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During plant-pathogen interactions, plants use intracellular proteins with nucleotide-binding site and Leu-rich repeat (NBS-
LRR) domains to detect pathogens. NBS-LRR proteins represent a major class of plant disease resistance genes (R-genes).
Whereas R-genes have been well characterized in angiosperms, little is known about their origin and early diversification.
Here, we perform comprehensive evolutionary analyses of R-genes in plants and report the identification of R-genes in basal-
branching streptophytes, including charophytes, liverworts, and mosses. Phylogenetic analyses suggest that plant R-genes
originated in charophytes and R-proteins diversified into TIR-NBS-LRR proteins and non-TIR-NBS-LRR proteins in
charophytes. Moreover, we show that plant R-proteins evolved in a modular fashion through frequent gain or loss of protein
domains. Most of the R-genes in basal-branching streptophytes underwent adaptive evolution, indicating an ancient
involvement of R-genes in plant-pathogen interactions. Our findings provide novel insights into the origin and evolution of
R-genes and the mechanisms underlying colonization of terrestrial environments by plants.

Plants rely on two branches of innate immunity system
to prevent or eliminate microbial infections: one involves
cell surface receptors to respond to pathogen- or microbe-
associated molecular patterns, and the other acts inside
plant cells by using proteins with nucleotide-binding site
(NBS) and Leu-rich repeat (LRR) domains (Dangl and
Jones, 2001; Jones andDangl, 2006; Jones et al., 2016).NBS-
LRR proteins confer recognition of pathogen effectors ei-
ther directly or indirectly and trigger disease resistance
(Jones and Dangl, 2006; Jones et al., 2016; van der Hoorn
and Kamoun, 2008). Most of the plant disease-resistance
genes (R-genes) cloned so far encode NBS-LRR proteins
(we use the term R-genes to refer to NBS-LRR genes
hereafter; Jones and Dangl, 2006; Jones et al., 2016).

The architectures of plant R-proteins are character-
ized by an N-terminal signaling domain, a nucleotide-
binding adaptor shared by APAF-1, certain R gene
products and CED-4 (NB-ARC) domain, and a series of
LRRs (McHale et al., 2006; Urbach and Ausubel, 2017).

The NB-ARC domain belongs to the STAND (signal
transduction ATPases with numerous domain) super-
family and might function as a molecular switch in
disease-resistance signaling (McHale et al., 2006). The
LRR domain plays an important role in the negative
regulation of NBS-mediated oligomerization (Jones
et al., 2016). NBS-LRR proteins are typically classified
into two major subfamilies based on the presence or
absence of an N-terminal signaling domain, namely the
Toll/IL receptor (TIR) domain, and are referred to as
TIR-NBS-LRR proteins (TNLs) and non-TIR-NBS-LRR
proteins (nTNLs; McHale et al., 2006; Shao et al., 2016).
Many nTNLs also possess a coiled-coil motif at the N
terminus and are thus known as CC-NBS-LRR proteins
(Meyers et al., 2003). Moreover, some nTNLs encode a
resistance to the powdery mildew8 (RPW8) domain
and are thus designated RPW8-NBS-LRR proteins
(RNLs; Xiao et al., 2001; Shao et al., 2014).

Metazoan innate immunity also involves intracellu-
lar receptors known as Nod-like receptors (NLRs;
Ausubel, 2005). Similar to plant NBS-LRR proteins,
NLR proteins are characterized by a domain architec-
ture with a STAND domain (NACHT [NAIP, CIIA,
HET-E, and TEP1]) and a series of LRRs. The NB-ARC
domain shares certain similarity with the NACHT do-
main (Urbach and Ausubel, 2017). Phylogenetic anal-
yses suggest plant NBS-LRRs and metazoan NLRs
originated independently by convergent evolution
(Yue et al., 2012; Urbach and Ausubel, 2017).

Comparative genomic analyses show that R-genes
are widely distributed in land plants (Meyers et al.,
2002, 2003; McHale et al., 2006; Yue et al., 2012; Shao
et al., 2014, 2016; Jones et al., 2016; Urbach andAusubel,
2017; Xue et al., 2012). However, no R-genes have been
reported in algae to date (Yue et al., 2012; Urbach and
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Ausubel, 2017). Thus, plant R-genes were proposed to
originate in land plants (Yue et al., 2012; Urbach and
Ausubel, 2017). Based on the observations that TNLs
were first observed in Physcomitrella patens and nTNLs
were first found in Selaginella moellendorffii, TNLs were
thought to have an earlier origin than nTNLs (Yue et al.,
2012). It currently remains uncertain about whether R-
genes are present in basal-branching streptophytes,
such as charophytes (a group of firewater algae from
which land plants originated; Qiu et al., 1998, 2007;
McCourt et al., 2004; Wickett et al., 2014; Delwiche and
Cooper, 2015; Lang et al., 2018; Puttick et al., 2018).
In this study, we performed comparative genomic and

phylogenetic analyses of R-genes in a wide variety of
plants, with an emphasis on basal-branching plants. We
identified the presence ofR-genes in the genomes of basal-
branching streptophytes, including charophytes, liver-
worts, and mosses. Moreover, we found R-proteins
diversified into TNLs and nTNLs in charophytes. Our
evolutionary analyses provide many novel insights into
the early evolution anddiversification ofR-genes inplants.

RESULTS

Identification of R-Genes in Plants

We performed comparative genomic and phyloge-
netic analyses of R-genes in the genomes of 24 repre-
sentative plant species that cover a broad diversity of
plants (Fig. 1; Supplemental Table S1). Given plant

NBS-LRR proteins have been extensively reported in
angiosperms, we focused our study on basal-branching
plants. Using a Markov model of the NB-ARC domain
generated from representative NB-ARC sequences as
seeds to mine those plant proteomes, we identified a
total of 3,766 proteins with the NB-ARC domain in the
genomes of 17 plants (Fig. 1; Supplemental Table S2;
Supplemental Data Set S1). No protein with the
NB-ARC domain was identified in chlorophytes, rho-
dophytes (except Chondrus crispus), or glaucophytes.

We performed a large-scale phylogenetic analysis of
these proteins with the NB-ARC domain and other
representative proteins with the NB-ARC or NACHT
domains (Urbach and Ausubel, 2017). We found plant
R-proteins form a monophyletic group with high sup-
port value and identified a total of 3,712 R-proteins
within the genomes of 16 plant species (Fig. 2;
Supplemental Table S2; Supplemental Data Set S1).
Although some plant R-proteins lack a LRR domain
(Fig. 3; Supplemental Table S3), these proteins cluster
with NBS-LRR proteins, indicating that they might
arise from NBS-LRR proteins by deleting LRRs (for
convenience, we still called them NBS-LRR proteins or
R-proteins). The number of R-genes identified in this
study is roughly the same as that reported previously
(Shao et al., 2016); for example, for Arabidopsis
(Arabidopsis thaliana), 165 R-genes were identified in
both this study and Shao et al. (2016). The majority of
the Arabidopsis R-genes (157/165) were annotated as
disease-resistance genes in the Arabidopsis genome

Figure 1. The identification and distribu-
tion of R-proteins in plants. The distribution
and number of NB-ARC-domain proteins
and R-proteins, including those with TIR-
NBS-LRR domains (TNLs) and non-TIR-
NBS-LRR proteins (nTNLs), in various
plants is shown in the right columns. For
species in the dashed-line boxes, a simi-
larity search was performed against tran-
scriptome data. Because the absence of
one gene in the transcriptome does not
guarantee its absence in the genome, only
the number of gene sequences we identi-
fied was labeled. The phylogenetic rela-
tionships among plants are based on Qiu
et al. (1998), Qiu et al. (2007), Wickett
et al. (2014), Delwiche andCooper (2015),
and Puttick et al. (2018).
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release 10. All the other eight genes were confirmed to
contain the NB-ARC domain, and some of them contain
the TIR domain and/or LRRs, which might arise from
R-proteins as aforementioned and represent annota-
tion problems (Supplemental Table S3). Interestingly,
R-proteins were identified in charophytes and all the
land plants. The copy number of R-genes was found to
vary greatly among species, from 4 in the charophyte
Klebsormidium nitens to 677 in the gymnosperm Pinus
taeda. No NBS-LRR proteins were found in chlor-
ophytes, rhodophytes, or glaucophytes (Fig. 1;
Supplemental Table S2). Although proteins with the
NB-ARC domain were identified in the rhodophyte
C. crispus, these proteins exhibit TIR-NB-ARC-WD40
or NB-ARC-WD40 domain organization and are thus
not authentic NBS-LRR proteins.

To further study R-genes in charophytes, we per-
formed similarity searches and phylogenetic analy-
ses to identify R-genes within eight charophyte
transcriptomes (Timme et al., 2012; Ju et al., 2015).
We found that R-genes are present in two other
charophyte genera (Coleochaete and Nitella; Fig. 1;
Supplemental Data Set S2). It should be noted that
the absence of one gene in the transcriptome of one
species does not guarantee its absence in that species
(Wang et al., 2015). Nevertheless, our results further
demonstrate that R-genes are widely present in
charophytes. Taken together, our pan-Plantae com-
parative genomic analyses provide evidence that R-
genes are ubiquitous in streptophytes.

Diversification of R-Genes in Streptophytes

To further explore the evolutionary relationship among
R-proteins in streptophytes, we performed phylogenetic
and domain architecture analyses of R-proteins of basal-
branching streptophytes (charophytes, liverworts, and
mosses) and representative R-proteins of seed plants (Fig.
3; Supplemental Fig. S1). Phylogenetic analyses were
performed using two different methods (see “Materials
andMethods” for details).We found there is no significant

difference between two trees (P = 1.00 for the Kishino-
Hasegawa test and P = 0.82 for the Shimodaira-Hasegawa
test). Phylogenetic analyses show that charophyte R-proteins
cluster into multiple independent groups (Supplemental
Fig. S1). Both TNLs and nTNLs are present in the char-
ophyte genomes.We found that R-proteins of land plants
nest within the diversity of R-proteins of charophytes.
Therefore, both the distribution and phylogenetic analy-
ses suggest that plant R-genes originated and diversified
in charophytes.

We found the proteins with a single NBS domain fre-
quently cluster with the proteins with the NBS-LRR do-
main organization or proteins with the TIR-NBS-LRR
domain organization, and proteins with the NBS-LRR
domain organization frequently cluster with the proteins
with the TIR-NBS-LRR domain organization (Fig. 3;
Supplemental Table S4). This absence of the N- and
C-terminal domains indicates that domain loss at the N
or C terminus occurred frequently in the evolution of
plant NBS-LRR proteins, which could also explain why
neither TNLs nor nTNLs form a monophyletic group
(Yue et al., 2012). Phylogenetic analysis showed that
TNLs fall into the diversity of nTNLs and thus TNLs
might have originated via insertion of the TIR domain
into NBS-LRR proteins. RNLs are widespread in land
plants and appear to originate fromNBS-LRR via gain of
the additional RPW8 domain (Supplemental Fig. S1).

Interestingly, we also found several additional domain
architectures for R-proteins, such as Pkinase-NBS-LRR
(PNL; Xue et al., 2012) and DUF676-NBS-LRR (DNL)
proteins. The PNL proteins were identified in mosses
(P. patens and Sphagnum fallax), angiosperms (Oryza sativa,
Zea mays, Hordeum vulgare, and Aquilegia coerulea), and
gymnosperms (P. taeda). However, DNL proteins were
only identified in S. fallax (Supplemental Table S3).

Adaptive Evolution of R-Genes in Plants

To test whether R-genes underwent adaptive evolu-
tion in basal-branching streptophytes, we performed
positive selection analysis in 34 groups of R-genes of
K. nitens, Marchantia polymorpha, P. patens, and S. fallax

Figure 2. Phylogenetic analysis of
NB-ARC-domain proteins. Phylogenetic
analysis of the NB-ARC-domain proteins
identified in this study and other repre-
sentative proteins with NB-ARC or NAT
domains was performed using an approxi-
mate maximum likelihood method. The
SH-like values are depicted near the se-
lected nodes. The plant R-proteins and
animal NLR proteins are labeled. Proteins
with MalT and SWACOS domains were
used as outgroups. The expanded section
represents a part of the whole tree.
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(Supplemental Fig. S1). We detected amino acid resi-
dues under positive selection for the majority of these
R-gene groups (26/34; Supplemental Table S5). The
number of positively selected sites varies among the
26 R-gene groups in which positive selection was
detected. The positively selected sites are dispersed
along these proteins but appear to be not enriched in
particular domains (Fig. 4). Our results show most of
the R-gene clusters in basal-branching streptophytes
underwent adaptive divergence.

DISCUSSION

In this study, we performed comparative ge-
nomic and phylogenetic analyses of R-genes in

24 plant species.We identified the presence ofR-genes in
basal-branching streptophytes (charophytes, liverworts,
and mosses) and all the land plants. Phylogenetic anal-
ysis shows that TNLs fall into the diversity of nTNLs,
indicating that nTNLs may be ancestral. TNLs in char-
ophytes, mosses, and seed plants did not cluster to-
gether, suggesting the possibility that TNLs originated
multiple times. On the other hand, the pattern that TNLs
of seed plants are closely related that but no TNLs were
identified inA. coerulea and the monocots (as reported in
Tarr and Alexander, 2009) potentially indicates multiple
losses of TNLs in plant lineages. Nevertheless, our evo-
lutionary analyses reveal the complex evolutionary his-
tory of R-proteins in streptophytes.

Figure 3. Phylogenetic analysis of plant R-proteins. The angiosperm and gymnosperm clades are collapsed. The full tree is
available in Supplemental Figure S1. The aLRT/SH-like support values are depicted near the selected nodes. The domain orga-
nizations are shown near the corresponding clades.
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Some proteins with the NB-ARC domain were
identified in the rhodophyte C. crispus. These C. crispus
proteins have WD40 repeats but not LRRs at the N
terminus and thus are not R-proteins. It is possible that
R-proteins originated in the last common ancestor of
rhodophytes and charophytes. However, this scenario
requires the loss of R-proteins in Chlorophyta and the
replacement of LRRs by WD repeats, which seems less
parsimonious than the hypothesis that R-proteins
originated in charophytes.

Unusual domains were previously found to integrate
into R-proteins, such as the heavy metal-associated
domain in the rice (Oryza sativa) R-proteins RGA5 and
Pik-1 (Césari et al., 2014; Maqbool et al., 2015). Some
integrated domains play an essential role in pathogen
effector recognition, which lays the foundation of the
so-called integrated decoy model (Cesari, 2017). We
found R-proteins are also associated with several novel
domains, such as Pkinase and DUF676. The Pkinase
domain might function in recognition of pathogen lig-
ands (Song et al., 1995; Shiu and Bleecker, 2001; Afzal
et al., 2008), raising the possibility that the integrated
Pkinase domain acts as baits for the pathogen effectors.
Potential decoy domain integration into R-proteins oc-
curred frequently in flowering plants (Kroj et al., 2016;

Sarris et al., 2016). Our study shows that domain inte-
gration also took place in mosses, indicating that domain
integration is commonplace for the evolution of plant R-
genes and might play an important role in the diversifi-
cation of plant R-proteins. Our results suggest that
recruiting new protein domains occurred multiple times
during the evolution of plant R-proteins. Moreover, we
found R-proteins frequently lost TIR and/or LRR do-
mains at theN and/or C terminus, whichmight be due to
either deletion or partial gene duplication. Taken to-
gether, our analyses reveal a highly dynamic nature of the
domain architectures of R-proteins and suggest that plant
R-proteins evolved in a modular fashion by frequent
gains and losses of protein domains.

Comparative studies of genes belonging to evolu-
tionary clusters suggest that adaptive evolution was
commonplace for R-genes of dicots and monocots,
which is thought to be associated with host-pathogen
interaction (Bergelson et al., 2001; Mondragón-
Palomino et al., 2002). We found most of the R-gene
groups of basal-branching streptophytes, namely
K. nitens, M. polymorpha, P. patens, and S. fallax, under-
went adaptive evolution, implying that R-genes might
have been involved in plant-pathogen interaction in
basal-branching streptophytes.

Figure 4. Positive selection in R-proteins
of basal-branching streptophytes. The do-
main organization for each gene group is
shown. Avertical line indicates a positively
selected site. The detail for each gene
group is available in Supplemental Figure
S1. Cor, C. orbicularis; Mpo, M. poly-
morpha; Ppa, P. patens; Sfa, S. fallax.
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The copy number of R-genes varies greatly in basal-
branching streptophytes. Whereas charophytes, liver-
worts, and lycopods possess relatively low numbers of
R-genes, the number of R-genes in the twomoss species
(P. patens and S. fallax) is comparable to or even greater
than that of seed plants. This finding indicates that the
high number of R-genes in mosses might be due to
lineage-specific expansion of certain R-genes, such as
PNLs and DNLs. The expansion of R-gene repertories
might be caused by both adaption and drift. For the R-
gene clusters that mainly underwent adaptive diver-
gence, the increase in R-gene number might also be
caused by the process of adaptation.
The colonization of the terrestrial environment by

plants is one of themost important events in the history of
life (Kenrick and Crane, 1997; Delwiche and Cooper,
2015). Land plants originated from charophytes, some of
which were already living on land (Stebbins and Hill,
1980; McCourt et al., 2004; Delwiche and Cooper, 2015;
Harholt et al., 2016). During terrestrial environment col-
onization, plants had to overcome novel pathogen species
and levels of infection (Rensing et al., 2008; Hori et al.,
2014). The emergence of a novel R-protein-associated
strategy to eliminate pathogen infections might have
helped charophytes and the earliest land plants to adapt
to their new terrestrial environments. Indeed, theR-genes
of charophytes mainly underwent adaptive evolution,
which is likely the result of plant-pathogen interactions.
Coincidently, the phenylpropanoid biosynthesis path-
way, which plays an important role in response to phy-
topathogens, was also found to originate in streptophyte
algae (de Vries et al., 2017). The establishment of symbi-
otic interactions with fungi is thought to have facilitated
terrestrial environment colonization by early plants
(Delaux et al., 2015; Field et al., 2015; de Vies and Archi-
bald, 2018). R-proteins have been suggested to control the
specificity of legume-rhizobia symbiosis (Yang et al.,
2010). It is likely that R-proteins might contribute toward
the symbiosis of fungi and early land plants. Taken to-
gether, we propose that the emergence of R-genes pro-
vided early land plantswith the genetic toolkit needed for
survival in a terrestrial environment and might play an
important role in plant land colonization.

MATERIALS AND METHODS

Plant Species

To explore the origin and early diversification of R-genes in plants, we used
the genome sequences of 24 representative plants (one gluacophyte, four rho-
dophytes, three chlorophytes, one charophyte, one liverwort, two mosses, one
lycopodiophyte, two gymnosperms, and nine angiosperms; Supplemental
Table S1). Moreover, we also used eight charophyte transcriptomes (Timme
et al., 2012; Ju et al., 2015; Supplemental Table S1). These species cover a broad
diversity of plants (Supplemental Table S1).

Identification of NB-ARC Domains

A hiddenMarkovmodel (HMM) of NB-ARCwas generated using nine seed
sequences of the NB-ARC domain (Pfam: PF00931) and hmmbuild from the
HMMER package 3.1b2 (Eddy, 2011). The seed sequences of the NB-ARC

domain (Pfam: PF00931) were retrieved from Pfam 31.0 (http://pfam.xfam.org).
TheHMMprofilewas used to search proteinswith theNB-ARCdomain against the
protein sequences of 24 genomes with a cutoff E-value of 1023 (Fig. 1; Supplemental
Table S1). The homologs of R-genes in the transcriptomes of charophytes were
identified using the tblastn algorithmwith K. nitens proteins as queries and a cutoff
value of 1025. The NB-ARC domain sequences of plant R-proteins identified here
and 964 representative proteins with the NB-ARC domain from both eukaryotes
and prokaryotes (Urbach and Ausubel, 2017) were aligned using hmmalign from
the HMMER package and improved by manual editing. Large-scale phylogenetic
analysis was performed using FastTree 2.1 with theWAG+CATmodel (Price et al.,
2009). Support for each node in the phylogenetic treewas assessed using the SH-like
value (Price et al., 2009). Proteins with MalT and SWACOS domains were used as
outgroups (Urbach and Ausubel, 2017). The protein domain architecture was an-
notated using PHMMER from the EMBL-EBI database (Finn et al., 2011) and
CD-Search (Marchler-Bauer et al., 2017).

Phylogenetic Analysis of Plant R-Genes

TheNB-ARCdomain sequences of the R-proteins of charophytes,Marchantia
polymorpha, Physcomitrella patens, Sphagnum fallax, and Selaginella moellendorffii
as well as representative R-proteins of seed plants were aligned using hmma-
lign from the HMMER package and improved bymanual editing. Phylogenetic
analysis was performed using a maximum likelihood method implemented in
PhyML 3.0 (Guindon et al., 2010) with the VT+G+I+F model, the best fitting
model selected by smart model selection implemented in PhyML 3.0 (Lefort
et al., 2017), and an approximately maximum likelihood method implemented
in FastTree 2.1 (Price et al., 2009) with the WAG+CAT model. Branch support
was assessed using the approximate likelihood ratio test (aLRT) in PhyML,
because conventional bootstrap analysis is extremely time-consuming for large
trees and aLRT is a fast, accurate, and powerful alternative (Anisimova and
Gascuel, 2006). Branch support was also assessed using the Shimodaira-Hase-
gawa-like value implemented in FastTree 2.1. To examine whether there is
difference between trees inferred by two different methods, the Kishino-
Hasegawa and Shimodaira-Hasegawa tests was performed using PAUP* 4.0a
(Swofford 2003).

Positive Selection Analysis

Because R-genes are too divergent for alignment and positive selection
analysis, we partitioned them and chose 34 groups based on the phylogenetic
analysis (Supplemental Fig. S1). Some sequences are too divergent or frag-
mented (for transcriptome sequences) and thus were excluded for analysis.
The nucleotide sequences were aligned using MAFFT (Katoh and Toh, 2008)
and manually edited. Likelihood ratio test of positive selection was per-
formed by comparing M7 (beta) and M8 (beta&v) models using PAML4.9
software package (Yang et al., 2000; Yang, 2007). For gene groups with evi-
dence of positive selection based on the likelihood ratio test, sites under
positive selection were identified using the Bayes empirical Bayes (BEB)
procedure.

Accession Numbers

Sequence data from this article can be found in data libraries under accession
numbers detailed in Supplemental Data Sets S1 and S2 and Supplemental
Tables S1 and S4.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Phylogenetic analysis of plant R-proteins.

Supplemental Table S1. Reference information for the genomes and tran-
scriptomes used in this study.

Supplemental Table S2. The distribution of NB-ARC-domain proteins and
R-proteins in green plants.

Supplemental Table S3. The distribution of different nTNLs in green
plants.

Supplemental Table S4. The annotation of Arabidopsis R-proteins identi-
fied in this study.
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Supplemental Table S5. Positive selection analysis in earlier branching
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