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Abstract
Spontaneous preterm birth (PTB; birth prior to 37 weeks of gestation) is a complex phenotype with multiple risk factors that
complicate our understanding of its etiology. A number of recent studies have supported the hypothesis that epigenetic modi-
fications such as DNA methylation induced by pregnancy-related risk factors may influence the risk of PTB or result in changes
that predispose a neonate to adult-onset diseases. The critical role of timing of gene expression in the etiology of PTB makes it a
highly relevant disorder in which to examine the potential role of epigenetic changes. Because changes in DNA methylation pat-
terns can result in long-term consequences, it is of critical interest to identify the epigenetic patterns associated with adverse
pregnancy outcomes. This review examines the potential role of DNA methylation as a risk factor for PTB and discusses several
issues and limitations that should be considered when planning DNA methylation studies.
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Preterm Birth is a Global Health Challenge

The preterm birth (PTB) rate continues to rise in the United

States, increasing by as much as 30% during the last 25 years.

Despite advances in medical care, the World Health Organiza-

tion recently estimated the global PTB rate for singleton

gestation as 9.6%, which corresponds to approximately 13

million preterm babies born every year worldwide; this repre-

sents a substantial problem for overtaxed health, education,

and social services.1

Of neonatal deaths between birth and 7 days not attributable

to congenital conditions, 28% result from PTB.1,2 Children

born preterm are more likely to have cerebral palsy, sensory

deficits, learning disabilities, and respiratory illnesses.1,2

Lower gestational age increases the risk of asthma at 6 years

of age,3 and PTB increased the risk of very low birth weight

children to be diagnosed with asthma at age 12.4 Preterm birth

also increases the risk of being hospitalized with infections

during childhood.5 Among school aged children, those born

preterm show diminished cognitive performance, increased

externalizing and internalizing behaviors, and are more likely

to develop attention-deficit hypertension disorder.6 Girls who

were delivered preterm have a higher risk of developing anor-

exia nervosa,7 and boys who were born small for gestational

age (SGA) and preterm are more likely to develop personality

and psychotic disorders or be hospitalized for mental illness

compared to boys born SGA at term.8

Preterm birth and reduced fetal growth have also been

linked to a number of important chronic diseases of adulthood.

Preterm birth is associated with the development of type 2

diabetes,9 independent of fetal growth rates.10 It is often diffi-

cult to delineate the effects of PTB from fetal growth restriction

but such adverse intrauterine conditions associate with hyper-

tension, coronary heart disease, and stroke.11–17 Taken as a

whole, it is clear that PTB not only imparts a difficult start to

life but may also impart a considerable risk of a disease-

burdened life and tremendous economic costs.1,2

The 2 major classes of PTB are spontaneous (mostly

unknown etiology) and indicated (known risk factors including

preeclampsia, multiple gestations, gestational diabetes, and

maternal or fetal anomalies).18 Studies have identified multiple

risk factors for PTB including race, socioeconomic factors,

psychosocial stressors, behavioral factors, maternal infection,

prior history, and genetic variants.18 Despite the tremendous

knowledge gained over the past decade, this information has
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not been translated into screening or effective intervention and

has not decreased the rate of PTB.19–21 Understanding the spe-

cific initiators and effectors of the labor process will provide

valuable insight into the pathophysiologic pathways that result

in preterm labor and may result in novel interventions.

The etiology of PTB remains unclear, and the identification

of biomarkers to predict high-risk pregnancies resulting in

PTB would represent a significant advancement. In this

respect, epigenetics is a particularly attractive area of investi-

gation because of the increasing prevalence of PTB in recent

years and the association of PTB with development of adult-

onset diseases.

Epigenetics and Fetal Development

Epigenetics refers to structural modification of DNA sequence

that produces stable, but potentially reversible, alterations in

the transcriptional potential of a cell, without changes in the

DNA sequence. Cytosine methylation is one such modification

that occurs at position 50 of the cytosine pyrimidine ring in CpG

dinucleotides. Methylation of CpG sites in the promoter

regions of genes may disrupt transcription factor binding or

attract methyl-binding proteins. These changes to the promoter

structure correlate with chromatin remodeling and transcrip-

tional silencing.22

Epigenetics play an important role in fetal development.

The literature on epigenetic regulation during embryogenesis

has been reviewed by Shi and Wu.23 Following fertilization,

areas that are not protected by imprinting undergo both active

and passive demethylation.24,25 DNA methylation patterns then

begin to differentiate by developmental stage and by tissue.26

Because fetal development is a period of extensive cellular

replication and growth, environmentally induced epigenetic

changes may result in stable patterns of gene expression and

phenotypic differences among exposed individuals.27–29 In

contrast, the rate of DNA synthesis is much lower during

adulthood, and the epigenome may be more resilient to envi-

ronmental insults.

DNA Methylation as a Risk Factor for PTB

Studies suggest that nutritional deficiencies and imbalances,

psychosocial stressors, behavioral factors such as cigarette

smoking, maternal infection (bacterial vaginosis or intra-

amniotic infection), and race all increase the risk of PTB,18 and

epigenetic mechanisms such as DNA methylation may partially

underlie many of these risk factors. Therefore, a comprehensive

risk model of PTB should incorporate the factors outlined in

Figure. 1. Indeed, many ongoing studies are investigating their

numerous interactions.

Environmental factors that alter the intrauterine environ-

ment may induce epigenetic-mediated changes in gene expres-

sion that result in increased susceptibility to adverse pregnancy

outcomes.27,30 In humans, differential methylation of storkhead

box 1 gene (STOX1) has been associated with preeclamp-

sia.31,32 In rats, intrauterine growth restriction (IUGR) has been

associated with decreased p53 methylation, decreased CpG

island and genome-wide methylation, and decreased expres-

sion of DNA methyltransferase 1 (DNMT1).33,34 DNMT1 is a

maintenance methyltransferase that plays a role in placental

development and can disrupt this process in the first trimester

of pregnancy.

A review by Suter and Aagaard-Tillery12 discussed the envi-

ronmental factors that can influence the epigenome during

pregnancy, and indeed several studies have supported that envi-

ronmental risk factors influence DNA methylation patterns

during pregnancy. For example, animal studies show that insu-

lin growth factor 2 (IGF2) imprinting in the placenta is altered

by Campylobacter rectus infection during pregnancy,35 and it

is likely that methylation patterns may differ depending on the

type of infectious agent.

Diet can also modify the epigenome, and deficiency of

methyl donors such as folate is directly correlated with changes

in DNA methylation.36–40 Several studies have demonstrated

the impact of maternal diet on offspring outcomes via epige-

netic mechanisms. In a mouse model, a maternal high-fat diet

increased the risk of offspring obesity by altering offspring

preference for palatable foods via changes in DNA methylation

and messenger RNA (mRNA) expression of dopamine and

opioid-related genes.41 Using a protein restriction model in

rats, Sohi et al42 recently reported that epigenetic changes

mediate the association between maternal undernutrition and

offspring cholesterol dysregulation. Consistent with this finding,

IUGR, induced by a low-protein maternal diet through preg-

nancy and lactation, decreases the ratio of offspring liver to body

weight and results in higher levels of hepatic cholesterol; the

authors concluded that this change in circulating cholesterol

associated with histone modifications in the promoter region

of Cyp7a1 associated with chromatin silencing and reduced

Cyp7a1 expression.42 Modifications of gene expression at

imprinted loci and global and local placental DNA methylation

patterns are also reported to result from a high-fat diet.43 These

reports underscore the importance of a balanced diet during

pregnancy to avoid epigenetic modifications that can contribute

not only to pregnancy complications such as IUGR or PTB but

also to long lasting effects in the offspring.44

Smoking has also been linked to PTB, and 1 study found sug-

gestive evidence that genome-wide methylation is decreased in

adults who were exposed prenatally to cigarette smoke.45 In pla-

cental samples obtained from smokers and nonsmokers, prenatal

tobacco exposure was associated with hypomethylation of the

CYP1A1 promoter region and increased CYP1A1 expression.46

Recent data suggest a potential mechanism for these changes

as both markers of oxidative stress and apoptosis are increased

in normal human fetal membrane cultures that were exposed

to cigarette smoke extracts.47

The burden of PTB is disproportionately concentrated in

Africa and Asia and is especially high for those of African des-

cent in developed countries1 Pregnancies in which either parent

is of African descent are at increased risk of PTB,48 and this

effect appears to be largely independent of measured environ-

mental risk factors.49 Consistent with the hypothesis that racial
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disparity in PTB may result from genetic or epigenetic changes,

differences in genetic polymorphisms have been associated

with PTB as well as biomarkers of infection and inflammation

associated with PTB (tumor necrosis factor-a and interleukin

6 concentration) among African American and Caucasian

mothers.50–53 Further, DNA methylation patterns vary in the

umbilical cord blood of African American newborns.54

Although epidemiologic studies support the association of

several environmental risk factors with adverse pregnancy out-

come, no studies to date have directly examined DNA methy-

lation as a molecular mediator between the environmental risk

factors and PTB. Such studies will be required to determine

whether epigenetic changes play a role in the relationship

between environmental risk factors and PTB.

Developmental Origin of Adult Health and
Diseases

The work of Barker and colleagues,15,16 who observed that

impaired placental growth was associated with chronic heart

failure in later life, stimulated interest in the hypotheses known

as the developmental origins of adult health and diseases

hypothesis. Environmental insults during prenatal develop-

ment, such as restricted maternal nutrition, can result in growth

restrictions and long-term consequences for affected offspring,

and epigenetic changes may serve as mediators between envi-

ronmental insults and the development of adult-onset diseases.

Support has been provided by plant and animal studies that

document epigenetic inheritance in the context of their poten-

tial contribution to adult health and diseases.55–57

Studies in rats have shown that nutritional deprivation

during pregnancy results in intrauterine and postnatal growth

restriction.58,59 Notably, IUGR pups born to food-restricted

mothers but cross-fostered by normally fed mothers demon-

strated accelerated growth that resulted in increased weight and

body fat, suggesting that restricted maternal nutrition may con-

tribute to obesity in later life.58,59

Similarly, among people born during the Dutch famine,

exposure to famine during early gestation was associated with

coronary heart disease, a more atherogenic plasma lipid profile,

disturbed blood coagulation, increased stress responsiveness

and higher rates of obesity. Those exposed to famine in midway

through gestation had increased rates of microalbuminuria and

obstructive airways disease, and those exposed to famine at any

stage of gestation were more likely to have impaired glucose

tolerance.60 These findings show that maternal undernutrition

during gestation affects health in later life, but these effects

are dependent on the timing of the exposure. While timing

of the exposure is clearly important, these studies collectively

suggest that epigenetic modifications resulting from such

intense stressors may result in long-term consequences for

an individual.60,61

Evaluating the impact of early environmental exposures

on the fetal epigenome may offer insight into both regulatory

processes inherent in development and adult-onset diseases.

Exposure to environmental chemicals can alter the fetal

epigenome, thereby changing gene expression patterns.29

Neonatal exposure to both estradiol and bisphenol A, an additive

for many plastics including food containers and baby bottles,

may cause multiple gene-specific changes in DNA methylation

in the rat prostate, including hypomethylation of the phospho-

diesterase type 4 variant 4 (PDE4D4), which has been associated

with prostate cancer risk.62 Also, prenatal exposure to diethyl-

stilbestrol (DES) results in hypomethylation in 2 critical DNA

control regions.63 Individuals treated with DES during preg-

nancy had increased rates of reproductive disorders and clear

cell adenocarcinoma of the vagina,63 and both DES-exposed

mothers and their children were more likely to report lupus,

arthritis, asthma, and respiratory tract infections in the 1985

National Health Interview Survey.64

Direct evidence implicating environmentally induced DNA

methylation changes as a causal factor in PTB has yet to

emerge. While the purpose for this review is to promote this

line of research, future research will be required to delineate

whether DNA methylation changes represent a cause or conse-

quence of PTB.

A Widening Perspective on DNA Methylation

While many studies to date have focused on the examinations

of 5-methylcytosine (5mC), few studies have been able to dis-

tinguish 5mC from its modification, 5hmC. 5-

Hydroxymethylcytosine plays an intermediate role in oxidative

demethylation pathways65 and is integral in the self-renewal

and maintenance of embryonic stem cells66 from several mam-

malian species.67 5hmC is associated across the genome with

increased transcription, and variations in expression due to

5hmC may influence the processes of pluripotency and lineage

commitment.68

Similarly, while most conventional studies of methylation

focus on CG methylation, almost 25% of DNA methylation

in embryonic stem cells occurs at non-CG dinucleotides. This

non-CG methylation is enriched in gene bodies and depleted

in protein-binding sites and enhancers. It is also enriched near

genes involved in pluripotency and differentiation. However,

non-CG methylation is not evident after cellular differentia-

tion occurs.69

Although 5hmC and methylation of non-CG dinuclotides

have yet to be extensively evaluated in the context of human

disease, the enrichment and likely regulatory roles of 5hmC

and non-CG methylation in embryonic stem cells suggest that

they could be relevant to early-life and developmental disor-

ders. Hence, both 5hmC and non-CG methylation represent a

previously unexplored aspect of epigenetic regulation that may

contribute to PTB.

Genome-Wide Epigenetic Studies

Methods to conduct DNA methylation studies have been

reviewed extensively,70,71 so here we will focus on the evol-

ving field and the issues to consider before undertaking such

studies. As with studies of sequence variants, the initial foray
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into examining epigenetic changes associated with PTB has

focused on specific candidate genes. These studies are

dependent on the choice of candidate genes and may lead to

findings that have small effect sizes and do not replicate consis-

tently. However, the recent availability of inexpensive com-

mercial methylation microarrays has facilitated genome-wide

methylation studies, which have already met with some

success.72-75 Although genome-wide studies of DNA methyla-

tion have much in common with both genetic association stud-

ies and gene expression studies, at this early stage a consensus

has not been reached about the optimal study design or analysis

methods for methylation studies.

The appropriate analytical approaches for methylation

studies will depend on the technology used. For array-based

platforms that rely on bisulfite treatment of DNA such as the

Illumina GoldenGate and Infinium chips that provide estimates

of the methylation proportion with single-CpG resolution, it is

common to perform simple tests of association between the

methylation proportion and the phenotype, adjusting for multi-

ple testing via Bonferroni or false discovery rate procedures.

Platforms that enrich methylated DNA through the use of

methylation-specific restriction enzymes (McrBC) or methy-

lated DNA immunoprecipitation (MeDIP) require more com-

plex statistical approaches to estimate the absolute methylation

level while accounting for sequence-dependent biases due to

CpG density and other factors. To address this, strategies that

model the dependence of enrichment on CpG density have been

proposed for MeDIP76,77 and McrBC approaches.78

Although the basic quality control criteria leading to the

removal of specific data points, samples, or CpG sites are stan-

dard for commercially available methylation arrays, there is

currently no consistently used approach to normalization of

methylation data. Methods to normalize signals abound in the

gene expression literature,79,80 but these methods are based

on the assumption of no global differences between samples,

which is often inappropriate for methylation data.78 The

absence of differences in the overall signal is generally thought

to be an appropriate assumption for expression data, but global

differences may be observed in methylation data when compar-

ing cancer versus healthy tissue,81 different tissue types,82 or

even individuals of different ages.83,84 If global methylation

patterns vary with respect to the phenotype studied, the appli-

cation of standard normalization methods such as Loess and

quantile normalization could drastically reduce power by

removing true differences between samples and thus are likely

inappropriate for analysis of methylation data. The use of sub-

set quantile normalization,85 which equalizes the quantiles of

negative control probes instead of the signal probes, has been

proposed for methylation microarray data.78 However, subset

quantile normalization requires a large number of negative con-

trol features whose signals cover the entire range of the signal

probes; hence, for experiments with only a small or moderate

number of negative control probes, the development of further

approaches would be valuable.

Population stratification, a well-documented issue in studies

of sequence variants,86 is also likely to impact the studies of

DNA methylation. Recent studies have reported differential

methylation of genes between African American and

Caucasian umbilical cord blood samples,54 and evaluation of

participants of varying ancestry suggest that genetic and epige-

netic variation may be somewhat correlated.87 It is well known

that the frequency of sequence-based polymorphisms varies

across different ethnic backgrounds, and the similarity of

methylation patterns in families83 and within twin pairs88 sug-

gests that sequence variation may impact methylation patterns.

In fact, evidence of allele-specific methylation has been

reported89-91 and may be partially responsible for differences

in methylation patterns associated with race or disease state.

These results emphasize the importance of controlling for

ancestry in epigenetic studies as well as in studies of sequence

variants, ideally by careful ancestry-matching of cases and

controls as part of the study design and inclusion of covariates

representing self-reported or genetic ancestry.

Cell type heterogeneity between samples is an issue analo-

gous to population stratification that may affect both gene

expression and methylation studies but not studies of sequence

variants. The cell type composition of blood is known to

be altered in a variety of disease states92-97 and can vary with

other health-related phenotypes such as exercise level98 and

obesity.99 Differences in methylation between cell types have

been reported for specific genes 100,101 and genome-wide.102

Because cell type composition is correlated with both individ-

ual health and methylation, the association between DNA

methylation and an outcome of interest may be confounded

by variations in the proportion of cell types within a sample

or tissue. Hence, it is important to control for cell type differ-

ences within a study; however, attempts to sort tissues into

subpopulations may limit the amount of DNA available for

the study. As an alternative, the development of statistical

approaches to account for differences in cell type proportions

across samples would be valuable.

Because DNA methylation varies with cell type, it is impor-

tant to select a relevant tissue in which to study PTB. Placental

tissue, fetal membranes, and umbilical cord blood have obvious

biological relevance and can be obtained through noninvasive

methods. Umbilical cord blood has the added advantage of

being amenable to longitudinal studies in which blood sam-

pling may occur at birth and then regularly over development.

However DNA samples obtained from saliva are highly het-

erogeneous with the proportions of leukocytes and epithelial

cells ranging from 20% to 80% among individuals. The sam-

ple volumes, especially from infants, may be too limited for

cell-sorting methods so this may not be a feasible approach

until statistical approaches are available to adjust for cell type

proportions in different samples. As both maternal and fetal

factors can contribute to PTB, one should also consider

sampling maternal blood samples, cervical or myometrial

tissues.

Another important confounding variable in DNA methyla-

tion studies is age. Recent studies have reported widespread

age-related methylation differences at CpG sites across the

genome.72,83,84,103 These results underscore the importance of
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matching for age in case–control studies of DNA methylation.

To avoid confounding due to differences in the age distribution,

cases and controls should be matched by age whenever possible.

Adjustment for age as a covariate is also useful but may not be

sufficient if the age distributions differ substantially between

cases and controls. Moreover, if age is correlated with case–

control status, its inclusion as a covariate may reduce power.

Conversely, in well-matched samples, age will be independent

of the phenotype of interest, so including age as a covariate

can lead to increased power since it will explain the methylation

differences that would otherwise be attributed to noise.

Summary

Preterm birth is a complex disease with many known epidemio-

logic and genetic risk factors, and awareness of the impact of

prenatal conditions on an individual’s long-term health has

focused more attention on PTB. Epigenetic changes induced

by various risk factors for pregnancy may influence the risk

of PTB or induce changes in the fetal epigenome that predis-

pose a neonate to adult-onset diseases. Although epigenetic

changes, such as DNA methylation, have been associated with

many complex disease outcomes, their potential influence on

PTB remains unexplored. Although many epidemiologic fac-

tors as listed in Figure 1 are associated with PTB, a link

between these factor-induced DNA methylation changes and

its association with adverse pregnancy outcome or long-term

consequences during the life course are still lacking. Animal

model studies clearly support the rationale for such phenomena

and motivate future research in this area. Future PTB studies

should focus on genome-wide epigenetic changes in human

pregnancies, ideally in the context of longitudinal designs to

assess the role played by DNA methylation in both short- and

long-term outcomes related to PTB.

This review is meant to provide an overview of the potential

role of DNA methylation in adverse pregnancy outcomes as

well as to discuss the issues and limitations that should be con-

sidered when planning DNA methylation studies. Evaluating

the potential role of epigenetic changes in PTB is a timely goal,

and it is hoped that this review will aid researchers who are

contemplating or designing these studies.
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