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Abstract

While mortality following ST-segment elevation myocardial infarction (STEMI) is on the decline, 

the number of patients developing heart failure due to prior myocardial infarction (MI) is on the 

rise. Apart from timely reperfusion by primary percutaneous coronary intervention (PPCI), there is 
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currently no established therapy for reducing MI size. As such new cardioprotective therapies are 

required to improve clinical outcomes following STEMI. Cardiovascular magnetic resonance 

(CMR) has emerged as an important imaging modality for assessing the efficacy of novel therapies 

for reducing MI size and preventing subsequent adverse left ventricular remodeling. The recent 

availability of multi-parametric mapping CMR has provided new insights into the pathophysiology 

underlying myocardial edema, microvascular obstruction, intramyocardial hemorrhage, and 

changes in the remote myocardial interstitial space following STEMI. In this article, we provide an 

overview of the recent advances in CMR imaging in reperfused STEMI patients, discuss the 

controversies surrounding its use, and explore future applications of CMR in this setting.
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Introduction

Improvements in the treatment of patients with acute ST-segment elevation myocardial 

infarction (STEMI) have led to a decline in mortality over the past 4 decades1, with 1-year 

cardiac mortality in STEMI patients plateauing at around 8%.2 However, morbidity due to 

post-myocardial infarction (MI) heart failure remains significant, and is on the rise.3 The 

process of reperfusion itself can paradoxically induce further myocardial injury and 

cardiomyocyte death, a phenomenon termed ‘myocardial reperfusion injury’.4 There is 

currently no effective therapy for reducing myocardial reperfusion injury, despite a wealth of 

research in this field. This has been partly attributed to undertaking clinical studies despite 

the lack of reproducible and robust preclinical data and the design of the clinical 

cardioprotection studies in terms of patient selection and inappropriate timing and mode of 

delivery of the cardioprotective agent.5 As such, the search continues for a novel and 

effective therapy for reducing MI size and preventing heart failure, which can be 

administered as an adjunct to PPCI following STEMI. Cardiovascular magnetic resonance 

(CMR) has emerged as an important imaging modality for assessing the cardioprotective 

efficacy of novel therapies for reducing MI size and prevent adverse left ventricle (LV) 

remodeling in reperfused STEMI patients.6, 7 It is currently the gold standard imaging 

modality for quantifying MI size,8 and is able to detect small subendocardial MI (as little as 

1 gram)9 with good accuracy.10

With the recent availability of native T1, T2, T2* and post-contrast T1-mapping (to derive 

extracellular volume fraction [ECV] mapping)11, more in-depth insights can be obtained 

into the pathophysiological processes such as the evolution of myocardial edema in the first 

week post-STEMI12, 13, the chronic manifestation of intramyocardial hemorrhage, and its 

prognostic significance over microvascular obstruction14, 15 and changes in the remote 

myocardial interstitial space in those developing adverse LV remodeling16, 17 following 

STEMI. In this article, we provide an overview of some of the recent advances in CMR 
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imaging in reperfused STEMI patients, discuss the recent controversies surrounding its use, 

and explore future applications of CMR in this setting.

Basic concepts

In this section, we provide a brief description of some of the basic concepts concerning the 

use of CMR in STEMI. Table 1 provides an explanation of the more technical terms used 

throughout this article. Figure 1a also provides an illustration of the various components of 

the myocardium that can be interrogated by CMR.

Myocardial Infarct Size

MI size refers to the infarcted myocardium and is conventionally quantified by late 

gadolinium enhancement (Table 1 and Figure 1b).37 The gadolinium chelate cannot cross the 

intact cell membranes.37 Following acute myocardial necrosis, the cell membranes are 

ruptured allowing the contrast agent to enter these cells. In the chronic setting, there is also 

expansion of the extracellular space due to the collagen deposits and the relatively low 

residual amount of intact cardiomyocytes in the region of the infarct. Therefore, following 

gadolinium chelate administration, the contrast redistributes itself from the vascular 

compartment to the interstitial space and at pseudo-equilibrium a higher concentration of 

contrast is distributed in areas of acute or chronic MI than in normal myocardium. 18 (Table 

1).

Microvascular Obstruction and Intramyocardial Hemorrhage

Microvascular obstruction refers to the inability to reperfuse the coronary microcirculation 

in a previously ischemic region, despite opening the epicardial vessel.38 Microvascular 

obstruction can be identified as a dark hypo-intense core within the areas of hyper-

enhancement on either early gadolinium enhancement (referred to as early microvascular 

obstruction) or conventional late gadolinium enhancement sequences (referred to as late 

microvascular obstruction) - defined in Table 1 and illustrated in Figure 1b.

If the coronary microvasculature injury following STEMI is especially severe, and the 

integrity of the vessels are damaged, the extravasation of red blood cells into the 

myocardium can occur - termed intramyocardial hemorrhage.14 The breakdown products of 

hemoglobin within the myocardium can be detected as a hypo-intense core39 within the MI 

zone on T2*-imaging or T2*-mapping (Figures 1 and 2). Of the two approaches, T2*-

mapping has been shown to have greater sensitivity for detecting intramyocardial 

hemorrhage following STEMI when compared to T2-mapping (Table 1).4041

A small study previously showed that the hypointense core on the T1 or T2 maps could 

provide an alternative method to detect intramyocardial hemorrhage in cases where T2* is 

not available or not interpretable (Figures 1 and 2)39 and further studies are needed to 

confirm these findings.
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Area-at-risk

The area-at-risk refers to the territory supplied by the infarct-related artery that would have 

infarcted following STEMI, if reperfusion had not taken place to salvage viable 

myocardium. The area-at-risk includes both the reversibility injured myocardium (also 

referred to as the salvaged myocardium) and the infarcted myocardium. Figure 3 shows an 

example of the edema-based area-at-risk by T1 and T2-mapping and the corresponding MI 

size on late gadolinium enhancement in a patient presenting with an acute inferior STEMI 

treated by PPCI.

A number of CMR approaches to delineating the area-at-risk following STEMI have been 

described (see Table 1). However, they all have their limitations,42 and although each 

technique has been validated against histology in the preclinical setting24, 27, 30, 31, 33, there 

is currently no consensus on which CMR method should be used to quantify the area-at-risk 

in the clinical setting. So far, no studies have compared these techniques, head-to-head, in 

the same patient cohort. Once the area-at-risk and MI size are known, the myocardial 

salvage index can be calculated as described in Table 1.

The myocardial salvage index is considered a more sensitive measure for assessing the 

efficacy of novel cardioprotective therapies, when compared to MI size alone35, as it 

normalizes the MI size reduction to the area-at-risk, the latter of which varies from patients 

to patient. As such, the myocardial salvage index may help to reduce sample size for clinical 

cardioprotection studies in comparison to using MI size alone.36

Recent advances in the role of CMR in reperfused STEMI patients

In this section, first of all, we will summarize the advances in the use of T1 mapping to 

assess MI size. We will then elaborate how CMR has improved our understanding of the 

relationship between microvascular obstruction and intramyocardial hemorrhage; and the 

role of MI size, intramyocardial hemorrhage, residual myocardial iron and the remote 

myocardium in the development of adverse LV remodeling. Finally, we will explore the 

prognostic significance of these CMR-derived indices in the reperfused STEMI patients.

T1-mapping for the quantification of MI size

Post-contrast T1-mapping has recently emerged as a promising technique for the 

quantification of MI size, as an alternative to conventional late gadolinium enhancement 

imaging. Bulluck and colleagues43 recently showed that post-contrast T1-mapping can 

accurately quantify acute MI size in a small group of STEMI patients, obviating the need to 

perform late gadolinium enhancement imaging. Recent studies have also investigated 

whether native T1-mapping (pre-contrast) can assess MI size. Kali and colleagues44 showed 

that chronic MI (median of 13.6 years post-MI) could be detected using native T1-mapping 

at 3T in a small cohort of 25 patients. Liu and colleaguesl45 showed that native T1-mapping 

at 3T could also identify acute MI size. However, only 58 short-axis T1 maps without 

microvascular obstruction were analyzed in that study.45 These findings are of great interest 

as one could potentially perform a comprehensive CMR study in STEMI without the need of 
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contrast agent and this approach would also significantly shorten the scan time and make 

CMR available to a wider range of patients.

Whether ECV on an acute CMR scan can estimate final MI size following STEMI has 

recently been investigated. Garg and colleagues46 showed that an ECV value of 0.46 or 

above could predict chronic MI size from the acute ECV maps. However, Bland-Altman 

analysis showed a bias of 1.9% and wide limits of agreement of ±10.5% and further studies 

are therefore needed to build on these findings.47 However, as it stands, ECV-mapping may 

complement late gadolinium enhancement imaging to assess MI size and predict wall 

motion recovery at follow-up, as recently shown by 2 small studies.16, 48

Despite the promises of T1-mapping in STEMI for measuring MI size, the published studies 

have been small, and from single-centers. Larger studies are therefore required to confirm 

these findings, using different field strengths, mapping sequences, and vendors, before they 

can be more widely adopted.

Relationship between microvascular obstruction and intramyocardial hemorrhage

Serial CMR imaging of STEMI patients in the first few days following PPCI has provided 

evidence that the incidence and extent of microvascular obstruction and intramyocardial 

hemorrhage vary with time. The extent of late microvascular obstruction has been reported 

to peak at 4–12 hours, to remain stable the first 2 days and to reduce in size by day 10 

following STEMI.14 Furthermore, in those patients with microvascular obstruction 

persisting at one week, Orn and colleagues49 showed that they were more likely to develop 

adverse LV remodeling compared to those with microvascular obstruction at day 2 only. On 

the other hand, the detection of intramyocardial hemorrhage has been shown to peak at day 

3, and to reduce in incidence by day 10 following PPCI.12

Hamirani and colleagues40 showed that intramyocardial hemorrhage (detected by either T2-

weighted imaging or T2* imaging) was more strongly associated with late microvascular 

obstruction (R=0.89 to 0.93) than with early microvascular obstruction (R=0.30). Using the 

more robust method of T2*-mapping for the detection of intramyocardial hemorrhage, 

Carrick and colleagues14 in 286 patients showed that all patients with intramyocardial 

hemorrhage also had late microvascular obstruction.

Based on these recent studies14, 40, 50, 51, it appears that early microvascular obstruction 

occurs in around 60–65%; late microvascular obstruction in around 50–55%; and 

intramyocardial hemorrhage in around 35–40% of reperfused STEMI patients. However, the 

detection of microvascular obstruction and intramyocardial hemorrhage is dependent on the 

CMR techniques, the timing of imaging, and the definitions used.

Acute MI size and subsequent adverse LV remodeling

Conventional theory assumes that the larger the MI size, the higher the LV wall stress, and 

the LV therefore dilates to maintain the stroke volume as a compensatory mechanism (via 

the Frank-Starling principle). However, LV dilation, as described by the Laplace 

relationship, leads to further wall stress and begets more LV dilation, in the absence of 

compensatory LV hypertrophy. Westman and colleagues52 have recently proposed that there 
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is an imperfect association between MI size and adverse LV remodeling. They showed in 

122 STEMI patients, that 15% of those with MI size <18.5% developed adverse LV 

remodeling, and 40% of those with MI size ≥18.5% developed adverse LV remodeling. 

However, Westman and colleagues52 used a definition of >10ml/m2 increase in indexed LV 

end-diastolic volume in their study. A more appropriate definition for adverse LV 

remodeling post-STEMI by CMR may be a cut-off value of 12% change in LV end-diastolic 

volume.53 This study also showed an imperfect association between acute MI size and 

adverse LV remodeling, and between the presence of microvascular obstruction and adverse 

LV remodeling.53 Some patients with large MI size and microvascular obstruction developed 

reverse LV remodeling and whereas other patients with small MI size and no microvascular 

obstruction also developed adverse LV remodeling.53 As eluded to by Westman and 

colleagues52, the development of adverse LV remodeling is complex and multi-factorial and 

an excessive inflammatory response together with MI size may play an important role 

following STEMI.

Residual myocardial iron and adverse LV remodeling

There are emerging data that intramyocardial hemorrhage at the time of PPCI leads to 

residual myocardial iron during the convalescent phase, and it may be a source of prolonged 

inflammation and impact on adverse LV remodeling.54 Kali and colleagues54 showed in a 

small cohort of 15 STEMI patients and in 20 canines (with histological validation) that 

intramyocardial hemorrhage resulted in residual myocardial iron within the MI zone, and 

this provided a source of prolonged inflammatory burden in the chronic phase. These 

findings were recently confirmed in a canine model of MI, and the extent of residual iron 

was strongly correlated with markers of inflammation and adverse LV remodeling.55 Roghi 

and colleagues56 found higher levels of non-transferrin bound iron in 7 out of 15 STEMI 

patients with microvascular obstruction and postulated that intramyocardial hemorrhage 

could be a source of cardiotoxicity in these patients.

In a small cohort of STEMI patients, Bulluck and colleagues15 recently found that 

intramyocardial hemorrhage and subsequent residual myocardial iron at follow-up were 

associated with persistently elevated T2 values in the surrounding infarct tissue and with 

adverse LV remodeling.15 Carberry and colleagues57 have recently confirmed these findings 

in a cohort of 203 STEMI patients. They showed that 36% of their cohort had 

intramyocardial hemorrhage by T2*-mapping and 59% of those had residual myocardial 

iron at 6 months. Residual myocardial iron was associated with adverse LV remodeling at 6 

months and worse clinical outcomes after a median follow-up of 4 years.57 Figure 4a shows 

an example of a patient with an acute inferior STEMI treated by PPCI, and with late 

microvascular obstruction and intramyocardial hemorrhage despite restoring normal flow in 

the epicardial coronary artery during PPCI. At follow-up, there was residual myocardial iron 

and persistently elevated T2 values in the areas surrounding the residual iron, which may 

represent persistent myocardial inflammation.

The role of the remote myocardium and clinical outcomes

Whether changes in the extracellular matrix in the remote myocardium (Table 1) in STEMI 

patients treated by PPCI are associated with adverse LV remodeling, has been a topic of on-
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going research.16, 17, 58–60 Using automated ECV maps, Bulluck and colleagues16 have 

showed in a small cohort of 40 STEMI patients that ECV in the remote myocardium was 

acutely elevated, and this elevation in ECV persisted in those who developed adverse LV 

remodeling at 5 months, suggesting that remote compensatory changes in the extracellular 

matrix occurred in this subset of patients. The increase in acute ECV could have been due to 

an increase in the intravascular compartment as a compensatory mechanism. At follow-up, 

the increase in ECV likely represented diffused interstitial fibrosis, as part of the remodeling 

process. Garg and colleagues60 recently confirmed these findings in a cohort of 50 STEMI 

patients. Furthermore, they also showed that remote segments with ECV expansion were 

associated with impaired wall thickening. In a larger cohort of patients (n=131), Carberry 

and colleagues17 showed that the change in ECV of the remote myocardium was a 

multivariable associate of the change in LV end-diastolic volume at 6 months. Whether this 

change in ECV could independently predict those at risk of adverse events remains to be 

tested in future, adequately powered studies. Figure 4b shows an example of the paired acute 

and follow-up (6 months) late gadolinium enhancement and automated ECV maps with 

representative regions of interest of the remote myocardium of a patient with an anterior 

STEMI treated by PPCI.

Carrick and colleagues59 demonstrated that higher native T1 of the remote myocardium of 

267 reperfused STEMI patients on the acute CMR scan was associated with changes in LV 

end-diastolic volume from baseline to 6 months, and it was independently associated with 

adverse cardiac events after a median follow-up of 845 days. Most recently, in a similar 

number of patients, Reinstadler and colleagues58 also showed that the remote native 

myocardial T1 was independently associated with adverse events, after adjusting for clinical 

risk factors and other CMR variables after a follow-up of 6 months.

Therefore, T1 mapping has the potential to completement clinical and other CMR-derived 

parameters to improve the risk-stratification of STEMI patients and warrants further 

investigation in a multi-center setting.

Acute MI size and clinical outcomes

Morbidity and mortality post-STEMI is closely related to acute MI size. A recent meta-

analysis of 2,632 patients showed that MI size measured by CMR or SPECT within a month 

post-PPCI from 10 randomized controlled trials (RCTs) was strongly associated with 1-year 

hospitalization for heart failure and all-cause mortality.61 For every 5% increase in MI size, 

there was a 20% increase in the relative hazard ratio for 1-year hospitalization for heart 

failure and all-cause mortality. The event rate was 1.2% in those with MI size ≤ 8% of the 

LV and there was a stepwise increase to 2.5% in those with MI size >8% – ≤ 17.9% of the 

LV; 5.6% in those with MI size >17.9% – 29.8% of the LV; and 8.8% in those with MI size 

>29.8% of the LV. This study adds to the growing body of evidence that acute MI size is 

prognostic, and therefore remains a valid surrogate endpoint for clinical trials. However, this 

study also highlights the fact that one of the limitations of using CMR in RCTs is that there 

is an element of selection bias as only those patients fit enough to tolerate a CMR study 

would enter these RCTs and the overall event rates were 2.2% and 2.6% for of all-cause 
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mortality and hospitalization for heart failure at 1 year, respectively, much lower than those 

reported from clinical registries. 2, 3

Microvascular obstruction and intramyocardial hemorrhage and clinical outcomes

Both microvascular obstruction and intramyocardial hemorrhage are associated with larger 

MI size, adverse LV remodeling, and worse clinical outcomes.40, 50 In a meta-analysis of 

more than 1000 patients, Van Kranenburg and colleagues50 showed that the presence of 

microvascular obstruction was an independent predictor of major adverse clinical outcome at 

2 years in STEMI patients, whereas MI size was not independently associated with adverse 

events. There was a graded reduction in event-free survival in patients with MI size <25% of 

the LV, with and without microvascular obstruction, and those with MI size >25% of the LV, 

with and without microvascular obstruction. The prognostic value of microvascular 

obstruction over MI size for mortality and hospitalization for heart failure was recently 

confirmed by de Waha and colleagues51 in a pooled analysis of patient-level data from 7 

randomized controlled trials (n=1688) at 1 year and by Symons and colleagues62 in a 

longitudinal study of 810 patients following a median follow-up of 5.5 years.

Early studies showed that intramyocardial hemorrhage, detected by T2-weighted images, 

was closely related to the development of adverse LV remodeling and worse clinical 

outcomes.40 Most recently, using T2*-mapping, Carrick and colleagues14 showed that 

intramyocardial hemorrhage was more closely associated with adverse clinical outcomes 

than microvascular obstruction.

Therefore, based on the current evidence discussed so far, the prognosis worsens with larger 

MI size. Patients with larger MI size are also more likely to have microvascular obstruction 

and intramyocardial hemorrhage. The prognosis is worse for STEMI patients with 

microvascular obstruction when compared to those without microvascular obstruction63 and 

is worst for those with microvascular obstruction and intramyocardial hemorrhage.14

Currently, there are no effective methods to detect those at risk of microvascular obstruction 

and intramyocardial hemorrhage at the time of PPCI. Amier and colleagues64 recently 

showed that anterior STEMI and use glycoprotein IIb/IIIa inhibitors were associated with 

the development of intramyocardial hemorrhage. However, this was a retrospective post-hoc 

analysis and intramyocardial hemorrhage was identified using T2-weighted imaging instead 

of the more robust T2*-weighted imaging and their findings need to be confirmed in future 

studies. Furthermore, there are no established therapies to prevent or minimize the burden of 

microvascular obstruction and intramyocardial hemorrhage in the clinical setting4, although 

promising results are emerging in the preclinical setting.65

Current controversies in CMR imaging of STEMI patients

Is myocardial edema confined to the infarct zone or does it extend into the salvaged 
myocardium?

In the 1980s, Higgins and colleagues66 were the first to study myocardial T2 CMR in a 

canine model of MI. Interestingly, both T2 and T1 were shown to change similarly in the 

setting of an acute MI. The observed changes were theoretically consistent with myocardial 

Bulluck et al. Page 8

Circulation. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



edema, and correlated with the measurements of myocardial water content estimated by wet-

weight to dry-weight ratios. The changes in myocardial T2 have been attributed to a 

combination of an increase in absolute tissue water, movement of water from the 

extracellular to the intracellular compartment, and the conversion of protein-bound water to 

free water.67

Not all experimental and clinical studies have supported the concept that the region of hyper-

intensity on T2-weighted images delineates the area-at-risk. Aletras and colleagues24 and 

Tilak and colleagues68 validated the edema-based area-at-risk using T2-weighted images 

against microsphere in reperfused and non-reperfused canine MI. Ubach and colleagues69 

showed that the area-at-risk derived from T2-weighted imaging matched that obtained from 

single-photon emission computed tomography, both in animals with and without late 

gadolinium enhancement.

In contrast, Kim and colleagues70 reported that T2-weighted imaging did not depict the area-

at-risk in anesthetized dogs that were subjected to different durations of coronary occlusion. 

MI size by late gadolinium enhancement was compared to the gold standard method of 

triphenyl tetrazolium chloride staining, and area-at-risk by T2-weighted imaging was 

compared to the gold-standard method of fluorescent microspheres, 4 days after reperfusion. 

The T2-weighted hyper-intensity correlated and matched in shape better with the MI size 

than with the area-at-risk, and these findings were confirmed in a small group of acute MI 

patients. Although the findings from the canine model of MI may be due to the presence of 

well-developed collaterals in that species, the T2-weighted sequence in that study was 

different to what has been used so far by other studies.24, 68 In the clinical setting, using 

hybrid positron emission tomography/CMR imaging in reperfused STEMI patients, Bulluck 

and colleagues71 recently showed that the area of reduced 18F-fluorodeoxyglucose uptake 

was significantly larger than the MI size and closely matched the area-at-risk delineated by 

T2-mapping on the acute scan, supporting the notion that T2-mapping does delineate both 

the reversibly and the irreversibly injured myocardium within the area-at-risk71. In addition, 

the areas of reduced 18F-fluorodeoxyglucose uptake within the salvaged myocardium within 

the area-at-risk were no longer present on a follow-up scan several months later.71 Hammer-

Hansen and colleagues72 have provided further insights on this topic, using a canine model 

of MI. They showed that T2 values were elevated both in the MI zone and salvaged 

myocardium, and they were both significantly higher than the T2 values in the remote 

myocardium.

Therefore, the majority of the current literature supports the notion that edema, assessed by 

CMR using T2-mapping, occurs both in the irreversibly and reversibly injured myocardium 

during the first week of a reperfused STEMI in the clinical setting.26, 28, 71, 73

Dynamic changes in the edema-based area-at-risk during the first week in reperfused 
STEMI patients

It was initially believed that the extent of myocardial edema was stable in the first week in 

STEMI patients73, 74, although both these studies only performed T2-weighted imaging on 

days 1 and 7. Emerging evidence suggests that the extent of myocardial edema is dynamic. 

Hammer-Hansen and colleagues72 have shown in a canine model of reperfused MI, that at 2 
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hours, T2 values were higher in both the infarcted and salvaged myocardium when 

compared to those who had the scan at 48 hours, highlighting that the extent of myocardial 

edema within the first few days of an MI is dynamic.

Fernandez-Jimenez and colleagues75 studied the interplay between myocardial water content 

(using desiccation) and T2 relaxation times in a porcine model of reperfused MI. They 

reported a ‘bimodal’ pattern of edema, appearing at 2 hours, resolving by 24 hours and then 

reappearing on day 4 and peaking at day 7. The first wave of edema was attributed to 

myocardial reperfusion injury, and the second wave of edema was attributed to inflammation 

during the tissue-healing phase.76 However, they did not take into account the presence of 

microvascular obstruction and intramyocardial hemorrhage, which may have interfered with 

their T2 measurements, and they had a small sample size of 5 pigs at each time point. 

Furthermore, the same animals were not serially scanned. Most recently, Fernandez-Jimenez 

and colleagues13 showed that the bimodal edematous response of the infarct related territory 

was present in humans as well. However, they used the less robust T2-weighted imaging 

modality instead for both quantifying the extent of the edema-based area-at-risk and for 

detecting intramyocardial hemorrhage. It was not clear how many of their 14 patients had 

intramyocardial hemorrhage in that cohort. Furthermore, on a patient-level basis (their 

supplementary material figures 3 and 4), not all patients displayed a bimodal response for of 

the intensity and extent of edema in the infarct-related territory.

It was initially believed that edema is stable in the first week of an MI.73, 74 However, both 

these studies only performed T2-weighted imaging on days 1 and 7 and the peak in the 

edema-based area-at-risk shown by Carrick and colleagues12 on day 3 was therefore not 

identified by the previous 2 studies.73

In contrast to these studies, in a cohort of 30 patients with serial imaging, Carrick and 

colleagues12 found that the extent of myocardial edema was maximal at day 3, and 

decreased by day 10 following PPCI, suggesting a unimodal peak in myocardial edema in 

the first few days following reperfusion. Interestingly, in STEMI patients with 

intramyocardial hemorrhage, they did observe a bimodal pattern in T2 and T2* values 

within the MI core, whereas in patients without intramyocardial hemorrhage, only a 

unimodal pattern in T2 and T2* values was observed, suggesting that the presence of 

intramyocardial hemorrhage may have been responsible for the apparent bimodal edema 

pattern in T2 and T2* values.

Nordlund and colleagues32 recently provided some evidence that there was no bimodal 

pattern of edema in the clinical setting. They combined data from 3 studies involving 215 

patients and showed there were no difference in size, quality of the T2-weighted images and 

the ability to detect the culprit territory when patients having a CMR study on Day 1 to Day 

6 onwards were compared.,

Given the dynamic changes in the extent of edema and acute MI size over the first few days 

following STEMI, it is important that future clinical cardioprotection studies define the 

time-window for performing the acute CMR scan in order to optimize the quantification of 

both acute MI size and AAR. There is currently no consensus on the optimal timing for 
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performing the acute CMR scan although 3–5 days6 and 4–7 days13 post-PPCI have been 

proposed.

Cardioprotective therapies and the edema-based area-at-risk in reperfused STEMI patients

The utility of T2-weighted imaging for quantifying the area-at-risk has been put into 

question because certain cardioprotective therapies have been shown to reduce not only MI 

size, but the extent of myocardial edema measured by T2-weighted and T2-mapping 

imaging. Ischemic postconditioning77 and remote ischemic conditioning using transient arm 

or leg ischemia and reperfusion) 78 have been shown to reduce both MI size and the extent 

of edema delineated by T2-mapping and T2-weighted imaging, leading to an 

underestimation of the area-at-risk by these techniques. However, these were small studies 

of reperfused STEMI patients and they were not adequately powered to assess that endpoint. 

Intuitively, the fact that a cardioprotective therapy can reduce MI size, it should be expected 

to also limit the extent of myocardial edema, which itself is the result of myocardial 

ischemia and reperfusion injury.

However, in a recently published large study of 696 STEMI patients by Eitel and 

colleagues79, ischemic postconditioning or a combination of remote ischemic conditioning 

and ischemic postconditioning did not reduce the extent of myocardial edema when 

compared to the control arm. Furthermore, drugs such as metoprolol80 and exenatide81 that 

were effective at increasing the myocardial salvage index did not reduce the extent of 

myocardial edema. One potential explanation for this discrepancy could be that those 

therapies that are potent enough to reduce MI size in reperfused STEMI patients, are capable 

to reduce the extent of myocardial edema. In contrast, those therapies that are less potent and 

do not reduce MI size, and only increase myocardial salvage, do not affect the extent of 

myocardial edema. Either way, these findings may question the use of edema-based area-at-

risk measured by CMR to assess myocardial salvage in clinical cardioprotection studies.

The optimal timing of late gadolinium enhancement imaging for acute and chronic MI size 
quantification

Acute MI size has been shown to be dynamic and to decrease significantly in size between 

Day 1 and Day 7 post-STEMI.82 In a recent study by Carrick and colleagues12, MI size was 

shown to be similar between days 1 and 3, and reduced in size by day 10. Jablonowski and 

colleagues83 recently provided some mechanistic insights into this phenomenon in a porcine 

model of acute MI. At day 1, they found higher ECV values in the peri-infarct zone that 

could be due to severe edema or a mixture of infarcted and salvaged myocardium in that area 

that contributed to the overestimation of MI size. By 7 days, the ECV values in the peri-

infarct zone decreased to the same level as the rest of the salvaged myocardium, such that 

MI size assessed by late gadolinium enhancement matched that by histology.

Acquiring late gadolinium enhancement too early (<8 minutes post–contrast administration) 

can result in an overestimation of MI size84, and acquiring late gadolinium enhancement at 

25 minutes for acute MI size has been shown to be a better predictor of LV recovery.85 

However waiting 25 minutes post-contrast administration may be difficult to apply in the 
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clinical setting due to time constraints, and would affect workflow. As such, late gadolinium 

enhancement images are currently acquired 10–15 minutes post-contrast6 as a compromise.

Several studies have already shown a significant regression in MI size (by 30–35%) 

occurring between the acute CMR scan and the chronic phase.49, 86, 87 There are several 

factors responsible for this observation. First of all, the composition of the different tissues 

being identified by late gadolinium enhancement in the acute (myocardial necrosis 

compounded with edema, intramyocardial hemorrhage and microvascular obstruction) and 

chronic phase (focal replacement fibrosis) is different. The regression of MI size between 

the acute, sub-acute and chronic phases therefore represents the gradual resolution of edema, 

intramyocardial hemorrhage and microvascular obstruction and the gradual replacement of 

the necrotic cardiomyocytes with focal scars.73, 87

As it stands, the optimal timing of CMR for MI size is not well established but late 

gadolinium enhancement appears to stabilize by 10 days post the index event.12 In most 

centers, STEMI patients with an uncomplicated inpatient stay are discharged within the first 

week. Logistically, this would mean that patients would have to come back for the CMR 

scan and this may lead to a proportion of patients dropping out.6 Efforts are underway to 

attempt to standardize the acquisition of CMR for clinical cardioprotection studies.6

Future directions

The need to standardize the use of CMR in reperfused STEMI patients

Both acute and chronic MI sizes by CMR have been shown to be stronger predictors of 

clinical outcomes when compared to LV ejection fraction or LV volumes.88, 89 Therefore, 

due to the robustness and high reproducibility of CMR to quantify MI size10, 379088, 89, both 

acute and chronic MI size are increasingly being used as surrogate endpoints for randomized 

control trials assessing the effectiveness of new cardioprotective therapies, and can reduce 

the sample size required.6 However, acute MI size is influenced by a number of factors 

including the timing of the CMR scan, the dose of contrast used, the time elapsed following 

contrast administration and acquisition of late gadolinium enhancement imaging and the 

method used for the quantification of MI size.6, 91 Therefore, there is an urgent need for the 

CMR community to come up with a consensus position to standardize the acquisition of late 

gadolinium enhancement imaging and the quantification of MI size in future studies.6 This 

would no doubt help to strengthen the robustness of this technique and would also facilitate 

prospective or retrospective collaborative research with merging of CMR data from different 

centers around the world.

Towards improving the tolerability and accessibility of CMR in reperfused STEMI patients

There have already been some advances in free-breathing and motion corrected T292 and 

T2*-mapping93 and late gadolinium enhancement imaging94 negating the need for breath-

holding and helping to accelerate the acquisition of these sequences. Other developments in 

real-time cine imaging for LV ejection fraction and future refinements in CMR 

fingerprinting techniques (for robust and fast acquisition of simultaneous T1 and T2-

mapping data per slice within one breath-hold) will further reduce scan time, and will be 
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highly desirable in the acute STEMI setting. These developments would make CMR, which 

is currently confined to those fit enough to lie inside the scanner for at least 30–45 minutes, 

accessible to a wider number of patients. Furthermore, reducing the duration of the scan to 

20–30 minutes could also potentially reduce the cost of a scan, and improve the participation 

of more centers in STEMI-related CMR research. However, most of these new developments 

are still in the validation phase and are not available to all CMR vendors and platforms.

The use of gadolinium chelates is not recommended in those with a glomerular filtration rate 

< 30 mL/min/1.73m2, to minimize the risk of nephrogenic systemic fibrosis, and constitutes 

a contraindication in CMR-based clinical cardioprotection studies. Furthermore, the Food 

and Drug Administration (FDA) has recently issued a new warning regarding gadolinium 

remaining in patients’ brainstem, for months to years after receiving these drugs. However, 

gadolinium retention has not been directly linked to adverse events in patients with normal 

renal function and the current benefits of using gadolinium chelates outweigh any potential 

risks. Therefore, the potential for non-contrast CMR imaging such as T1 mapping20 and T2* 

mapping14 to provide adequate prognostic information over post-contrast imaging 

modalities and that could be applied to all patients, irrespective of renal function, warrants 

further investigation.

CMR as a tool to risk-stratify and guide management in STEMI patients at risk of 
developing adverse LV remodeling and subsequent heart failure

A number of cardioprotective therapies have had promising results in the experimental 

setting for reducing MI size and preventing adverse LV remodeling, but have failed to be 

translated into the clinical setting.95 A more targeted approach using CMR to identify those 

most at risk (e.g. according to their acute MI size or according to the presence or absence of 

microvascular obstruction) may improve the translation of those promising experimental 

results in the clinical setting, to prevent adverse LV remodeling and reduce the onset of heart 

failure in these patients. Stiermaier and colleagues96 and Pontone and colleagues97 most 

recently proposed CMR risk scores to identify those at high risk of adverse events. Their 

approach would be ideal to identify high-risk patients but the CMR indices and cut-off 

values included in each study differed and further validation work is required to build on 

their findings. Furthermore, CMR could identify those with intramyocardial hemorrhage, 

and they could be targeted with anti-inflammatory agents or chelation therapy15, 98, to 

minimize the cardiotoxic effects of the residual iron (which has been shown to occur in two-

third of patients with intramyocardial hemorrhage from a pooled analysis of 4 studies)57 

during the convalescent phase of an acute STEMI and this warrants further investigation.

CMR as a tool for risk-stratification of STEMI patients at risk of arrhythmic events

The current guidelines recommend an implantable cardioverter defibrillator (ICD) for 

primary prevention in those with symptomatic heart failure and LVEF<35% 40 days 

following the index event.99 However, mortality within the first 30 days post-MI has been 

shown to be the highest 100 but is predominantly believed to be due to MI or myocardial 

rupture.101 Despite that, a quarter of those deaths are still due to ventricular arrhythmias 101 

and currently there is no established tool to risk stratify these patients in the acute phase of 

an MI. Acute MI size (cut-off of 23.5g/m2 or 31% of the LV) in combination with LVEF 
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(cut-off of 36%) by CMR within the first week on an MI has been shown to predict adverse 

arrhythmic cardiac events at 2 years.102 Other studies have shown that CMR in the chronic 

phase could also be used to predict sudden cardiac death using the peri-infarct zone extent 
103 or chronic MI size 104 in combination with LVEF. Furthermore, residual myocardial iron 

as a consequence of intramyocardial hemorrhage has also been shown to be pro-arrhythmic.
105 Although all these were relatively small and single-center studies, CMR has shown 

promise to improve the risk-stratification of STEMI patients at risk of ventricular 

arrhythmias. With the availability of inline, automated ECV-mapping106 and free-breathing 

T2*-mapping93, characterization of the infarct size and peri-infarct zone and infarct core 

may become more objective and CMR would play an invaluable role to identify those most 

likely to benefit from a primary prevention ICD in a near future.

Conclusion

Over the last few years, CMR scans performed in the acute phase of reperfused STEMI have 

improved our understanding of the changes occurring in the infarcted, salvaged, and remote 

myocardium, and have provided insights into the impact of MI size, microvascular 

obstruction and intramyocardial hemorrhage on clinical outcomes. There are ongoing 

controversies surrounding the use of CMR to delineate the area-at-risk, and the dynamic 

changes in myocardial edema in the first few days following PPCI. However, more work is 

ongoing and CMR holds promise to become accessible to more patients, and to be used as a 

tool to risk-stratify patients, guide treatment, and improve clinical outcomes post-PPCI in 

the near future.
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Figure 1. (a) Schematic representation of the different components of the myocardium in a 
patient with reperfused STEMI and; (b) methods for delineating the area-at-risk, MI size, 
microvascular obstruction and intramyocardial hemorrhage by CMR
Figure 1a illustrates the various components of the myocardium in a reperfused STEMI 

patient that can be assessed by CMR, namely the area-at-risk, salvaged myocardium, the 

area of hyperenhancement and the hypointense core on late gadolinium enhancement images 

and the remote myocardium. The MI size includes both the areas of hyperenhancement and 

the hypointense core on late gadolinium enhancement images. The hypointense core on late 

gadolinium enhancement represents microvascular obstruction and a proportion of patients 

would also have intramyocardial hemorrhage within these areas (areas of low T2* on T2*-

weighted images or mapping). The area-at-risk is a combination of both the MI size and the 

salvaged myocardium.

Figure 1b illustrates the CMR-based methods and their timing during CMR acquisition for 

delineating the area-at-risk, MI size, microvascular obstruction (early and late) and 

intramyocardial hemorrhage. The most robust method for demarcating the area-at-risk 

currently is T1 and T2-mapping. Late gadolinium enhancement is the gold standard for 

detecting MI size and late microvascular obstruction. T2*-mapping is currently the gold 

standard to detect intramyocardial hemorrhage. The table provides an indication of the 

abilities of each sequence to detect each components of an MI by STEMI and graded as: 

✔✔✔: Robust, have been shown by several studies; ✔✔: Possible, have been shown by 

some studies; ✔: Theoretically possible and/or have only been shown by 1–2 studies

MVO: microvascular obstruction; IMH: intramyocardial hemorrhage; EGE: early 

gadolinium enhancement; LGE: late gadolinium enhancement; ESA: endocardial surface 

area
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Figure 2. The infarct core of a patient with microvascular obstruction and intramyocardial 
hemorrhage
This figure shows an example of a patient with an acute anterior STEMI treated by PPCI and 

the CMR images on day 4 showing the infarct core on the late gadolinium enhancement 

images representing microvascular obstruction and on the T2*, T1 and T2 maps representing 

intramyocardial hemorrhage (arrows).

LGE: late gadolinium enhancement
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Figure 3. Delineation of the edema-based area-at-risk by T1 and T2-mapping, and MI size by 
late gadolinium enhancement that can be used to calculate myocardial salvage and myocardial 
salvage index
The top panel shows an example of the edema-based area-at-risk by T1 and T2-mapping 

(indicated by black arrows) and the corresponding MI size on late gadolinium enhancement 

(red arrow) in a patient with an inferior STEMI treated by PPCI, with the CMR images 

acquired on day 3 post-reperfusion. The bottom panel shows the corresponding post-process 

images using a threshold-based method to delineate the area-at-risk (threshold of 2 standard 

deviations) and MI size (threshold of 5 standard deviations) as the highlighted areas with the 

areas of hypointense core included as part of the area-at-risk and MI size. The myocardial 

salvage (area-at-risk subtract the MI size) and myocardial salvage index (myocardial salvage 

as a ratio of the area-at-risk) can be retrospectively calculated from a single CMR scan.

LGE: late gadolinium enhancement
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Figure 4. (a) Paired acute and follow-up T2* and T2 maps; (b) Paired acute and follow-up 
automated ECV maps of a patient with an inferior STEMI
This figure shows an example of the paired acute and follow-up (6 months) late gadolinium 

enhancement and automated ECV maps, T2* and T2 maps of a patient with an inferior 

STEMI, treated by PPCI with restoration of normal flow in the infarct-related epicardial 

coronary artery. The arrows show the area of microvascular obstruction with intramyocardial 

hemorrhage. The corresponding ECV maps show the area of microvascular obstruction 

where contrast fails to penetrate the areas of microvascular obstruction and appears as 

pseudo-normal myocardium on the acute scan. At follow-up, the microvascular obstruction 

has resolved and the space previously occupied by the microvascular obstruction has very 

high ECV (white areas within the MI zone corresponding to the upper limit of the look-up 

color scale). The white regions of interest on the ECV maps (black arrows) are 

representative areas of the remote myocardium that can be used to assess changes in the 

extracellular matrix. There was residual myocardial iron at follow-up and persistently 

elevated T2 in the areas surrounding the residual iron (blue arrows on the follow-up images.

LGE: late gadolinium enhancement
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