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SUMMARY

Most synaptic excitatory connections are made on dendritic spines. But how the voltage in spines 

is modulated by its geometry remains unclear. To investigate the electrical properties of spines, we 

combine voltage imaging data with electro-diffusion modeling. We first present a temporal 

deconvolution procedure for the genetically encoded voltage sensor expressed in hippocampal 

cultured neurons and then use electro-diffusion theory to compute the electric field and the 

current-voltage conversion. We extract a range for the neck resistances of 〈R〉 = 100 ± 35MΩ. 

When a significant current is injected in a spine, the neck resistance can be inversely proportional 

to its radius, but not to the radius square, as predicted by Ohm’s law. We conclude that the 

postsynaptic voltage cannot only be modulated by changing the number of receptors, but also by 

the spine geometry. Thus, spine morphology could be a key component in determining synaptic 

transduction and plasticity.

In Brief

Based on fluorescence recordings, Cartailler et al. recover the voltage dynamics in dendritic spines 

by deconvolution. They investigate electricity at a nanometric scale using electro-diffusion 

modeling and concluded that spine geometry and electrolyte shape the current-voltage conversion 

and electrical resistance.
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INTRODUCTION

Neurons communicate via synaptic microdomains, where an input current generates a 

voltage change in the post-synaptic neuron. This voltage change, induced by excitatory 

current, reflects the strength of the synaptic connection between two interacting neurons 

(Jack et al., 1975; Holmes et al., 1992; Koch and Segev, 1998, Chapter 2), (Qian and 

Sejnowski, 1989; Yuste, 2010) and depends on two components: the first is the number of 

glutamatergic receptors for excitatory neurons and the second is the geometry of the post-

synaptic terminal. However the relative contribution between these two factors is still 

unclear. For example, the post-synaptic structure is often a dendritic spine, the geometry of 

which is involved in modulating the time-scale of diffusion (Svoboda et al., 1997; Korkotian 

et al., 2004; Bloodgood and Sabatini, 2005; Tønnesen et al., 2014; Holcman and Schuss, 

2013). In parallel, increasing the number of receptors on that terminal leads to a larger 

synaptic current (Huganir and Nicoll, 2013; Elias and Nicoll, 2007; Kessels and Malinow, 

2009). But diffusion alone is not sufficient to interpret the synaptic response because it is 

driven by electro-diffusion involving an electric field and diffusing ions. Electro-diffusion 

has been applied successfully for studying ionic fluxes and gating of voltage channels 

(McLaughlin and Poo, 1981; Bezanilla, 2008; Eisenberg, 2007). Those studies were all 

based on the fact that at the nanometer scale, the cylindrical symmetry of a channel model 

reduces to a one-dimensional segment, allowing the study of the electric field and charge 

densities in the channel pore (Eisenberg, 1999; Eisenberg et al., 1995). Moreover, recent 

studies have clearly shown that the current in the synaptic cleft reflects the coupling between 

moving ions and the local electrical field (Sylantyev et al., 2013; Savtchenko et al., 2004).

In a dendritic spine, voltage changes during the synaptic response are generated by the 

interactions between the ionic flow and the spine geometry. Dendritic spines are 

heterogenous microdomains at the limit of optical resolution and for that reason, voltage 

changes were estimated for many years using modeling and numerical simulations of 

passive cable equations, the basis for the Hodgkin-Huxley model (Koch and Segev, 1998). 

This approach is however not appropriate for spines because their micro-geometry 

composed of a bulby head connected to a thin neck is significantly different from that of a 

cable. In addition, cable theories break down when applied to small neuronal compartments, 

such as dendritic spines, because they assume spatial and ionic homogeneity. Linear 

approximations of electro-diffusion that couples the electric field with the ionic flow have 

been used to improve the estimation of the voltage changes in spines, approximated as 

cylinders of various sizes, but assuming local electroneutrality (Qian and Sejnowski, 1989). 

This method was later on generalized to study the electrical effect of Ranvier node (Lopreore 

et al., 2008). Recent advent in estimating the voltage changes at a sub-micrometer resolution 

(Araya et al., 2006, 2014; Hochbaum et al., 2014; Jayant et al., 2017) revealed electrical 

properties of dendritic spines (Harnett et al., 2012; Holcman and Yuste, 2015; Savtchenko et 

al., 2017), but the heterogeneity of the results (Popovic et al., 2015; Acker et al., 2016) and 

the absence of a robust computational framework and theory to interpret data challenges our 

understanding of electrical properties of these structures and cellular microdomains in 

general.
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To better understand how spines function, we develop here an electro-diffusion framework 

to compute the voltage-current relation and the local voltage variations generated by 

synaptic inputs. We present a deconvolution procedure to recover the timescale of voltage 

responses from voltage-sensitive indicators in hippocampal neurons. Genetically encoded 

voltage indicators (GEVIs) (Brinks et al., 2015; Gong et al., 2015; Han et al., 2013; Jin et 

al., 2012; St-Pierre et al., 2014) can be expressed in neuronal membrane through plasmid 

transfection (Kwon et al., 2017) and thus it reports internal changes of the membrane 

voltage. The deconvolution procedure transforms the voltage dye Arclight response into 

voltage dynamics. To interpret the drop of voltage between the spine head and dendrite, we 

use the Poisson-Nernst-Planck theory for electro-diffusion. We further compute how a 

current flowing inside the spine head is converted into voltage and determine the electrical 

resistance. Numerical simulations of the voltage drop in the entire spine reveal how a change 

in the neck length and radius alters voltage. The manuscript is divided in two parts: first, we 

present the general method of time series deconvolution applied here to voltage dyes and we 

construct an electro-diffusion model to extract parameters from data. In the second part, we 

use our electro-diffusion model to generate three-dimensional simulations to investigate how 

the spine geometry modulates its electrical properties. We conclude here that while the 

numbers and the types of synaptic receptors determine the injected current, the geometry of 

a dendritic spine controls the conversion of current into voltage.

RESULTS

Converting Arclight Fluorescent Signals into Voltage Responses

Arclight dye indicators respond to voltage with an intrinsic delay (Kwon et al., 2017), such 

that a fast voltage response leads to a convolved fluorescence response. In that context, a 

synaptic input entering a dendritic spine generates a fluorescent response that needs to be 

deconvolved in order to recover the electrical genuine time course. As the voltage intensity 

has already been deconvolved in Kwon et al. (2017), we focus here on the temporal 

response. The basis of the method is to find the causal kernel K(t), which is computed 

empirically by comparing the electro-physiology and the fluorescence responses in the soma 

(see STAR Methods). Once the kernel is found, we will use it to recover the noisy voltage 

dynamics in much smaller structures such as dendritic spines and portions of dendrites.

We apply the deconvolution procedure on the soma region (Figure 1A), which transforms 

the fluorescence dye signal (dashed green) into the voltage response (black) (Figure 1B; see 

STAR Methods and Figure S1). The deconvolved signal is shown by a line (green) that 

superimposes with the electrophysiological recordings (continuous black line). This result 

confirms the validity of the method. Indeed, by using the direct convolution of the 

electrophysiological recording by the kernel, we obtain the response (black curve) that 

exactly super-imposes with the fluorescence soma signal (Figure S1A). We note that the 

second bump in the fluorescence signal (dashed green) in Figure 1B is removed by the 

fitting procedure before the deconvolution kernel K(t), as expected because the 

electrophysiological recordings do not exhibit this second bump. We extended the 

deconvolution procedure for several spikes in Figure S2.
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Based on the deconvolution kernel K(t), we shall now deconvolve the fluorescent responses 

in the regions of interest (ROIs) R1 and R2 shown in Figure 1C and Figure S3. Indeed, after 

we found the deconvolution kernel K(t) from the soma data, we applied it to deconvolve the 

signal in spines because the distribution of dyes is the same in the entire neuron (Kwon et 

al., 2017). The results are shown in Figures 1D and 1E for the voltage in the spine head and 

dendrite. We note that the original fluorescence (thin line) contains fluctuations (Figures 1D 

and 1E) and an additional step is needed to remove the fluctuations (see STAR Methods and 

Figures S1C–S1E). We found that the voltage timescale in the dendritic spines, recovered 

from the present de-convolution procedure, is slower than the expected direct synaptic 

response. Probably, this slow timescale compared to direct synaptic electrical stimulation is 

due to glutamate uncaging, that can last for hundreds of milliseconds. To conclude, we can 

now recover the voltage in region R1, which represents the head, and in R2, which refers to 

the adjacent portion of the dendritic shaft at the base of the spine (Figure 1F). This 

deconvolution step is crucial because it allows us a direct comparison with the electro-

diffusion model that we shall describe in the next section.

Electro-diffusion Theory for Ionic Flows in Dendritic Spines

To interpret the voltage dynamics in a dendritic spine, we use the electro-diffusion model 

that couples positive cp(x, t) and negative cm(x, t) charge concentrations with the electrical 

potential V(x, t). The model is based on the phenomenological Poisson-Nernst-Planck (PNP) 

equations, where the ionic flow is driven by diffusion and the electric field. The voltage is 

described by the classical Poisson equation (Jackson, 2007, Sect.1.7) (see STAR Methods). 

We use the PNP equations to model the flow of ions when a current Istim(t), composed 

exclusively of positive charges, is injected at the top of a dendritic spine. We recall that the 

electrical potential generated by a flow of ions is defined up to an additive constant.

We start with the description of the voltage response produced by an input current I(t) inside 

the spine neck. The current I(t) that arrives at the neck entrance results from the stimulation 

current Istim(t) received by the head. We applied the electro-diffusion approach at the nano-

micrometer scale, by reducing the neck geometry to a one-dimensional wire of length L 
(Figures 2A–2C). Due to its large size, compared to a dendritic spine, the dendrite 

constitutes an ionic reservoir (fixed concentrations).

Furthermore, using for the internal resistivity the value 109 Ω.cm (Koch, 2004, Chapter 11), 

we find that the fluctuations of the voltage in the portion of the dendrite R2 (Figure 1C) are 

negligible, and in that case, the region R2 is expected to be iso-potential. Consequently, we 

fix in the dendrite the value for the voltage V(0, t) = 0mV. We thus interpret the potential 

V(t) = V(L, t) computed at the end of the neck (Figures 2A–2E) as the difference of potential 

between the entrance and the end of the spine neck. Consequently, we describe the electro-

diffusion inside the neck by the ensemble of Equations 37, 39, and 40, where I(t) has yet to 

be estimated.

From the classical theory of electricity (Jackson, 2007), it is not possible to extract the 

current passing through a passive device from the difference of potential when the resistance 

is unknown. However, using an electrical model for the axial current, escaping from the 

spine head to the neck, we shall reconstruct the voltage in the neck and recover the current in 
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the entire spine. Because there is no direct measurement of the current I(t), we develop here 

a procedure (STAR Methods) to estimate this current from the measured membrane potential 

ϕ(t) in the spine head. We decompose the current as the sum of a resistive and a capacitive 

term:

I(t) = Gϕ(t) + C dϕ(t)
dt . (Equation 1)

The conductance G and the capacitance C reflect how the current Istim(t), injected in the 

spine, is processed by the head, depending on the intrinsic properties of the spine head (in 

the next section, we will simulate the entire voltage using PNP starting from the current 

entering through the channels). Consequently, we will refer to G and C as intrinsic 

conductance and intrinsic capacitance, respectively. We now estimate the two constants C 
and G and the voltage drop across a spine neck by solving numerically Equations 37, 39, and 

40 and compare the results to the simulations with the deconvolved Arclight fluorescent 

voltage response. The response is generated following glutamate uncaging stimulations at 

the top of the spine head (Figure 1C, red dot). We solve numerically the PNP equations for 

the distribution of positive cp(x, t) and negative cm(x, t) charges, as well as the potential 

difference V(x, t) (Figures 2D and 2E). To estimate the voltage difference ΔṼ(t) across the 

neck, we grounded the potential to 0 mV at the dendritic shaft (before stimulations, the 

voltage is described by Equation 38).

To assess whether the potential difference ΔṼ(t) = Vhead(t) − Vdend(t) can be predicted from 

the electro-diffusion model, we fix the input voltage ϕ(t) = Vhead(t). We then compare the 

voltage obtained by solving Equations 37, 39, and 40 (Figures 2D and 2E) to the measured 

voltage Vdend(t) in region R2 (blue) at the dendritic shaft (Figure 2C). Although region R1 

includes the head and the neck, we neglected the fluorescence in the neck due to its small 

thinness ≤100nm. We found a good agreement between the experimental data and numerical 

simulations (Figure 2D) showing that the difference of voltages between the head and 

dendrite can be predicted from the input voltage Vhead(t). In addition, we estimated the 

injected current (Figure 2E, see STAR Methods and Equation 1) directly without any direct 

electrophysiological recordings. Note that the deconvolved voltage in the head (blue) and the 

computed current (red) are exactly proportional, because the capacitance C, reported in 

Table 1 and used to compute I(t) in Equation 1, is negligible. Thus, the current is simply 

proportional to the voltage. We conclude at this stage that the electro-diffusion theory allows 

estimating the electrical properties of the spine red neck and the injected current (of the 

order of tens of pA) in the spine neck, triggered by a synaptic current Istim(t).

We apply systematically the electro-diffusion approach, based on (1), to extract the 

capacitance C and the conductance G of several spines (Figures S3 and S4). Using an 

optimization procedure, we explore the parameter space for computing C and G (Figure S4). 

We minimize the error between the solution of the electro-diffusion equation and the voltage 

output of the dendrite during a small time interval at the beginning of the response (Figure 

S4). The resistance is computed by averaging the voltage changes in time. We use for the 

estimator the expression Rneck = 〈V(0, t) − V(L, t)〉/〈I(t)〉 (where the average is performed 
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over the time interval t ∈ [0, 0.4]s). In all cases, we find a good agreement (Figure 4) 

between the measured and computed voltage drop across the spine neck, where we estimated 

the current injected in the neck from the head of several spines.

In summary, we found that the average spine neck resistance (for a mean neck radius ro = 

100nm) is 〈R〉≈100 ± 35MΩ (Table 1). We also reported here a large variability in the spine 

resistance, while the intrinsic capacitance is negligible. To conclude, the electro-diffusion 

model allows computing the current injected in the spine neck after a synaptic stimulation, 

thus recovering the neck resistance.

Voltage Transduction in a Spine and Predictions of Electro-diffusion

We have shown in the previous section that electro-diffusion PNP-based model can be used 

to analyze Arclight fluorescence recording and this model allows estimating the current 

flowing in the spine neck. We shall now extend the PNP model to geometries that 

characterize the peculiar shape of the dendritic spines. To analyze how a dendritic spine 

influences the voltage response to a synaptic input, we simulate the three-dimensional PNP 

equations (see STAR Methods) for two geometries: a ball of radius rhead and a spine-like 

geometry (Figure 3). We computed the distribution of the electrical potential for short spine 

necks (Figure 3A), where the head contains two narrow openings: one of radius ro = 100nm 
representing the junction with the neck, and the other of radius ri = 10nm that receives the 

steady current Istim of positive charges (Figure 3B). Note that we have dropped the time t in 

the expression of the current Istim, since we consider now steady-state current. In addition 

we neglected the membrane capacitance because the current Istim represents already the 

ionic flow entering the head. We show (Figure S5) that the capacitance has almost no 

contribution to the voltage drop. We computed the distribution of positive cp(x) and negative 

cm(x) charge concentrations as well as the voltage V(x) when it is grounded to 0 V at the end 

of the spine neck, which represents the connection to the dendrite, considered as a large 

ionic reservoir with fixed concentration (see Table 2). Consequently, V(x) represents the 

voltage difference induced by the injected current Istim. We find the distribution of the 

voltage along the x axis (blue) Figure 3B when Istim = 150pA is injected in the spherical 

geometry as shown in Figures 3A and 3B.

In summary, inside a spherical domain, diffusion is the dominant driving force and the 

potential drop is reduced significantly, which is equivalent of having a small spine head 

resistance. Indeed, applying the electro-diffusion model (Equations 37 and 38) to a spine-

like geometry (Figure 3C), we observe that most of the voltage drop is carried by the spine 

neck (Figure 3D). Interestingly, it is not equivalent to decrease the neck length to 

compensate for a decrease in the injected current (see result with an injected current of 150 

versus 300pA), suggesting that changing the synaptic weight by adding or removing 

receptors or modifying spine neck length have different consequences on the spine voltage 

distribution.

We also observed in Figures 3E–3G that there is a narrow layer located at the entrance of the 

PSD region where the synaptic current Istim is injected. We found a 7 mV drop occurring in 

a small distance (≈50nm) inside the spine head. This small region of large convection is at 

the limit of actual resolution (≈0.116μm/pixel). We could thus define a boundary layer 
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resistance Rbl. Outside this layer, the voltage is quite uniform, leading to a reduced field 

convection e/kBT∇ϕ (Equation 37), demonstrating that diffusion is dominant inside the spine 

head. To conclude, we demonstrated numerically using PNP equations that the voltage drop 

in the spine head is negligible (less than a quarter of mV), except in a small region where the 

current is injected. These results are in contrast with the classical cable theory (Figure S6), 

which suggests that the motion of ions is driven by the voltage gradient. At this stage, 

electro-diffusion theory predicts that the voltage in the spine head Vhead(t) is spatially 

homogeneous, confirming the approximation of Equation 1, except near the post-synaptic 

density or at the entrance of the spine neck. The global spine head resistance is thus 

negligible, since the potential drop occurs just at the end of the neck, and thus the entire 

spine resistance is carried by the neck and the boundary layer: Rspine≈Rneck + Rbl. Note that 

in practice the resistance Rbl is not accessible to experimental measurements due to the thin 

region where it is generated. Thus, experimental results give access values for the neck 

resistance Rneck.

Spine Geometry Determines the I–V Conversion

To study the influence of the geometrical parameters on the electrical property of a spine, we 

first estimated the effect of the spine head radius rhead for five spines (Figure S3). By 

measuring their projected area Shead from the two-photon images, we use relation (Figure 

4A)

rhead =
Shead

π (Equation 2)

to extract the equivalent radius (blue stars). We then use the PNP model associated to the 

short spine with no neck (Figure 3A) to estimate the average voltage difference 〈V〉ball (for a 

current of 100pA) between the north and the south pole of a spine head. We find that the 

mean voltage varies in a range of 1.5 − 1.6mV, when the radius of the head varies in the 

range 0.3 − 1.5μm. This result shows that the head radius had little influence on the mean 

voltage.

We then estimated how the spine neck resistance Rneck depends on the neck length and 

width, usually unaccessible using classical microscopy approaches: we find both 

theoretically and experimentally that the resistance increases (blue stars) with the neck 

length L (Figures 4B, 2D, and 2E). Note that the size of the head is not correlated with the 

resistance (Table 1). Furthermore, electro-diffusion simulations in a segment using (37–38) 

predicts that for the mean current input extracted from data, there is a significant change in 

the local concentration of positive charges (simulations of the 1D neck) of length L = 0.7μm 
at the time-to-peak (t0 = 55ms). Indeed, we find a concentration gradient of 33mM between 

the tip and the base of the neck, when the concentration of ions is fixed at 163 mM in the 

dendrite (Figures 4C and 4D). Although the injected current I(t) is composed of positive 

charges, the concentration gradient in the neck is driven by positive and negative charges. 

Such phenomenon is called concentration polarization (Strathmann, 2004, Chapter 4). 

Finally, we confirmed this result using a simulation in a three-dimensional spine (neck plus 
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head), where we injected transiently a current with an amplitude Istim = 150pA (resp. Istim = 

150pA) at the top of a spine domain (Figure S6) and found a concentration gradient of 

22mM (resp. 45mM) in the neck.

Finally, using the electro-diffusion theory and the spine parameter rhead = 0.5μm, L = 1μm, 

we estimated the I–V relation for various neck radius, showing a saturation for large current 

(Figure 4E). These curves show that the neck radius is one of the most critical parameters in 

defining the conversion of current into voltage. Then to clarify the dependency of the spine 

neck resistance Rneck on its radius, we simulated the PNP equations by solving Equation 58, 

where a steady-state current Istim = 20; 50; 100; 150pA is injected inside the spine head 

(Figure 3C). We obtained the average voltage inside the head 〈V〉head. We plotted the 

resistance of the neck versus the neck radius r0, computed by Rneck = 〈V〉head/Istim in Figure 

4F. Interestingly, we find that depending on the injected current, the spine resistance can 

decay inversely proportional to the radius of the neck. This is in contrast with classical 

results based on electrical circuit approximation (Koch, 2004, Chapter 12), where the 

classical Ohm’s law for a resistance predicts that resistance depends on 1/r0
2. When the 

injected current is large Istim = 150pA, the resistance seems to decay with a power law 1/r0 

(dotted red) but changes to 1/r0
3/2 (dotted blue) for Istim = 20pA. We recover the classical law 

for a small current Istim = 1pA. Finally, for Istim = 50pA and a spine neck radius of r0 = 

50nm (resp. 100 nm), the overall spine resistance that is mostly carried by the neck would be 

Rspine≈Rneck = 120MΩ. These results show a clear deviation from the classical Ohm’s law 

and also a limitation of the diffusion approach (Svoboda et al., 1997).

In summary, we used the electro-diffusion theory and the Arc-light fluorescent data to 

characterize the electrical properties of a dendritic spine. With respect to a synaptic input, a 

spine can be electrically characterized as a diode device (Figures 5A and 5B) with a finite 

resistance (for a small current), saturating for large currents (Figure 5C). The voltage 

difference varies from few to tens of mV. However, from the perspective of a Back 

Propagation Action potential, the equivalent circuit of a spine is a diode with zero resistance 

(no leak current; Horowitz and Hill, 1989, Chapter 1; Figure 5D).

DISCUSSION

We developed here a computational approach based on the electro-diffusion theory to 

estimate the electrical properties of dendritic spines. We first deconvolved the Arclight 

fluorescent signal and then applied the electro-diffusion theory to estimate the resistance and 

the capacitance from hippocampal neuron data. Our approach contrasts with classical 

estimation of the spine neck resistance and dendritic spine electric properties, extracted in 

the context of the electrical circuit approximation, passive cable theory and even diffusion 

approximation (Svoboda et al., 1997; Popovic et al., 2015; Acker et al., 2016; Koch, 2004, 

Chapter 2). In contrast to those studies, we find here that the electro-diffusion coupling is the 

main driving force for ionic current in the spine neck (Figure 3), while diffusion is sufficient 

to describe the motion of ions inside the head. The electric field is negligible in the head, 

except very close to the entrance of the synaptic input and at the exit with the neck.
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In fact, electro-diffusion theory reveals that the spine head geometry imposes that the 

voltage is almost constant in the head, while the neck is responsible for most of the voltage 

drop. This is in contrast with the predictions of the cable theory or previous approximations 

of electro-diffusion (Koch and Segev, 1998), based on electroneutrality and no gradient of 

charges. We also demonstrated here that the ion conduction is mostly driven by diffusion in 

the spine head, suggesting that the head resistance is negligible compared to the neck.

We showed here that the synaptic current leads to a gradient of concentrations and thus the 

Poisson-Nernst-Planck theory should be used to describe the voltage at the submicron level. 

We presented in Figure 3 a resistance Rbl in a small boundary layer associated to a drop of 

voltage. This model may suggest that scaffolding proteins and receptors located in the PSD 

are experiencing large voltage drop that could regulate the electrical properties of charged C 

terminus of the receptors such as AMPA and thus their trafficking in dendritic spines 

(Nicoll, 2017; Herring and Nicoll, 2016). For slower electrical events, ionic concentrations 

should follow the changes of the local voltage and there is a significant gradient of charges 

of the order of 150 mM in a spatial scale of 1 μm, although the average concentration is 

stable around 100 mM. However, this effect does persist for a transient current lasting 100 

ms, where the concentration gradient at time to peak is of the order of 30 mM. Most likely, 

fast oscillations or voltage fluctuations due to the opening and closing of the channels will 

not lead to an extended concentration gradient and, in that case, the electro-diffusion could 

be neglected.

It remains difficult to study the exact local balance of positive by negative charges, because 

in transient regimes or at equilibrium, positive charges are all the time in excess. Possibly 

the sum of negatively ionic charges plus the negative charges located on immobile proteins 

can balance positive charges at a tens to hundreds of nanometers. Long-range electro-

diffusion effects have already been described for directing the current flow in the synaptic 

cleft into the post-synaptic terminal (Sylantyev et al., 2008, 2013), showing in a different 

context that electro-diffusion drives ionic flows and the voltage in neuronal microdomains.

Time Deconvolution of the Arclight Fluorescent Signal

Neuronal voltage is reported by recording electrodes and we showed here how the Arclight 

signal can be deconvolved in small and large microdomains, so that we can now access the 

voltage dynamics and electrical properties from microdomains. Genetically encoded activity 

sensors combined with microscopies are now classically used (Emiliani et al., 2015) to 

record and manipulate the activity of neural circuits. We show here how fluctuations 

contained in the fluorescent signal can be filtered and the voltage time course is recovered 

from the empirical kernel K(t) (STAR Methods). This approach can be applied to any 

encoded activity sensor expressed in neurons and only requires the comparison of the 

electrophysiological recording with the florescence in the soma. The present deconvolution 

could also be used to recover the electrical activity from slow calcium indicators (Emiliani et 

al., 2015).
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Influence of the Neck Radius on the Spine Resistance

The spine neck radius cannot be spatially resolved, so any geometrical fluctuation is likely 

to result in a drastic change in the resistance. For diffusion alone, the rate of extrusion 

(Holcman and Schuss, 2013) (for Brownian particle) from a dendritic spine is given in first 

approximation as ( ∣ Ωspine ∣ L/Dπro
2) + (C2 ∣ Ωhead ∣ Rc

3/2/Dro
3/2), where D is the diffusion 

coefficient, |Ωspine| is the volume of the spine, L the length of the neck, Rc the radius of 

curvature at the base of the neck-head junction, |Ωhead | the volume of the head and C2 a 

constants, and ro is the radius of the neck. This expression shows that a small change in the 

radius ro (dividing by two for example) leads to a significant change of at least 4 for the 

diffusion time-scale. We addressed the radius neck uncertainty here in the context of electro-

diffusion by computing the neck resistance for different radii (Figure 4F).

Spine-intrinsic electrical characteristics are revealed by the impedance, which is the ratio of 

the voltage to the injected current. For example, for a steady-state current of I = 50pA, the 

Ohmic resistance of a spine of radius 100nm (resp. 50nm) is 〈Rneck〉 = 120MΩ, (resp. 

〈Rneck〉 = 350MΩ). This high resistance value for longer spine necks could be relevant for 

the statistics collected in brain slices (see our computations for the spine neck resistance in 

Figures S7D and S7E, where we find that the key parameter remains the spine neck radius; 

confirmed in Beaulieu-Laroche and Harnett, 2018). However, there is still no consensus 

about the large range of spine resistances, reported in the literature with direct and indirect 

measurements: the conclusions of different optical studies are mixed: some suggest an 

attenuation of EPSPs (Araya et al., 2006, 2014; Harnett et al., 2012), other suggest instead 

that spines are isopotential with the dendrites and do not alter EPSPs (Svoboda et al., 1997; 

Tønnesen et al., 2014). Diffusional studies of small fluorescent molecules through spines 

have predicted neck resistances of 4 – 50MΩ (fluorescein dextran) or 56MΩ (Alexa Fluor 

488), (Svoboda et al., 1997; Tønnesen et al., 2014). Other studies suggested a lack of voltage 

filtering of dendritic spines during glutamate uncaging (Popovic et al., 2015; Acker et al., 

2016) with a resistance of 30MΩ. We find here for the neck resistances a range of [100 – 

300]MΩ, compared to 13 – 297MΩ, reported in Kwon et al. (2017). However, this large 

range of values may reflect the heterogeneous distribution of neck radii and in particular the 

smallest constriction along the neck. The decay of the EPSPs from the spine head to the 

parent dendrites can be explained by the law of electro-diffusion in the spine geometry. We 

have shown here that the electrical compartmentalization is mostly due to the resistance of 

the neck.

Interestingly, we also found here that the resistance of a dendritic spine is inversely 

proportional to the radius of the neck r0, and not by the square r0
2, as classically described for 

electrical devices (Figure S6) (Svoboda et al., 1997). This result shows that the neck size has 

a key effect in modulating the spine electrical resistance. Another prediction of the present 

theory is that a synaptic current injected in a spine head should be of the order of 100pA (as 

suggested in Figure 2E). The shortest diameter of a spine neck along its length is certainly a 

key factor that could drastically affect its resistance. Indeed, the critical geometrical 

parameter is the minimal shortest constriction along the neck (Holcman and Schuss, 2013), 
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which could further be influenced by the crowding due to the internal endoplasmic reticulum 

(Holcman and Yuste, 2015).

The Geometry of Dendritic Spines Modulate the Voltage Changes Independently of the 
Input Current

Dendritic spines are involved in modulating two- and three-dimensional receptor trafficking 

(Huganir and Nicoll, 2013; Elias and Nicoll, 2007; Kessels and Malinow, 2009), molecular 

post-synaptic density composition, calcium diffusion (Yuste, 2010; Korkotian et al., 2004), 

synaptic transmission, and plasticity. We have shown here using the electro-diffusion 

framework that the voltage in dendritic spines can also be controlled by changing the neck 

length geometry. This modulation obtained by changing the geometry is complementary to 

the possible changes in the number of receptors, resulting in a long-term modification of the 

synaptic current, reflecting synaptic plasticity.

Changing the spine neck length can thus regulate the local dendritic voltage that contributes 

to the genesis of an action potential. We further confirm previous experimental findings in 

brain slices (Araya et al., 2006, 2014), showing that the synaptic voltage amplitude is 

inversely correlated with the neck length, but we found here a much stronger effect 

compared to previously evaluated (Popovic et al., 2015). However, in agreement with 

Popovic et al. (2015), we do not need to use any additional active channels in the electro-

diffusion model to account for the voltage in the spine, suggesting that they might not play a 

predominant role.

To conclude, voltage changes in dendrites can now be detected at the nanometer scale and 

the electro-diffusion theory allows interpreting these data and predicts a nonlinear current-

voltage relation imposed by the specific geometry of dendritic spines. While the spine 

geometry controls voltage, the synaptic current is set by the number of receptors (Huganir 

and Nicoll, 2013; Elias and Nicoll, 2007; Kessels and Malinow, 2009). These two 

mechanisms are supposed to be independent and they are both involved in controlling the 

synaptic response. It would certainly be interesting to study how changes in one affect the 

other.

Finally, spine twitching (hypothesized in Crick, 1982 and demonstrated experimentally in 

Korkotian and Segal, 2001a, 2001b) may impact the electrical property of spines. Indeed, the 

consequence of the spine head constriction might be negligible for the voltage inside the 

head but could influence the current inside the neck and thus reduces the effective resistance.

STAR ★ METHODS

Detailed methods are provided in the online version of this paper and include the following:

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data
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REAGENT or RESOURCE SOURCE IDENTIFIER

Fluorescence data Kwon et al., 2017 N/A

Software and Algorithms

MATLAB 2015 MathWorks https://fr.mathworks.com/; RRID: SCR_001622

COMSOL Multiphysics COMSOL https://www.comsol.com/; RRID: SCR_014767

Deconvolution algorithm This paper N/A

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, David Holcman (david.holcman@ens.fr).

METHOD DETAILS

Arclight signal—We briefly described here the experimental data we have used for our 

electro-diffusion theory and time deconvolution. There are fully described in (Kwon et al., 

2017). The protein-based voltage indicator ArcLight is injected in primary cultured 

hippocampal neurons. ArcLight expressing dissociated hippocampal culture neurons in DIV 

12–16 were recorded in artificial cerebrospinal fluid (ACSF) containing ions of various 

concentration. Two-photon glutamate uncaging was done with a custom-made two-photon 

laser scanning microscope. In glutamate uncaging, the location of stimulation was selected 

with 1–2 μm distance from dendritic spines, not closer than 1μm. The whole-cell patch 

clamp and the glutamate uncaging were performing while doing the wide-field one photon 

imaging of ArcLight fluorescence. Finally, we used the voltage deconvolved from the 

fluorescence signal, based on a two-state model of voltage dependent ArcLight fluorescence 

described in (Kwon et al., 2017).

Distribution of the arclight genetically encoded voltage indicator—We used here 

the genetically encoded voltage indicators (GEVIs) (Brinks et al., 2015; Gong et al., 2015; 

Han et al., 2013; Jin et al., 2012; St-Pierre et al., 2014), which can be expressed in neuronal 

membrane through plasmid transfection. This dye is used for an optical measurements of the 

membrane potential. ArcLight was expressed in cultured mouse hippocampal neurons and 

the fluorescence was imaged with an upright fluorescence microscope and a fast sCMOS 

camera. To monitor somatic electrophysiology, imaged neurons also were patched in whole-

cell, current clamp mode. In neurons expressing ArcLight, fluorescent signals were clearly 

visualized in dendritic spines as well as soma.

To test how the ArcLight fluorescence responsed to bAPs generated by somatic current 

injection, the eletrophysiological signals were recorded from areas of interest (ROI) in 

somata, proximal dendrites and spines. To quantify optical signals, we measured the relative 

change in fluorescence intensity −ΔF/F, a quantity directly proportional to membrane 

potential (Peterka et al., 2011).

Intracellular ArcLight proteins located in ER and Golgi may contaminate baseline 

fluorescence (F) because they are fluorescent, but insensitive to membrane potential, as they 
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are too far from the Debye length of the membrane’s electric field. Although ArcLight is in 

a dark state at the lower pH of intracellular organelles (Han et al., 2014), its contribution to 

background could be critical to determine −ΔF/F, if averaged together with a membrane 

responding ArcLight. To evaluate this possibility, it was calculated (Kwon et al., 2017) the 

activity probability of each pixel in response to voltage by using a constrained non-negative 

matrix factorization (CNMF) algorithm (Pnevmatikakis et al., 2016) and compared the 

resulted weight matrix image to the base fluorescence image. Through this comparison, we 

identified regions of non-responding intracellular ArcLight in the soma, which has strong 

base fluorescence yet low activity weight, while there were no such regions in dendrites and 

spines. This result implies that the trafficking mechanism of ArcLight proteins is by ER 

translation at inactive sites of soma, and then targeting to adjacent somatic cell membrane 

and by diffusion to the rest of the cell along the cell membrane. In summary, the Arclight 

dye is inserted in the membrane where the voltage sensor is located in the cytoplasm and 

thus it reports internal changes of the membrane, that we analyze here.

We also recall that spines are potentially electrotonically (Kwon et al., 2017) far from the 

soma and experiments with CsCl-based internal solution to block leak K+ channels make the 

neuron electronically compact. The average amplitude of bAP in spines was 

indistinguishable from that of parent dendrites (Kwon et al., 2017). Voltage step 

depolarizations in voltage clamp show that the measured somatic voltage was same as the 

optically measured voltages of spines and dendrites. Somatic voltage before background 

noise subtraction were larger than voltages of spines and dendrites because of the closer 

proximity to the brighter somatic region. These results confirm that the voltage dyes in the 

spines and dendrites are reliable reporters of the voltage and thus no further recalibration is 

necessary to analyze the fluorescent in the spine compared to the soma.

Deconvolution Kernel—To recover the intrinsic voltage dynamics h(t) from the slow 

Arclight signal Arc(t), we compare the electrophysiological patch-clamp recording in the 

soma with the ArcLight fluorescence extracted from the somatic region delimited in the 

image (Figure 1A). This comparison is at the basis of the deconvolution method of the 

causal fluorescent signal. Indeed, the slow Arclight reporter convolves the fast electrical 

voltage signal, modeled by a kernel function K(t) with the intrinsic dye dynamics, leading to 

a slow fluorescent response. The kernel K(t) describes the time delay of the fluorescence 

activation compared to the voltage dynamics. We model the kernel by the function

K(t) = A
τ2 te

− t
τ , (Equation 3)

where the value of the parameters A and τ are obtained by comparing the Arclight response 

in the soma with the convolution of the electrophysiological recordings (Figure S1). Indeed, 

for a voltage signal h(t), the Arclight signal Arc(t) is expressed by the convolution product
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Arc(t) = ∫
0

t
K(t − s)h(s)ds (Equation 4)

To recovered h(t) from the Arclight signal Arc(t), we first calibrated the kernel K(t) so that 

the Arclight signal peaks exactly at the one monitored by the electrophysiological signal 

(Figure 1B) and we obtain τ = .05s. The other parameter A is a scaling that will be adjusted 

for each experimental data. The kernel K(t) is plotted in Figure S1B.

Noise filtering and approximation—In small dendrite and dendritic spine regions, the 

Arclight data contains a large noise that should be removed. For that purpose, we use a 

Savitzky-Golay filter (Savitzky and Golay, 1964), to increase the signal-to-noise ratio. We 

shall now describe how we have removed the high frequency fluctuations present in the 

fluorescence signal (Figure S1C). We use the Savitsky-Golay (SG) filter, which is based on 

local least-squares polynomial approximation. The filter reduces the fluctuations while 

maintaining the shape and height of the initial signal (Savitzky and Golay, 1964).

Savitsky-Golay filter—The Savitsky-Golay filter is based on decomposing the input 

fluorescent signal Arc that we now denote by F into polynomials. We start with the 

sampling,

F(t) = ∑
k = 1

N
F(tk)δ(t − tk), (Equation 5)

where N is the number of points. We define the discrete time subinterval Ik = {tk − nΔt ···, tk 

· · · tk + nΔt} of size 2n + 1 time points, separated by a time step Δt. The filter is constructed 

by finding an ensemble of polynomials iteratively on each time window Ik. We define the 

sequences Fq of functions q = 0..N, where F0 = F. To compute the polynomial of degree p,

Pk(t) = ∑
i = 0

p
ak, it

i, t ∈ Ik (Equation 6)

that approximate the function F, we start with k = 1: the coefficients a1,i are computed by 

minimizing on the interval I1

min
t ∈ I1

R1
2(t), (Equation 7)

where
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R1
2(t) = ∑

s = 0

n
(F0(t1 + sΔt) − P1(t1 + sΔt))2 . (Equation 8)

The function F1 is constructed from F, by replacing F(t1) by P1(t1),

F1(t) = {P1(t1), F(t2), ⋯, F(tN)} . (Equation 9)

In general, the kth – iteration is obtained by minimizing on Ik,

min
t ∈ Ik

Rk
2(t), (Equation 10)

where

Rk
2(t) = min

tk + sΔt ∈ Ik
∑

s = − n

n
(Fk − 1(tk + sΔt) − Pk(tk + sΔt))2 . (Equation 11)

The filtered function Fk at the kth – iteration is given by

Fk(t) = {P1(t1), ⋯, Pk(tk), F(tk + 1), ⋯, F(tN)} . (Equation 12)

The coefficients {ak,i}, for i = 0..p are obtained by differentiating Rk
2 (Equation 10) with 

respect to the coefficients ak,i,

∂Rk
2

∂ak, 0
= 0

⋮
∂Rk

2

∂ak, p
= 0.

(Equation 13)

The system of Equation 13 is a linear matrix equation,
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Fk − 1(tk − nΔt)
⋮

Fk − 1(tk + nΔt)
= V

ak, 0
⋮

ak, p

, (Equation 14)

where V is the (2n + 1, p + 1) matrix

V =

1 tk − nΔt (tk − nΔt)2 ⋯ (tk − nΔt)p

1 tk − (n − 1)Δt (tk − (n − 1)Δt)2 ⋯ (tk − (n − 1)Δt)p

⋮ ⋮ ⋮ ⋱ ⋮
1 tk + nΔt (tk + nΔt)2 ⋯ (tk + nΔt)p

. (Equation 15)

This matrix is inverted numerically in MATLAB. To conclude, the filtering procedure is 

summarized by

𝒮G(F(t)) = ∑
k = 1

N
Pk(tk)δ(t − tk) . (Equation 16)

We can iterate NSG times the SG filter,

f (t) = (𝒮G)
NSG(F(t)), (Equation 17)

where (SG)NSG = SG∘... ∘ SG, NSG times.

Preliminary treatment before using the Savitsky-Golay filter—We now segment 

the fluorescence signal: the first time interval starts at tunc = 0 which is the initiation of the 

voltage response until the maximal response at time tpeak (see Figure S1C). Because the 

physical modeling of the dye kinetics (Kwon et al., 2017) predict a single exponential decay, 

we shall treat, after the time tpeak, any fluctuations as noise and we will apply the iteratively 

the SG filter (17). In summary, we divide the fluorescent response F(t) into three subregions 

Figure S1C:

1. before the time of glutamate uncaging tunc,

2. from the time tunc to the time-to-peak tpeak,

3. after the time-to-peak tpeak.

In region 1 (before tunc), we use the following parameters: polynomial degree p = 2, the size 

of the window |Ik | = 40 points and the number of iteration of the filter NSG = 1 to 3 
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(depending on the signal). This filtering reduces the noise amplitude in this first region by 

80%. The filtered signal is f1. In regions 2 and 3, to preserve the signal peak amplitude, we 

use a hight degree polynomial and the parameters p≥25, |Ik| = 100, and NSG = 6 ± 2 to 

remove small fluctuations (Figure S1C). However, we note that the second bump of smaller 

amplitude around t = 0.65s in Figure S1C is generated by the random fluctuations of the 

fluorescence signal. Nevertheless, these fluctuations do not impact our analysis because we 

use for our computations the time interval: [0, 0.4]s. In region 3, we remove large 

fluctuations using parameters p≥5, |Ik | = 80, and NSG = 5. The filtered signals in regions 2 

and 3 are f2 and f3 respectively.

To glue continuously the results on each region, we use the sigmoid function,

σ(t, tcut) =
1 + tanh (ζ(t − tcut))

2 , (Equation 18)

where ζ = 150s−1 and tcut is a parameter. Finally, from the input Arc(t), we obtain the 

filtered signal

f (t) = σ(t, tunc)( f 2(t) + f 3(t) − f 1(t)) + σ(t, tpeak)( f 3(t) − f 1(t) − f 2(t)) + 2 f 1(t) + f 2(t),

(Equation 19)

shown in Figure S1C.

Analytical approximation of the filtered signal and time deconvolution—We 

now described in detail the analytical approximation of the filtered signal f (previous 

section). The goal of this approximation is to remove any fluctuations that could be 

amplified in the deconvolution procedure. First, we project the filtered signal f on the two 

functions

f α, β1, β2, γ1, γ2
(t) = tα(β1 exp ( − γ1t) + β2exp( − γ2t)) (Equation 20)

where the parameters α, β1, β2, γ1, γ2 are obtained by the MATLAB optimization 

procedure polyfit (Figure S1D). This step eliminates any small fluctuations that could have 

been amplified in the deconvolution step (Figure S1E). Another advantage of having an 

analytical representation is to obtain an explicit Laplace’s transformation used in the 

deconvolution. Indeed,
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f α, β1, β2, γ1, γ2
(s) = Γ(α + 1)

β1
(s + γ1)α + 1 +

β2
(s + γ2)α + 1 , (Equation 21)

where Γ(·) is the Gamma function (Abramowitz and Stegun, 1966, Chapter 6). We now use 

the exact form of the kernel to obtain an explicit formula for the deconvolution. We recall 

that the convolution kernel is given by

K(t) = A
τ2 t exp − t

τ (Equation 22)

and its Laplace’s transform is

K(s) = A
(sτ + 1)2 . (Equation 23)

The convolution product

f α, β1, β2, γ1, γ2
(t) = (K ∗ h)(t) (Equation 24)

can be written in the Laplace’s variable s

f α, β1, β2, γ1, γ2
(s) = K(s)h(s) . (Equation 25)

Thus using expression 23 and 21, we obtain

h(s) =
f α, β1, β2, γ1, γ2

(s)

K(s)
= Γ(α + 1)(sτ + 1)2

A
β1

(s + γ1)α + 1 +
β2

(s + γ2)α + 1 . (Equation 26)

We can now compute h using the analytical result for the inverse Laplace of function

M(s) = C(sτ + 1)2

(s + γ)α + 1 (Equation 27)
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with α≥2 and 0≤γ which is given by

m(t) = Ce−γttα − 1

Γ(α + 1) (t(1 − 2τγ) + 2τα) + Cτ2e−γttα − 2

Γ(α + 1) (tγ)2 + α2 − α − 2γαt . (Equation 28)

Finally, we obtain the expression for the deconvolved voltage signal

h(t) =
β1e

−γ1t

A tα − 1(t(1 − 2τγ1) + 2τα) + τ2tα − 2 (tγ1)2 + α2 − α − 2γ1αt +
β2e

−γ2t

A

tα − 1(t(1 − 2τγ2) + 2τα) + τ2tα − 2 (tγ2)2 + α2 − α − 2γ2αt .

(Equation 29)

To conclude, we obtain here the expression for the deconvolution of (29) from the analytical 

approximation of the Arclight fluorescent signal Arc, described in Figure S1E. Note that the 

value of the parameter A is calibrated for each dataset, such that the maximum amplitude 

between the Arclight response and the deconvolved voltage remains identical.

Deconvolution method applied on several peaks—The deconvolution procedure 

described in the above section can be extended to signals with several peaks. To illustrate the 

result of the deconvolution method, we use an input made of two consecutive spikes (Figure 

S2A), generated for example from a post-synaptic voltage response (Tsodyks and Markram, 

1997). The two spikes are shown in Figure S2B (dashed black). We now summarize the 

steps of this deconvolution procedure:

1. We first simulate the fluorescent response by convolution of the two spikes with 

the kernel (22) K(t) = A/τ2 te−t/τ where τ = 18ms.

2. To account for possible fluorescence fluctuations, we added a colored noise ζ(t) 
that represents fluctuations of the fluorescence signal. The model for the colored 

noise is an Ornstein-Uhlenbeck process (Schuss, 2009, Chap.1)

dζ(t) = μζ(t)dt + σdW(t), (Equation 30)

where W(t) is a Wiener process and μ = 0.045 and σ = 0.025. The resulting 

fluorescence signal is shown Figure S2B (blue). We will then consider this signal 

as the input of the deconvolution.

3. The deconvolution starts with the fluorescence Arc(t) shown Figure S2C (same as 

in S2B). Following the deconvolution procedure described above for a single 
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peak, we approximate the input Arc(t) (Figure S2D (dashed green)), using a sum 

of exponentials

Arc(t) = ∑
j = 0

n
β j(t − t j)

α je
−γ j(t − t j)H(t − t j), (Equation 31)

where the spikes are initiated at time tj (see Figure S2B, red dashed lines), βj, αj 

> 2 and γj are positive constants, n is the number of spikes and H(t − tj) is the 

Heaviside function defined by

H(t − t j) =
1, if t ≥ t j

0, if t ≥ t j . (Equation 32)

All parameters are obtained by a fitting procedure.

4. To recover the voltage V(t) from the fluorescence Arc(t), we invert the 

convolution equation, following the procedure described in the previous section

Arc(t) = (V ∗ K)(t) (Equation 33)

We apply the Laplace transform to obtain an analytical representation of the 

solution

V(s) =
Arc(s)
K(s)

= ∑
j = 0

n β jΓ(α j + 1)
A

(1 + τs)2

(s + γ j)
α j + 1e

−s t j . (Equation 34)

5. The voltage V(t) is then recovered computing the inverse Laplace transform of 

expression (34) and we get

V(t) = ∑
0

n β j
A e

−γ j(t − t j)H(t − t j)Pτ, α j, γ j
(t − t j), (Equation 35)

where

Pτ, α, γ(t) = tα(τγ − 1)2 − 2ατ(γτ − 1)tα − 1 + ατ2(α − 1)tα − 2 . (Equation 36)

The deconvolved voltage is shown Figure S2E. Note that the fluctuations disappear 

completely because the fitting procedure (31) removes them completely. The result of the 

deconvolution is compared to the initial voltage response (dashed black) in Figure S2F. The 

deconvolution of the voltage V(t) in step 4 relies on the apriori knowledge of the time of 
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spike initiation tj. These values could be identified when the spikes are sufficiently 

separated: when the time interval between two consecutive peaks Δti = ti + 1 − ti is large 

enough, the times tj can be recovered directly from fluorescence measurements: as shown in 

Figures S2G–S2I for Δt0 = 75, 100 and 150ms respectively, the two peaks (red star) are 

clearly distinguishable and the time t1 can be identified. However, when Δt0 = 50ms (Figure 

S2C), the two peaks overlap such that the time t1 cannot be read from the fluorescence time 

series but could be identified in the electrophysiology time series.

We conclude that the present deconvolution procedure can be applied to several spikes or 

EPSP, as long as the time between spikes is not less than 50ms. When the time between the 

events is less than 50ms, the information of their precise position could be retrieved from 

direct electrophysiological recordings, in that case, the deconvolution procedure still recover 

the fast time evolution.

Optimization procedure to extract the capacitance C and conductance G of a dendritic spine 

from the voltage drop between the head and the base of a spine

We describe here an optimization procedure for extracting the capacitance C and 

conductance G from the measured voltage time series. The procedure consists in fitting a 

very small portion of the voltage time response curve and to predict from this short time 

interval, the entire time response. Furthermore, this procedure permits to compute the 

current I(t) injected in the spine neck, based on Equation 1. We start with the one-

dimensional electro-diffusion equations to model the current and voltage in the spine neck. 

These equations consist of the classical Poisson equation for the voltage and the ionic 

concentrations coupled to the Fokker-Planck equations for the concentrations and the 

voltage.

∂2V
∂x2 (x, t) = − F

εε0
(cp(x, t) − cm(x, t))

∂cp
∂t (x, t) = Dp

∂
∂x

∂cp
∂x (x, t) + e

kBT cp(x, t)∂V
∂x (x, t)

∂cm
∂t (x, t) = Dm

∂
∂x

∂cm
∂x (x, t) − e

kBT cm(x, t)∂V
∂x (x, t) ,

(Equation 37)

where Dp, Dm are diffusion coefficients, e the electronic charge, the valencies for each 

specie is z = ± 1 and kBT is the thermal energy. Equation 37 is used to compute the voltage 

drop when a current I(t) is injected at the tip of the spine neck. During the simulations, the 

ionic concentrations in the dendrite (ionic reservoir) are the boundary conditions fixed at the 

values Cp and Cm (see Table 2). We recall that the electrical potential is defined to an 

additive constant. The initial and boundary conditions are

V(x, 0) = 0 (Equation 38)
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cp(x, 0) = Cp and cm(x, 0) = Cm .

∂V
∂x (x, t)

x = 0
= 0

∂cm
∂x (x, t)

x = 0
= 0

(Equation 39)

∂cp
∂x (x, t) + e

kBT cp(x, t)∂V
∂x (x, t)

x = 0
= I(t)

DpFπri
2,

V(L, t) = 0, cp(L, t) = Cp and cm(L, t) = Cm, (Equation 40)

where ri is the radius of the circular opening where the synaptic current is injected in our 

simulations (see Figure 3A). In summary, Equations 37, 39, and 40 describe the ionic 

response of an input current I(t) inside a thin cylinder reduced to a one dimensional segment. 

We simulate these equations using Comsol to determine the voltage drop (Figure 2).

To determine the unknown parameters (C, G), we use an iterative algorithm, where we solve 

numerically the boundary value problem Equations 37, 38, and 39, from which we obtain a 

ionic current IC,G(t) (Equation 1) injected at the tip of the neck and the voltage VC,G(x, t) in 

the neck at position x and at time t. Because VC,G(L, t) = 0, the voltage VC,G(0, t) represents 

the difference of potentials between the head and the dendrite. We start the iteration 

algorithm with a value for the parameters C0, G0: C0 = 0.1pF and G0 = 1nS (Figure S4A). 

Following each iteration, we compare the computed voltage VC,G(0, t) (from Equation 37) 

with the measured potential difference Vhead(t) − Vdend(t) extracted on a short time interval 

[ti, tf] (usually [0.2 − 0.4]ms). We chose this small time window because it allows us 

differentiating clearly the response from the background noise during glutamate uncaging 

(Figures S4B–S4D).

The value for the parameters C, G are the minimizers of the error functional—

min{C, G ∈ S} ∫ti

t f
∣ VC, G(0, t) − (Vhead(t) − Vdend(t)) ∣2dt, (Equation 41)

where the ensemble S of parameters is described below. We approximated the difference by 

a linear function Vhead(t) − Vdend(t)
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ξ(t) = a(t − ti) + b, (Equation 42)

where a and b are constants fitted to data in the interval [ti, tf]. This approximation reduces 

possible fluctuations (see fig. S4B–D). Finally, we score the different couple (C,G) using the 

estimator

SC, G = ∑
{tk ∈ [ti, t f ]}

(VC, G(0, tk) − ξ(tk))2 . (Equation 43)

At the beginning of each iteration, we use possible values for (C, G) among which we retain 

the optimal values (C*, G*) that minimizes the score SC,G. The possible values for (C, G) 

can be represented by a square matrix, centered around the initial value (C0, G0), where we 

have chosen C0 = 0.1pF and G0 = 1nS (Koch, 2004). Each couple differs from one another 

by an increment ΔG = 0.05 and each line and ΔC = 0.01 on each raw. In total, there are (2α 
+ 1)2 values, presented in a matrix

S =

(C + αΔC, G − αΔG) ⋯ (C + αΔC, G) ⋯ (C + αdC, G + αΔG)
⋮ ⋮ ⋮

(C, G − αΔG) ⋯ (C0, G0) ⋯ (C, G + αΔG)
⋮ ⋮ ⋮

(C − αdC, G − αΔG) ⋯ (C − αΔC, G) ⋯ (C − αdC, G + αΔG)

. (Equation 44)

We first look for the minimum of expression 43 for all entries of the matrix. For a given 

precision (εG, εC), we evaluate whether or not the conditions

‖C∗ − C0‖ < εC and‖G∗ − G0‖ < εG, (Equation 45)

are satisfied and in that case, we have chosen VC*,G* (x, t) = V(x, t), otherwise we continue 

the iteration by replacing the initial condition with the new values:

(C0, G0) (C∗, G∗) (Equation 46)

(ΔC, ΔG) ΔC
2 , ΔG

2 . (Equation 47)
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This iteration shows how the new ’S’ matrix (Equation 45) is refinement near (C*, G*). In 

practice, we always find a unique solution for the final parameter C* and G*.

We show in Figure S3 several examples of dendritic spines, where we applied the present 

algorithm to extract the current, G and C from the voltage deconvolved time series. Figure 

S3A shows the different region of interest ROIs. In Figure S3B, we compare the 

deconvolved voltage signal with the one computed from PNP. In Figure S3C, we plot the 

computed injected current (from voltage) inside the spine neck.

Relation between the intrinsic 1/G and the effective neck Rneck resistance—We 

discuss here the relation between the spine effective and intrinsic resistance. The effective 

neck resistance is computed from the difference of voltage 〈V(t)〉 between the entrance and 

the exit of the neck, when the injected current is 〈I(t)〉. By definition, averaging over time, 

we have

Rneck = 〈V(t)〉
〈I(t)〉 . (Equation 48)

When the injected current follows the model equation

I(t) = GV1(t) + C
dV1(t)

dt , (Equation 49)

where V1(t) is the voltage in the entrance of the neck, the intrinsic conductance and 

capacitance are G and C respectively. We thus obtain the following relation with 〈V(t)〉 = V1 

− V2,

Rneck = 1

G + C
d ln V1

dt (t)
1 −

V2(t)
V1(t) , (Equation 50)

where V2 is the voltage at the end of the neck. In particular, when C = 0,

Rneck = 1
G 1 −

V2(t)
V1(t) < 1

G . (Equation 51)

Transient current in a three dimensional spine—We generated a transient current 

with a timescale of 100 ms (Figures S7A and S7B) from the PNP equations in the geometry 

consisting of a cylindrical neck plus round head. The equations are given for positive and 

negative species by
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ΔV = −F
εε0

(cp − cm) (Equation 52)

∂cp
∂t = Dp∇ ∇cp + e

kBT cp∇V (Equation 53)

∂cm
∂t = Dm∇ ∇cm − e

kBT cm∇V , (Equation 54)

where Dp, Dm are diffusion coefficients, e the electronic charge, the valencies for each 

specie is z = ± 1 and kBT is the thermal energy. Note that the electro-neutrality is not 

necessarily satisfied. Equations 52, 53, and 54 are used to compute the voltage drop when 

the injected current Istim(t) at the tip of the spine is given by

Istim(t) =
Imax

τ t exp ( − t /τ + 1), (Equation 55)

where τ = 100ms is the decay time constant and Imax is the maximal current. During the 

simulations, the ionic concentrations are computed from the boundary conditions:

∂V
∂n = 0 on ∂Ωr ∪ ∂Ωi

∂cp
∂n =

∂cp
∂n = 0 on ∂Ωr

∂cp
∂n + e

kBT cp
∂V
∂n =

Istim(t)
πri

2FDp
on ∂Ωi

∂cm
∂n − e

kBT cm
∂V
∂n = 0 on ∂Ωi

V = 0 on ∂Ωo

cp = Cp on ∂Ωo

cm = Cm on ∂Ωo .

(Equation 56)
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We solve Equations 52, 53, 54, 55, and 56 numerically for Imax = 150 and 300pA using 

Comsol. Results are shown in Figure S7, where we find a concentration gradient at time to 

peak between the base and the tip of the neck of Δcp = Δcm = 22mM (resp. 45mM) when 

Imax = 150pA (resp. 300pA). We conclude that a transient current leads to a gradient of 

concentration inside a dendritic spine, showing that the assumption of a constant ionic 

concentration, which is at the basis of the cable equation, is not satisfied.

Three dimensional steady-state PNP-equations in a Ball and a dendritic spine 
shape—We present now the steady-state PNP equations, that describe the concentration of 

positive cp(x) and negative cm(x) charge concentrations and the voltage ϕ(x) inside a three 

dimensional bounded domain that we use in Figure 3. The equations are given by

Δϕ(x) = −F
εε0

(cp(x) − cm(x))

0 = Dp∇ ∇cp(x) + e
kBT cp∇ϕ(x)

0 = Dm∇ ∇cm(x) − e
kBT cm∇ϕ(x) .

(Equation 57)

The boundary is decomposed into three subdomains: the current is injected into ∂Ωi. Charges 

can exit in ∂Ωo and the impermeable membrane is represented by ∂Ωr. The boundary 

conditions are

∂ϕ
∂n (x) = 0 on ∂Ωr ∪ ∂Ωi

∂cp
∂n (x) =

∂cp
∂n (x) = 0 on ∂Ωr

∂cp
∂n (x) + e

kBT cp(x)∂ϕ
∂n (x) =

Istim

πri
2F Dp

on ∂Ωi

∂cm
∂n (x) − e

kBT cm(x)∂ϕ
∂n (x) = 0 on ∂Ωi

ϕ(x) = 0 on ∂Ωo

cp(x) = Cp on ∂Ωo

cm(x) = Cm on ∂Ωo .

(Equation 58)

In that model, only positive charges can enter the spine domain. We use the Comsol platform 

to solve numerically Equation 57, presented and discussed in Figure 3.
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Computing the neck resistance for long spines—We computed the spine neck 

resistance Rneck = 〈Vhead〉/Istim (Figure S7D) from the simulations of the PNP Equation 57 

with boundary conditions (58) with the new parameter values for the neck length L = 1μm 
(typical for culture hippocampal neurons) versus L = 2μm (slices). We find that the neck 

resistance is small for shorter spine (culture hippocampal neurons) compared to brain slices. 

Indeed, by doubling the neck length the neck resistance increases from 117MΩ to 203MΩ. 

However, the most sensitive parameter is the neck radius which remains unaccessible. 

Reducing the neck radius from 100 to 50nm in both cases of L = 1 (resp. L = 2μm) increases 

the neck resistance from 117MΩ to 339MΩ (resp. from 203MΩ to 518MΩ).

Limitation of the cable theory—To confirm the limitation of the cable theory in 

describing the potential change across the spine neck, we use the cable Equation 60 below 

for the potential V(x, t) at position x and time t along a one dimensional segment (Koch, 

2004). We impose a first condition for the voltage at the entrance of the spine neck from the 

head V(0, t) = Vhead(t), while the boundary condition at x = L assumes a zero electric field at 

the connection with the dendrite. We use for Vhead(t) the deconvolved voltage measured in 

the head.

The diffusion equation for voltage is

τ ∂V(x, t)
∂t = λ2∂2V(x, t)

∂x2 − V(x, t) (Equation 59)

V(0, t) = V1(t) (Equation 60)

∂V(x, t)
∂x x = L

= 0. (Equation 61)

where the two independent parameters λ = rm/ra and τ = rmcm (Koch, 2004, Chapter 2) are 

related to the membrane capacitance cm, the resistance rm and the intracellular resistance ra. 

By definition, rm = Rm/πd and cm = Cm·πd, where Rm is the specific membrane resistance 

and Cm the specific membrane capacitance and d is the diameter of the cable (Koch, 2004).

Voltage changes computed from the cable model (green dashed) when the input is the 

measured voltage in the head (blue) does not match the measured response in the dendrite 

(red). To obtain a response comparable to the output, the intracellular resistivity should be 

increased by a factor 3.105, showing the limitation of the cable equation to account for the 

voltage propagation in a dendritic spine (Figure S6).

We recall that the cable theory is an approximation derived the 1D Nernst-Planck equations 

(Koch, 2004, p. 261) that assumes there is no concentration fluctuations along the cable: 
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∂ci(x, t)/∂x = 0. However as pointed out in (Koch, 2004, p. 28), within a compartment with a 

small diameter (<1μm) the concentration should vary: ∂ci(x, t)/∂x≠0. We found using 

numerical simulations of PNP in the neck that the longitudinal concentration is not zero. 

Indeed, as shown in the main text Figure 4D and in Figure S7, we have ∂ci(x, t)/∂x≈50 

mMμm−1≠0.

Furthermore, the cable theory predicts a decay of the voltage characterized by a space 

constant

λ =
Rmd
4Ri

, (Equation 62)

where d is the diameter of the cable, Rm the membrane capacitance and Ri the intracellular 

resistivity. It characterizes the exponential decay of the voltage along an infinite cable such 

that V(x) = Vinite−|x|/λ (Koch, 2004, p. 32). Consequently, at a distance λ the initial voltage 

Vinit is decreased of e−1 (36.7%). For example, choosing Rm = 2·104 Ωcm2, Ri = 200 Ωcm 
we have λ = 1mn for a 4μm thick dendrite (Koch, 2004). A spine neck radius of 100nm or 

50nm gives λ = 220μm and 160μm respectively. However, the data of the voltage 

transduction in the spine neck (Figure S3) shows that more than 50% of the voltage 

amplitude is attenuated in a neck of length L = 1μm ≪ λ. The present analysis confirms that 

the cable theory cannot be used to predict the electrical behavior of a dendritic spine (Qian 

and Sejnowski, 1989; Koch, 2004).

Modeling the spine membrane capacitance—To account for the possible effect of 

the membrane capacitance in our model, we modified the boundary condition in the Poisson 

equation

∂V(x, t)
∂n = 0 on ∂Ωr (Equation 63)

to (Feynman et al., 2005, Chapter 6)

∂V(x, t)
∂n = εr

Vext − V(x, t)
d on ∂Ωr . (Equation 64)

where Vext is the extracellular voltage (assumed fixed at 65mV). The constants εr = 5 and d 
= 8nm are the membrane relative permitivity and thickness respectively (Ashrafuzzaman and 

Tuszynski, 2012, Chapter 2) (Figure S5A).

We simulate the voltage V near the membrane and in the bulk for a steady-current I = 50pA. 

We compare the two voltages obtained numerically for each condition (63) and (64 s). The 
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difference between the mean voltages was less than <1.5% (Figure S5B) and the axial (bulk) 

voltages by accounting or not for the capacitance, only differs from 0.015% (Figure S5C). 

We conclude that the neck capacitance can be neglected and the reflecting boundary 

condition ∂V/∂n = 0 that we imposed is a good enough approximation.

DATA AND SOFTWARE AVAILABILITY

The PNP equations were solved using the finite element method implemented in the 

software COMSOL Multiphysics. We used the default MUltifrontal Massively Parallel 

solver (MUMPS). We applied an adaptive mesh refinement to eliminate mesh dependency. 

Any time-derivative functions were approximated by a nth order backward differentiation 

formulas, n ∈ [|1, 3 |], where the maximal time-step is dt = 5·10−3s. The convergence of the 

method was ensured by setting an absolute tolerance at 0.001.

The optimization and filtering procedures were performed using the software MATLAB 

2015. The numerical codes are available on our platform http://www.bionewmetrics.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Deconvolution of fluorescence Arclight to recover voltage in dendritic spines

• The voltage distribution in spines modulated by geometry and electro-

diffusion

• A concentration gradient appears in the spine neck following a synaptic input

• Spine electrical resistance depends on the injected current, Ohm’s law not 

valid
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Figure 1. Voltage Drop across a Dendritic Spine Measured from Arclight
(A) A region of interest is selected around the soma to estimate the fluorescence during a 

synaptic stimulation.

(B) The deconvolution of the fluorescence signal (dashed green) in the soma uses the 

electrophysiological recording (continuous black) to obtain the deconvolved voltage 

(continuous green) (we refer also to Figures S1C–S1E for further details on the filtering 

procedure). Fluorescence and electrophysiology are both traces averaged over 6 spines 

(Figure S3 for 5 other examples).

(C) Regions of interest (ROIs) R1 and R2 representing the spine and the dendrite, 

respectively. The red dot shows the location where glutamate is uncaged.

(D and E) Deconvolution of the fluorescence signal (single trial) in the dendritic spine R1 

(D) and the dendrite R2 (E) using the kernel K(t) found in the soma deconvolution in (see 

B).

(F) Comparison of the filtered and deconvolved voltage signal in the spine head and parent 

dendrite.
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Figure 2. Extracting the Electrical Parameters of a Dendritic Spine from a Reduced Model and 
Voltage Dynamics
(A and B) Schematic representation of a dendritic spine, divided into three regions: the head 

R1, the neck of length L, and the close dendrite R2. The current I(t) represents the axial 

current escaping from the head to the dendrite.

(C) Reduced geometry of a dendritic spine neck of length L, approximated as a dielectric 

wire. The input is the measured voltage Vhead(t) of ROIs (Figure 1C) R1 at the head (x = 0) 

and we use voltage Vdend(t) (R2) in the parent dendrite (x = L) as an output for comparison 

with the numerical computation.

(D) Comparison of measured (trace averaged over 6 spines) (orange) and computed (blue) 

voltages. The parameters C and G are used in (1) to estimate the injected current.

(E) Measured membrane potential (blue) in the spine head is used to compute the ionic 

current (red) from (1), after the parameters (C, G) are extracted from the iterative method 

developed in the STAR Methods.
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Figure 3. Simulation of PNP Equations for Electro-diffusion in a Dendritic Spine
(A) Representation of a spine head where a current is injected in a 3D spherical cavity of 

radius rhead = 0.5μm.

(B) Voltage profile (blue) along the x axis obtained from three-dimensional simulations of 

the PNP equations that we compare to the potential averaged over the entire head (dashed 

green line) when the injected current is Istim = 150pA. The south pole is grounded at V = 

0V.

(C) Representation of a 3D spine geometry composed by a spherical head of radius rhead = 

0.5μm and a neck of length L = 1μm. The head has two narrow openings, one of radius 

10nm where the steady current Istim is injected (north) and a second one (south) of 100nm at 

the junction with the neck.

(D) Potential drop along the x axis computed from the top of the head to the bottom of the 

spine. We compare the voltage drop between a spine where L = 1μm and Istim = 300pA (red) 

with L = 0.5μm and Istim = 150pA (blue).

(E) Voltage isolines in a longitudinal cross-section of a spine-like geometry.

(F) Magnification near the north pole N where the current is injected.

(G) Voltage in the neighborhood of the north pole N, computed in 100 nm along the z axis.
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Figure 4. Electrical Properties of Dendritic Spines
(A) Averaged voltage computed in a spine head using PNP (see Figure 3B): for various head 

radius, the voltage is almost constant (〈V〉ball∈[1.52, 1.56]mV). The stars (blue) correspond 

to the radii of different spine heads based of their surface, determined from one photon 

image. The indexes refer to the different spines in Table 1. (B) Estimated spine neck 

resistance (blue stars) computed as the ratio of the voltage to the current averaged over the 

time responses Rneck = 〈V(0, t)〉/〈I(t)〉 for 5 different spines, revealing how the spine 

resistance depends on the neck length.

(C) PNP simulation showing the concentration of positive charges at the end of the neck for 

the injected current described in Figure 2E. The response peaks at t0 = 0.055s.

(D) Distribution of charges at the peak, computed from PNP, showing a large concentration 

difference of 33 mM (the total concentration 163 mM).

(E) Predicted I–V relation in a dendritic spine for different spine neck radius.

(F) The spine neck resistance is defined by the ratio Rneck = 〈V〉head/Istim. The neck length is 

L = 1μm and a radius rhead = 0.5μm. The different injected current Istim = 20; 50; 100; 

150pA. The averaged voltage in the head 〈V〉head is computed from system of PNP Equation 

57. The computed resistance Rneck is fitted to power laws a1/ro
2 (dashed green) and a2/ro

3/2

(dashed orange) and a3/ro (dashed blue) where a1 = 1.23·106 a2 = 1.57·105 and a3 = 1.22·104.
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Figure 5. Summary of Dendritic Spine Electrical Responses
(A) Schematic representation of a dendritic spine. Left: a current is injected in the head. 

Right: modeling the effect of the BPAP on the spine voltage. The inset is an electrical circuit 

representation of the spine electrical properties, composed by a diode (green) with a 

resistance Rneck in the direction spine to dendrite and by ideal diode in the opposite direction 

(orange).

(B) Electrical response of a spine (length and radius of the head are L = R = 1μm) and the 

radius of the neck r0 = 0.1μm, following a synaptic input (Istim = 100pA) and a BPAP, where 

the value depends on the voltage in the dendrite, but it is constant in the spine.

(C) Modulation of the voltage between the spine head and the dendrite: the voltage 

attenuation can be modeled as a diode to account for the saturation behavior (Figure 3F).

(D) Response to a BPAP showing no voltage change between the head and the dendrite, as 

predicted by the electro-diffusion model.
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Table 2

Biophysical and Geometrical Parameters

Parameter Description Value

z Valence of ions 1

D Diffusion coeffcient 200 μm2/s (Chen and Nicholson, 2000)

Dp Diff. coeff. for + charges D

Dm Diff. coeff. for − charges D

Cp + charge concentration 167 mol/m3 (Hille, 2001, Chapter 1)

Cm − charge concentration 167 mol/m3 (Hille, 2001, Chapter 1)

Ω Spine head Ω (volume |Ω| ≈1fL) (Yuste, 2010, Chapter 3)

ro Spine neck radius (typical) 0.1 μm (Takasaki et al., 2013)

L Spine neck length (typical) 1 μm

T Temperature 293.15K

E Energy kT = 2.58·10−2 eV

e Electron charge 1.6·10−19 C

ε Dielectric constant ε = 80

ε0 Abs. Dielectric constant 8.8·10−12 F/m

k Boltzmann constant 1.38·10−23 J/K

F Faraday constant 96, 485 As/mol
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