Skip to main content
. 2018 May 2;17:55. doi: 10.1186/s12939-018-0766-4

Table 5.

Results of the negative binomial regression model

Independent variable Random effect model
IRR (95% CI) P
Income 0.897 (0.853, 0.943) < 0.001
Costgap 1.000 (1.000, 1.000) 0.671
Size street THs#
ordinary THs 0.527 (0.211, 1.316) 0.170
central THs 0.664 (0.256, 1.727) 0.401
IDNs No#
Tight 0.484 (0.290, 0.810) 0.006
Loose 1.011 (0.672, 1.522) 0.956
Merged 0.881 (0.319, 2.433) 0.807
PRP No#
Yes 2.305 (1.570, 3.384) < 0.001
Payment SDAQ#
SDLQ 0.868 (0.731, 1.031) 0.106
FFS 0.939 (0.638, 1.382) 0.749
Constant 23.364 (7.920, 68.921)
Log likelihood − 875.77356
Wald chi2(9) 82.57
Prob>chi2 < 0.001

Note: IRR incidence rate ratio, SDAQ single-disease with abundant quota, SDLQ single-disease with limited quota, #, reference group. According to the Hausman test (chi2(8) =5.00, Prob>chi2 = 0.757), we use the random effect model