body
diameter was increased (from 10.36 + 0.5732 pm to 13.45
+0.8809 um, p =0.0184) in the LPS-treated as compared
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Fig. 2 Urate inhibits LPS-induced activation of rat primary microglia. a-c Primary microglia were pretreated for 30 min with 10, 50, or 100 uM
urate followed by 10 ng/ml LPS for 24 h; NO (a, n=4), IL-13 (b, n=3), and TNF-a (¢, n=3) levels in the culture supernatant were measured by
ELISA. d Primary microglia were pretreated with indicated concentrations of urate followed by LPS, and iNOS level was detected by Western
blotting (up, n=4). Protein band intensity was normalized to -actin and is expressed as fold difference relative to the control group (down). e
Primary microglia were pretreated with 100 uM urate followed by LPS, and microglia activation was evaluated by immunofluorescence detection
of Iba-1 (red) and cell nuclei were stained with DAPI (blue) (left, n = 3). Branch length and cell body diameter were quantified with ImageJ software
(right). Scale bar=10 um. f, g Primary microglia cells were pretreated for 30 min with indicated concentrations of urate followed by LPS for 24 h; IL-10
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to the control group, which was reversed (branches
length from 19.97 + 1.950 pm to 28.97 £ 2.024 pm, p =
0.0186; cell body diameter from 13.45 +0.8809 pm to
10.86 £ 0.4175 pm, p = 0.0243) in the presence of urate
(Fig. 2e). In addition, similar effect of urate on the
levels of IL-10 and TGF-B1 induced by LPS was ob-
served in rat primary microglia (Fig. 2f, g). The prolifer-
ation of primary microglia was not altered significantly
by treatment under the indicated conditions (Add-
itional file 2: Figure S2). Taken together, the data indi-
cated that urate played a consistent anti-inflammatory
role in primary microglia as in BV2 cells.

Urate suppressed proinflammatory cytokine gene expression
in microglia

LPS induces the expression of IL-1B and TNF-a in
microglia [32]. To further determine whether urate
modulated the levels of proinflammatory cytokines, we
examined IL-1B and TNF-a expression by quantitative
real-time PCR analysis. IL-1p and TNF-a levels were ele-
vated in BV2 cells by treatment with LPS relative to the
control group, an effect that was abrogated by pretreat-
ment with urate (Fig. 3a, b). A similar anti-inflammatory
effect was observed in primary microglia treated with
LPS and urate (Fig. 3¢, d). These results indicated that
urate suppressed proinflammatory cytokine gene expres-
sion in both BV2 cells and rat primary microglia.
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Intracellular accumulation of urate was required for its
anti-inflammatory effect in microglia

Urate transporters regulate intracellular urate accumula-
tion; two of the family members, Glut9 and URATI,
regulate serum urate level [33, 34]. To determine
whether this applied to intracellular urate concentration
in microglia, we measured Glut9 and URAT1 expression
in BV2 cells (Fig. 4a). LPS treatment decreased URAT1
expression, which was reversed by urate pretreatment
(Fig. 4b). In addition, while intracellular urate level was
increased by 22.7% (from 76.94 + 6.162 nmol/ml to 94.43
+6.660 nmol/ml, p=0.1261), 41.6% (from 76.94+
6.162 nmol/ml to 109.0 + 6.665 nmol/ml, p = 0.0242) and
57.2% (from 76.94 + 6.162 nmol/ml to 121.0 + 5.911 nmol/
ml, p =0.0067), respectively, in a dose-dependent manner
by urate plus LPS as compared to treatment with LPS
alone, this was abolished by pretreatment with PBN, an
inhibitor of both Glut9 and URAT1 (Fig. 4c).

We next investigated whether intracellular accumula-
tion of urate was required for its anti-inflammatory ef-
fect in microglia. In BV2 cells, compared to LPS alone,
when treated with urate, the release of NO and TNF-a
was reduced by 33.5% (p<0.0001) and 31.8% (p<O.
0001), respectively, and COX-2 expression was de-
creased by approximately one fold. Compared to treat-
ment of LPS and urate, with PBN treatment, NO and
TNEF-a release was reversed by 29.6% (p <0.0001) and

Fig. 3 Urate suppresses proinflammatory cytokine expression in BV2 cells and rat primary microglia. a-d BV2 cells (a, b; n=4) and primary microglia
(¢, d; n=4) were pretreated for 30 min with indicated concentrations of urate followed by LPS for 6 h. IL-13 and TNF-a transcription levels were
analyzed by quantitative real-time PCR and normalized to that of GAPDH. Untreated cells served as a control (ctr). Data represent the mean + SD.
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33.8% (p <0.0001), and COX-2 expression was upregu-
lated by 0.6-fold (Fig. 4d—f). Similar results were ob-
tained in primary microglia, with PBN pretreatment
reversing the effect of urate on NO and IL-1pB release
and iNOS expression (Fig. 4g—i). Taken together, these
results indicated that the anti-inflammatory effect of
urate depended on intracellular accumulation of urate
uptaken by urate transporters.

Urate protected DA neurons from neurotoxicity induced
by activated microglia

Microglia activation induces the loss of DA neurons in
PD patients. It has also been reported that LPS-induced
microglia activation results in damage to DA neurons in
vitro [35]. To investigate whether urate protected

neurons from the toxic effects of activated microglia, su-
pernatants from cultures of microglia treated with LPS
alone or in combination with urate were collected as
conditioned medium after measuring the released in-
flammatory factors (Figs. 1 and 2) and then continued to
co-culture with MN9D cells to examine the neuropro-
tection. Conditioned medium from LPS-treated BV2 cell
and primary microglia cultures reduced the viability in
MNO9D cells, while the conditioned medium from LPS-
and urate-treated BV2 cells and primary microglia cul-
tures increased it (Fig. 5a, b). These results suggested
that proinflammatory cytokines released into the culture
medium by microglia upon LPS stimulation had a nega-
tive effect on the viability of MN9D cells, while urate
treatment countered these effects.
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To confirm the protective effect of urate on neurons,
PBN was used to block urate function in microglia and
induce proinflammatory cytokine release. Conditioned
medium from PBN-pretreated microglia cultures (Fig. 4)
reduced the viability in MN9D cells (Fig. 5c, d). How-
ever, stimulating MN9D cells under these conditions
had almost no effect on cell viability (Fig. 5e, f). Thus,
urate protected DA neurons from the toxic effects of ac-
tivated microglia by inhibiting the release of proinflam-
matory factors.

Urate suppressed neuroinflammation induced by activated

microglia in an LPS-induced rat PD model

To evaluate the effect of urate on microglia activation in
vivo, LPS was used to establish a model of
neuroinflammation-induced PD. Rats were injected with
urate at doses of 200 mg/kg twice daily for five consecu-
tive days before and after LPS injection (Fig. 6a) and
subjected to behavioral testing 3 and 4 weeks after LPS
injection. LPS-injected rats showed a reduced time on

the rotarod, indicating a decline in motor coordination
and fatigue resistance. This decrease was abolished by
urate administration, and urate alone did not exert any
effect (p = 0.7579) (Fig. 6b). Plasma urate level was mark-
edly increased after ten consecutive days of urate injec-
tion; interestingly, the level of urate was decreased by
35.6% (from 144.1 £9.022 nmol/ml to 92.27 +10.
96 nmol/ml, p = 0.0078) in LPS-treated rats compared to
the sham group after 4 weeks of LPS injection but was
upregulated by approximately 1.2-fold (p =0.0002) with
urate administration compared to LPS injection (Fig. 6¢).
An immunohistochemical analysis revealed that LPS ad-
ministration reduced the intensity of TH-positive fibers in
striatum by 63.6% (p < 0.0001) and the number of TH-po-
sitive neurons in SN by 67.6% (p < 0.0001) on the lesioned
side, respectively, which was increased by 96.7% (p <O.
0001) and 56.5% (p < 0.0001) with urate pretreatment, re-
spectively (Fig. 6d—g).

To evaluate the effect of urate on LPS-induced micro-
glia activation in vivo, we analyzed the expression of the
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Fig. 6 Urate suppresses neuroinflammation induced by activated microglia in a rat model of LPS-induced PD. a Schematic illustration of the schedule for
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microglia marker, Iba-1, by immunohistochemistry and
immunofluorescence analyses. LPS caused changes in
the morphology of microglia from a ramified to an
amoeboid shape, consistent with their activation. The
branches lenght of microglia was reduced approximately
from 23.59+0.5994 pm to 11.03+0.4775 um (p<O.
0001), and cell body diameter was increased from 5.11 +
0.2511 pm to 11.09 + 0.4491 pm (p < 0.0001) in striatum,
while urate treatment reversed it from 11.03+0.
4775 pm to 20.26 + 0.8986 pum (p < 0.0001) and from 11.
09 £ 0.4491 pm to 8.94 +0.3362 pum (p < 0.0001), respect-
ively. However, there was no obvious microglia number
changes in the LPS-lesioned side compared to the intact
side (p =0.0523) in STR, which is consistent with previ-
ous the report [36] (Fig. 6h—j). Similarly, LPS injection
reduced the length of branches of microglia and in-
creased cell body diameter in SN, which was reversed by
urate treatment. Meanwhile, the number of Iba-1-positive
microglia was observed to decrease by 30.4% (p = 0.0003)
on the lesioned side of the SN in rats treated with LPS
and urate as compared to those treated with LPS only (Fig.
6k—m). Moreover, LPS injection increased the fluores-
cence intensity of Iba-1 in the SN, which was immuno-
stained with TH. Urate treatment attenuated the
effect (Fig. 6n, o). In addition, western blotting analysis
showed that LPS decreased URAT1 expression and in-
creased expression of IL-1f in the LPS-injected side of the
SN, and these effects were inhibited by urate (Fig. 6p-r).
LPS injection induced a 4.3-fold increase of TNF-a by
ELISA assay (p <0.0001), while treatment with urate sig-
nificantly decreased the concentration of TNF-« by 47.7%
(p <0.0001, Fig. 6s). The above results indicated that urate
suppressed neuroinflammation induced by activated
microglia in an LPS-induced rat PD model.

Discussion

Many risk factors contribute to PD progression, includ-
ing oxidative stress and neuroinflammation. Epidemio-
logical and clinical studies have reported a correlation
between high urate level and a lower risk of developing
PD along with a decreased rate of disease progression
[12, 37]. H,O5-induced DA cell death was found to be
suppressed by glutathione released by urate-treated as-
trocytes [22, 38]; moreover, urate can form a complex
with iron, which boosts its antioxidant effect [39].
Oxidative stress is closely linked to other components of
neurodegenerative process such as nitric oxide stress
and inflammation that contribute to neurodegeneration
[40]. Reactive oxygen species activate microglia and in-
crease proinflammatory cytokine release; in turn, acti-
vated microglia and proinflammatory cytokines
perpetuate oxidative stress [40]. The above evidence sug-
gests that urate may exert neuroprotection via inhibiting
oxidative stress and also suppressing neuroinflammation
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in PD. Indeed, we found that urate blocked LPS-induced
microglia activation in vitro and in vivo. Intracellular
urate accumulation was required for its anti-
inflammatory effects and protected DA neurons from
neurotoxicity induced by microglia activation. The ap-
proach that elevating serum urate level by oral inosine, a
urate precursor, was indicated generally safe, tolerable,
and effective in early PD, which was proposed to become
a potential therapy for PD [41, 42]. Therefore, our find-
ings contribute to the role of urate in anti-inflammation
apart from its function on inhibiting oxidative stress [15,
18], which potentially provide a better understanding of
controlling these two risk factors for therapeutic treat-
ment in PD.

Microglia secrete proinflammatory cytokines such as
NO, TNF-a, and IL-1B upon LPS stimulation [43, 44].
Here, we found that urate inhibited the release of inflam-
matory factors including NO, TNF-a, and PGE2 while
slightly increasing the levels of the anti-inflammatory fac-
tors, IL-10 and TGF-P1, in LPS-treated BV2 cells and rat
primary microglia. Urate also transformed microglia from
an activated to a resting state. These results indicated that
urate acted by suppressing the release of proinflammatory
factors by activated microglia. Toll-like receptor (TLR) 4
is highly expressed in microglia [45-47], and the activa-
tion of TLR4/nuclear factor (NF)-«B signaling can induce
microglia activation [48, 49]. Dual-specificity tyrosine
phosphorylation-regulated kinase (Dyrk)2 has been shown
to increase p65, Akt, and p38 mitogen-activated protein
kinase phosphorylation to regulate the release of proin-
flammatory cytokines in LPS-stimulated BV2 cells [50].
Moreover, the glucagon-like peptide (GLP)-1 receptor/
cyclic (c)AMP/protein kinase A/p380205/cAMP response
element binding protein signaling pathway was shown to
mediate anti-inflammation cytokine production in micro-
glia. Thus, the anti-inflammatory effects of urate may be
mediated primarily via TLR4/NF-kB and Dyrk2/AKT sig-
naling and to a lesser degree via GLP-1 receptors.

High plasma urate concentration can decrease the risk
of PD [51, 52]. Urate level is lower in the SN and cerebro-
spinal fluid of PD patients as compared to non-PD sub-
jects [1, 53]. Higher serum and cerebrospinal fluid urate
concentrations at baseline are associated with slower rates
of clinical decline in PD [54]. Thus, urate is considered as
a potential diagnostic and prognostic biomarker of PD
[12, 13]. Here, we provided the experimental evidence that
increased intracellular levels of urate suppress inflamma-
tion that can be disturbed by blocker of urate transporters,
suggesting that urate elevation may be beneficial for the
treatment of neurological disorders including PD. Proin-
flammatory cytokines released by activated microglia in-
duce neurodegeneration in PD [35]. We found that
increased intracellular level of urate in microglia protects
DA neurons from microglia activation by reducing the
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release of proinflammatory factors via urate transporters
(Fig. 7). In an LPS-induced rat PD model, urate sup-
pressed microglia activation in the SN and striatum and
reversed the decrease in TH-positive neurons. However,
treatment of urate and LPS directly affects neurons might
not be excluded in vivo. Recent paper has shown that
microglia emerge as central players in brain disease [55].
Microglia activation also triggers neurotoxic reactive as-
trocytes [56] and excitatory neurotransmission mediated
by astrocytes [57]. As TLR4 is highly expressed in micro-
glia [46], it is possible that these cells are the major target
of the anti-inflammatory effects of urate. Interestingly, a
recent study showed that lithium inhibited LPS-induced
TLR4 expression and astrocyte activation [58], suggesting
that urate may also directly regulate astrocyte activation
to mediate neuronal survival. Of note, since chloral hy-
drate was shown to reduce the inflammation of LPS-
induced acute lethal liver injury [59], it might cause less
inflammation in LPS-induced PD model for our study,
and an alternative method such as pentobarbital [60]
might be preferred to be used for anesthesia in the future.

Conclusion
In summary, we found that urate protected DA neurons
from inflammation induced by activated microglia in an
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Fig. 7 Schematic illustration of the suppression of microglia activation
and neuroinflammation by urate in an LPS-induced model of PD. High
intracellular levels of urate in microglia protect DA neurons by inhibiting
the release of proinflammatory factors
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LPS-induced PD model, possibly by increasing intracel-
lular levels of urate. As mentioned, in this study, we ap-
plied BV2 cells, primary microglia, and the animal
model of PD, which are very different from adult micro-
glia in human as their gene expression can diverge
significantly [61]. Also, the expression of several inflam-
matory mediators in BV2 cells may be different from
primary microglial cells [62, 63], which might cause an
increased inflammation with urate treatment alone in
BV2 cells (Fig. 1). Despite these limitations, the study
provided evidence for urate inhibiting microglia activa-
tion to protect neurons in PD and supported its further
clinical development.

Additional files

Additional file 1: Figure S1. BV2 cell viability was detected by MTS
assay. BV2 cells were treated with different drugs at various concentrations
for 24 h, and cell viability was detected. Untreated cells served as a control
over treatments (ctr). NaOH, solvent of urate, and PBN as a blank control.
Rotenone (Rot, 0.5 uM) was used as a positive control of cell viability assay.
Data represent the mean £ SD (n = 3). NS, not significant. Mp <0.007 vs.
control group (one-way analysis of variance). (TIF 559 kb)

Additional file 2: Figure S2. Primary microglia viability was detected by
MTS assay. Primary microglia was treated with different drugs at various
concentrations for 24 h, and cell viability was detected. Untreated cells
served as a control over treatments (ctr). NaOH, solvent of urate, and PBN
as a blank control. Rotenone (Rot, 0.5 uM) was used as a positive control
of cell viability assay. Data represent the mean =+ SD (n = 3). NS, not significant.

p <0001 vs. control group (one-way analysis of variance). (TIF 569 kb)
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