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Abstract
Preterm premature rupture of membranes (PPROM) occurs in 1% to 2% of births. Impact of PPROM is greatest in low- and
middle-income countries where prematurity-related deaths are most common. Recent investigations identify cytokine and matrix
metalloproteinase activation, oxidative stress, and apoptosis as primary pathways to PPROM. These biological processes are
initiated by heterogeneous etiologies including infection/inflammation, placental bleeding, uterine overdistention, and genetic
polymorphisms. We hypothesize that pathways to PPROM overlap and act synergistically to weaken membranes. We focus our
discussion on membrane composition and strength, pathways linking risk factors to membrane weakening, and future research
directions to reduce the global burden of PPROM.
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Introduction

Fetal membranes are a resilient tissue, designed to withstand the

insults of a lengthy pregnancy. However, they also ultimately give

way to rupture and labor. In 1% to 2% of pregnancies, fetal mem-

branes rupture preterm and outside of the context of labor, a prob-

lem known as preterm premature rupture of membranes

(PPROM).1 The impact of PPROM is greatest in low- and

middle-income countries where the majority of childhood deaths

associated with prematurity occur.2 When compared to high-

income countries, PPROM occurs with a similar frequency but

is associated with greater maternal and neonatal morbidity and

mortality.3 Maternal morbidity often arises from an associated

intrauterine infection (chorioamnionitis) that complicates both

PPROM and premature rupture of membranes (PROM) at term.

Perinatal mortality, which largely occurs from prematurity and

infectious complications, is high in low- and middle-income

countries with a range from 55 of 1000 to 520 of 1000 births.4-7

A better understanding of the pathophysiology leading to

PPROM is imperative to reduce the global burden of prematurity

and its associated neonatal and maternal consequences. Several

clinical conditions are associated with PPROM including infec-

tion/inflammation, decidual bleeding (abruption), uterine over-

distention (eg, twins), genetic predispositions, and cigarette

smoking. Although these conditions occur at different stages

of gestation and affect pregnancies variably, their pathways to

membrane degradation and ultimate rupture overlap (Figure 1).

Recent investigations identify matrix metalloproteinases (MMPs),

cytokines, apoptosis, and oxidative stress as primary mechanisms

in these processes. We hypothesize that most cases of PPROM

result from the synergistic actions of several activated pathways

to biochemically weaken the membranes. These factors can act

in synergy to cross a biomechanical threshold leading to patho-

logic rupture of membranes.

The aim of this review is to reveal connections among path-

ways implicated in PPROM. First, we provide an overview of

the anatomy of the fetal membranes and studies of its biome-

chanical strength. Next, we discuss biological mechanisms and

clinical risk factors implicated in PPROM, emphasizing shared

pathways. We also review the role of progesterone to prevent

PPROM in the context of recent clinical trials. Finally, we dis-

cuss interesting areas for further research that arise from
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commonalities between these pathways to enable the next steps

to reducing PPROM and the global burden of prematurity.

Membrane Composition and Strength

Anatomy

The chorioamnion consists of 2 fetal membranes that enclose the

amniotic cavity: the chorion and the amnion. This membrane

functions to contain and regulate amniotic fluid volume around the

fetus, selectively transport molecules, and protect the fetus from

vaginal bacteria.8 The amnion is a thin avascular layer derived

from extraembryonic ectoderm and avascular mesoderm attached

to the underlying chorion (Figure 2). The amnion has 5 distinct

layers.9 Studies of the chorioamnion at term suggest that the

amnion, while thinner, is more robust than the chorion with greater

membrane strength and lower likelihood of rupture.10,11 Within

the amniotic epithelium, intracellular cytoskeletal proteins and
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Figure 1. Factors contributing to chorioamnion weakening. Considerable overlap exists among the biological mechanisms and pathways to
PPROM initiated by different clinical conditions. This diagram lists factors contributing to chorioamnion weakening by clinical risk factor and
demonstrates commonalities among these pathways. Pathway factors including infection and inflammation, placental bleeding (abruption), and
genetic variants have been linked with PPROM. Common biological mediators are noted for uterine overdistention and cigarette smoking and may
explain the increased risk of PPROM among women with these conditions. Common themes among pathways include MMP activation, cytokine
and chemokine activation and oxidative stress, all leading to collagen weakening. With the initiation of multiple pathways, weakening is accelerated,
ultimately leading to membrane rupture. PPROM indicates preterm premature rupture of membranes; MMP, matrix metalloproteinase.
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intermediate filaments contribute to shear strength.12 The highly

folded basal surface of the amniotic epithelium forms a tight inter-

face with the basement membrane, anchoring the descending fila-

ments into the underlying layers. These descending filaments

include type I and type III collagen, which are susceptible to degra-

dation by MMPs (Figure 2). The myofibroblast layer secretes anio-

nic proteoglycans and type I and type III collagen for the 2 adjacent

layers: the compact and spongy layers. Differing structures of

collagen tissue organization in the compact and spongy layers may

relate to their respective biochemical properties.9,12,13 Although

controversial, the compact layer may provide resistance to shear

stresses through the presence of elastin.14,15 The spongy layer, a

layer prone to edema and rich with hyaluronan, cushions the

underlying chorion by sliding over its surface.13,16 Collectively

these layers provide the amnion with its strength and integrity.

The 3 layers of the chorion, the reticular layer, the basement

membrane, and trophoblast cells make up the bulk of the chor-

ioamnion membrane. The chorion also contributes to the

strength and elasticity of the membranes. Laminin stabilizes

the membrane and fibronectin allows for adherence of the chor-

ion to the decidua. Microfibrils, elastin, and collagen also con-

tribute to the elasticity of the chorion.17,18 Accommodation is

an integral part of chorioamnion function, and membranes with

PPROM demonstrate decreased elasticity.19 The chorion

undergoes active remodeling throughout pregnancy and is sus-

ceptible to apoptotic destruction, changes in MMP activity, and

prostaglandin production. The interface between the overlying

amnion and the chorion is prone to blebs and slippage allowing

for easy separation of the 2 membranes upon examination (Fig-

ure 2). In the embryonic stage, the chorion is of uniform thick-

ness throughout. With implantation, chorion trophoblasts

invade the underlying decidua at the site of the future placental

disk, whereas the remaining trophoblastic villi progressively

atrophy forming the chorion laeve. This process continues until

16 weeks gestation resulting in a gradual spread of the chorion

laeve to cover 70% of the surface of the chorionic sac.20

Biomechanics of the membrane may therefore depend on the

distance of the sampled membrane from the placental disk due

to varying trophoblastic composition. This is an important

observation in the critical evaluation of biomechanical studies.

Membrane Biomechanics

Membrane biomechanics are impacted by both the complexity

of the layers of the chorioamnion and the orientation of col-

lagen fibrils. When compared to other collagen-based tissues

(eg, aorta), fetal membranes are physiologically under high

stress/strain and are loaded relatively closer to the failure

threshold.21 Assessment of membrane biomechanical proper-

ties is important, as membranes are placed under constant

stretch from approximately 28 weeks gestation onward due to

the expanding uterus.19 Membrane tensile strength is variable

across the tissue with notable differences between intact mem-

branes and those that spontaneously ruptured.22-24 Improved

use of placental mapping further identified heterogeneity

within the chorioamnion with the weakest region consistently

overlying the cervix in both term and preterm membranes.24,25

Histologically, this weak area represents a unique ‘‘zone of

altered morphology’’ suggesting its vulnerability to eventual

rupture. Not surprisingly, membranes overlying the cervix are

exposed to different environmental conditions than unexposed

membranes. Taking into account, the sampling site is important

when considering the results of biomechanical studies of mem-

brane strength.
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Figure 2. Structural changes with membrane weakening. We depict
structural changes that occur with membrane degradation, using the
infection and bleeding pathways as examples. Bacteria invade the space
between amnion and chorion, infect the amniotic fluid, or enter via
the placenta. Blood accumulates between the chorion and decidua. The
most important structural changes occur in the amnion, the stronger of
the 2 layers. Cytokeratins and other cytostructural genes become
downregulated leading to a loss of cytostructural support and tensile
strength in the amnion. Amniotic epithelial cells become pyknotic and
slough leaving a ‘‘punched out’’ appearance in the membrane. Collagen
throughout the amnion degrades and reorganizes with activation of
MMPs. The spongy layer of the amnion becomes edematous and prone
to slippage over the chorion creating blebs that result in separation of
the membranes. Trophoblast cells undergo apoptosis and the chorion
thins. Neutrophilic invasion occurs both in the reticular layer and near
the interface with decidua. These processes occur through inflamma-
tory activation of the myometrium, MMP activation, and bacterial pro-
teolysis. Exposure to activated MMPs leads to collagen reorganization
and degradation throughout the amnion including derangement of the
anchoring descending collagen from the basement membrane. MMP
indicates matrix metalloproteinase.
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Studies to evaluate chorioamnion strength vary in design

and technique. ‘‘Axial testing’’ occurs when membranes are

suspended in 1 or 2 axes (uniaxial or biaxial testing) and are

subjected to sequential stretch until rupture occurs. This type

of testing may best approximate physiologic conditions of

membrane rupture in pregnancy. Biaxial testing demonstrates

that pressures required to produce membrane rupture readily

exceed those contributed by physiologic intrauterine pressures

alone.26 Although technically challenging, ‘‘burst testing’’

involves progressive loading of the membranes with saline or

air thereby replicating the tension placed on membranes with

a dilated cervix. Burst pressure needed to cause rupture peaks

prior to 38 weeks and declines with advancing gestation, sug-

gesting that parturition-associated changes may contribute to

membrane weakening.27 ‘‘Puncture testing’’ examines the

membranes ability to withstand variously shaped blunt objects.

Estimations of membrane strength are, therefore, dependent on

the method of biomechanical study, the distance from the cer-

vix or membrane rupture site, and the gestational conditions.

Table 1 demonstrates the heterogeneity of study designs report-

ing the force required to rupture membranes. To better place

new biomechanical data into context, future studies should

document gestational age, mode of delivery, presence or

absence of labor, and sampled membrane relation to the rupture

site, placental disk, and cervical os.

Biomechanical studies have also examined the sequential

effects of force applied to the amnion alone, chorion alone, and

the full thickness chorioamnion.11,32 The amnion is signifi-

cantly stronger than the chorion, yet it only represents 20%
of the overall membrane thickness.10,11 The amnion strength

also varies with gestational age and with labor, while chorion

strength remains.33 Video analysis of puncture testing from

membranes obtained after term vaginal deliveries indicates that

membrane rupture begins with distention of the intact mem-

brane, followed by amnion separation from the choriodecidua,

choriodecidual failure (chorion rupture) permitting further dis-

tention of the now isolated amnion, and ultimately amnion rup-

ture.11 This observation is further supported by studies that note

a thinner chorion among samples from PPROM compared to

the chorion after preterm labor, preterm birth without preterm

labor, and at term.34 Pathways active in weakening the chorion

may represent the earliest biological events leading to PPROM.

Biological Mechanisms Implicated in PPROM

Matrix Metalloproteinases and the ‘‘Zone of Altered
Morphology’’

In the 1990s, term placentas were evaluated to better under-

stand the histology of rupture sites compared to the remainder

of chorioamnion. Extracellular matrix of samples obtained

from term membrane rupture sites exhibited marked edema,

disruption, and chorionic thinning when compared to samples

obtained distal to the rupture site.15 It was proposed that this

‘‘zone of altered morphology’’ was related to disorganization

and disruption of collagen fibrils.17

Collagen is susceptible to degradation by MMPs, a family of

zinc enzymes activated at term, in the setting of PPROM or

infection.9,35 The MMP can degrade many types of extracellu-

lar proteins including collagen and can cleave cell surface

receptors, release ligands-stimulating apoptosis (eg, FAS

ligand), and activate chemokines and cytokines. The results

of MMP activation and other biological mechanisms contribut-

ing to PPROM are shown in Figure 2. Tissue inhibitors of

metalloproteinases (TIMPs) act as an MMP counterbalance

to prevent enzymatic degradation of the membranes. Although

other enzymatic processes, like oxidative stress, also contribute

to extracellular matrix degradation, MMP activity represents

the best-studied mechanism associated with PPROM.

Several MMPs contribute to enzymatic degradation of col-

lagen in the setting of lower TIMP activity. Cervical cells such

as fibroblasts, smooth muscle cells, and granulocytes release

MMPs. Although the MMP-9 association with PPROM is best

characterized, MMP-8 activity is also elevated in PPROM and

correlates with chorioamnionitis, funisitis, and poor neonatal

outcomes.36,37 Furthermore, activities of MMP-1, -2, -3, -10,

-11, -13, and -14 are also elevated in the amniotic fluid and

fetal membranes of women with PPROM.38 By-products of

collagen cleavage (matrikines) are currently under investiga-

tion, as they may be involved in neutrophil chemotaxis and

upregulation of the inflammatory response.39

The biochemistry of membrane rupture involves a series of

complex interactions: enzymatic activation resulting in degra-

dation of extracellular matrix, release of cytokine mediators,

increased apoptotic remodeling, and prostaglandin release. The

amnion’s strength and delayed failure compared to the chorion

may be related to the varying compositions of extracellular

matrix and susceptibility to biochemical processes. Further-

more, preconditioning by varying risk factors (ie, infection,

tobacco smoke, and oxidative stress) may increase the chor-

ioamnion susceptibility to various degradative and apoptotic

pathways. Future studies of membrane degradation should con-

sider these conditions in their analyses.

Apoptosis and Oxidative Stress

Apoptosis, a normal part of growth and development, is

enhanced by cytokines, like tumor necrosis factor a (TNF-a).

When initiated prematurely, apoptosis can lead to

PPROM.24,25,34,40 Apoptosis is measured through a variety of

surrogate markers such as Terminal deoxynucleotidyl transfer-

ase 20-deoxyuridine 50-triphosphate nick end labeling staining

of DNA fragments, telomere length, and caspase activation.

Studies consistently show that fetal membranes from women

with PPROM demonstrate higher rates of apoptosis than

women with preterm labor and intact membranes.34,38,41

Preterm premature rupture of membranes-associated apop-

totic pathways occur through either a TNF-a factor receptor

(TNFR)/Fas-mediated or p53/Bax pathway.37,39,42 Binding of

TNF or Fas ligand triggers the TNFR/Fas-mediated pathway,

ultimately leading to caspase activation. In the p53 pathway,

Bax is activated and Bcl-2 (anti-apoptotic protein) is

1218 Reproductive Sciences 21(10)
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suppressed resulting in mitochondrial membrane damage,

release of cytochrome c, and caspase-9 activation. Infection

is a recognized initiator of these pathways and has been sug-

gested to upregulate apoptotic genes.43 More recently, cigarette

smoke exposure to fetal membranes has also been shown to

inhibit Bcl-2 and increase apoptosis and oxidative stress.44

Oxidative stress represents another well-established path-

way to apoptosis and is associated with both PPROM and col-

lagen weakening.45,46 Reactive oxygen species (ROS) are

unstable molecules released from mitochondria with normal

cellular respiration and by immune cells during bacterial kill-

ing. Reactive oxygen species are capable of widespread mem-

brane damage through a variety of mechanisms: cleavage of

collagen, induction of MMP-9, direct damage to DNA, release

of catalytic enzymes, and initiation of lipid peroxidation.

Neutrophils, recruited to intrauterine infection, may release

hypochlorous acid, an ROS that causes DNA strand breaks,

initiates lipid peroxidation, inhibits TIMP-1 activity, and

compromises repair mechanisms.47

Studies of antioxidants (vitamins C and E) to target the path-

way of oxidative stress show mixed results. Although lower

plasma vitamin C levels are associated with PPROM, supple-

mentation of vitamins C and E in a single, large clinical trial

showed a paradoxical increase in PPROM rates (4.6% vs

1.7%; relative risk [RR] 2.68; P ¼ .025).48-50 a-Lipoic acid,

another antioxidant, decreased membrane weakening from

thrombin in vitro.51 Phytophenols (plant antioxidants) also

reduced MMP-9 and prostaglandins in an ex vivo inflammatory

model.52 Blocking oxidative stress induction of MMP may

yield new therapies that would have value across several

PPROM pathways.

Clinical Risk Factors Implicated in PPROM

Infection and Inflammation

Inflammation of the fetal membranes either via amniotic fluid

infection or via chorioamnionitis is associated with nearly half

of all PPROM cases.9 The presence of bacteria in the amniotic

cavity is estimated to occur in 18% to 38% of all cases of

PPROM.53-58 Specifically, the presence of vaginal bacteria in the

uterus appears to contribute to both PPROM and cases of early

spontaneous preterm labor.59,60 Among women with intact

membranes and spontaneous preterm labor, the presence of

microbes within amniotic fluid is highly associated with even-

tual PPROM (odds ratio [OR] ¼ 27).61 How bacteria access the

pregnant uterus remains unclear but likely occurs through traf-

ficking from the lower genital tract or in some cases transplacen-

tally (eg, Listeria monocytogenes). Microbial and nutritional

factors contributing to alterations in the immunologic or meta-

bolic microenvironment of the upper vagina and cervix may play

a role in facilitating bacterial trafficking into the choriodecidua.

Conflicting data exist regarding the association between

vaginal bacteria species and the risk of PPROM.62-65 The Vagi-

nal Infections in Pregnancy Study prospectively followed more

than 13 000 women enrolled at 24 to 26 weeks to delivery. For

nearly all microbes studied, no association with PPROM was

seen including Group B Streptococcus (GBS), Chlamydia tra-

chomatis, Ureaplasma urealyticum, and bacterial vaginosis.

Only the recovery of Trichomonas vaginalis was associated

with PPROM.66 However, recent molecular studies using 16

S quantitative polymerase chain reaction identified vaginal

microbes such as Atopobium vaginae and Sneathia/Leptotri-

chia within amniotic fluid after PPROM.59 Although individual

species were not studied for their RR for PPROM, an inverse

correlation was observed between total bacterial abundance

and gestational age at delivery.59 The recent identification of

an ornithine rhamnolipid pigment in GBS as an important viru-

lence factor determining whether GBS can penetrate the chor-

ioamnion illustrates that microbial factors also play a role in

preterm birth risk.67 The risk of PPROM likely involves a com-

bination of microbial pathogenicity, expression of specific

virulence factors, abundance of the microbial species, and

gestational age of exposure to the amniotic cavity.

Once bacteria enter the choriodecidua, degradation of col-

lagen can begin through direct proteolysis or through activation

of MMP (Figure 2). Several strains implicated in PPROM

directly lyse collagen including GBS and T. vaginalis. Bacter-

ial activation of the innate immune response within the chor-

ioamnion is broad based including proinflammatory

cytokines (interleukin [IL]-1b, TNF-a, and IL-6), chemokines

(macrophage chemotactic protein 1 or CCL2), and macrophage

inflammatory protein 1 or CCL3.68 Of the cytokines, TNF-a may

be the strongest mediator of MMP activation.69-72 Proinflamma-

tory chemokines also induce MMP-2 activation. Both TNF-a
and IL-1b are associated with biomechanical membrane weak-

ening in vitro when applied to full thickness membranes.73

Infection-induced MMP activation is likely the result of multi-

ple inflammatory effectors and pathways.74-77

Alternative mechanisms for activating MMP involve prosta-

glandin production by the amnion and chorion. Prostaglandin

E2 can be released directly from the membranes in response

to inflammatory cytokines. Alternatively, precursors can be

released from arachidonic acid in response to vaginal bacteria.9

Encouraging results come from in vitro studies of indometha-

cin and phytophenols demonstrating decreased expression of

cyclooxygenase (COX) 2 and decreased release of prostaglan-

dins leading to decreased activity of MMPs.52,73,75 Despite pro-

mising animal models, the single randomized controlled trial of

COX inhibitors to reduce the risk of preterm labor is disap-

pointing; COX inhibitors were associated with an increase in

preterm birth and PPROM.78,79

A recent study suggested a novel mechanism for infection-

associated PPROM that involves downregulation of genes

critical for tensile strength within the chorioamnion.80 In a non-

human primate model of an early GBS choriodecidual infec-

tion, there was a significant downregulation of multiple

cytokeratin and other genes critical for maintenance of chor-

ioamnion tensile strength including cytokeratins (CK3, CK6A,

CK7, CK8, CK14, CK15, CK16, CK19, and CK24), collagens

and collagen-binding proteins (COL1A2, COL7A1, COL5A1,

and LUM), and components of the intracellular matrix (laminins
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and desmoplakin). Perturbations in the cytokeratin network

within amniocytes were also evident by immunofluorescence

and transmission electron micrography. Weakening of the ten-

sile strength of the amnion appears to be an early event after

choriodecidual infection, and understanding how to prevent or

reverse this process may be necessary to prevent PPROM.

As we begin to understand how pathogens exploit the fetal

membranes to inhibit an innate immune response, we remain

limited by an incomplete understanding of the complex micro-

biology within the amniotic fluid, chorioamnion, and choriode-

cidual space. The introduction of molecular techniques to

identify uncultivable bacteria within the amniotic fluid, placen-

tal tissue, and fetal membranes from women in preterm labor

demonstrates that more than 60% of placental tissues and fetal

membranes are infected with 2 or more bacterial species.81

Similar studies support that microbial communities contribut-

ing to PPROM are more complex and diverse than previously

understood.81-83 The recent identification of intracellular bac-

teria in the placental basal plate in both preterm (<28 weeks)

and term births suggests that the placenta may itself be a source

of bacteria that could invade the amniotic fluid or trigger pre-

term labor.84 These data suggest that there may be commensal

communities of bacteria within the placenta, which play a role

in preventing or promoting bacterial trafficking and PPROM.

Exploring this microbial diversity within the amniotic fluid,

fetal membranes, and placenta may lead to further insight into

inflammatory causes of PPROM.

Abruption and Thrombin Mediators

Placental abruption is a strong risk factor for PPROM. The coa-

gulation cascade can be connected to many biological mechan-

isms implicated in PPROM: activation of MMP, inflammation,

oxidative stress, and apoptosis.85-89 The coagulation cascade

begins soon after vessel injury with the exposure of blood to

proteins like tissue factor. Tissue factor is highly expressed

in the choriodecidua.90 Thrombin, an early product of the

coagulation cascade, is a marker of abruption. In a small

case–control study, elevated maternal plasma levels of throm-

bin–antithrombin complexes were associated with PPROM.91

Much of the association between abruption and PPROM has

previously been attributed to inflammation. Thrombin activates

MMP (MMP-1 and MMP-9) and induces cytokines/chemo-

kines (IL-8 and CCL2) in the chorioamnion or decidua.85,92,93

However, recent studies also demonstrate that thrombin

directly weakens fetal membranes in a dose-dependent manner.

This appears to be mediated through MMP-9 activity and poly-

adenosine diphosphate ribose polymerase (PARP) cleavage.

Polyadenosine diphosphate ribose polymerase is a family of

proteins involved in DNA repair and is often associated with

apoptosis, whereas the same effects can be seen with adminis-

tration of TNF-a and IL-1b to chorioamnion explants; only

thrombin has these effects on the amnion in isolation.73,94 Of

interest, pretreatment with the antioxidant a-lipoic acid of

amnion explants later exposed to thrombin inhibits weakening

of fetal membranes, suggesting that oxidative stress may also

mediate the thrombin pathway to PPROM.51 These data

demonstrate several pathways activated by placental bleeding

to weaken fetal membranes, both inflammatory and

noninflammatory.

Cigarette Smoking

Smoking is a well-known clinical risk factor for PPROM, but

recent studies suggest that smoking-associated PPROM is

restricted to early gestational ages. In a large retrospective

Canadian study of nearly 18 000 women, smoking more than

10 cigarettes per day was significantly associated with PPROM

less than 28 weeks (OR 5.3, 95% confidence interval [CI]

2.2-12.7). The OR decreased as the gestational categories

approached term (term: OR 3.2, 95% CI 0.92-11.0).95 Another

retrospective Australian study including approximately 4500

preterm births found an association between smoking and

PPROM 27 to 33 weeks but not closer to term.96 These findings

suggest that the biological mechanism linking smoking and

PPROM differentially affects fetal membranes at early gesta-

tional ages, unlike other risk factors for PPROM. The biochem-

ical effect of smoking on membranes is under studied. Recent

findings link cigarette chemicals with increased apoptosis

(activated caspase 3) and oxidative stress in chorioamnion ex

vivo.44 Interestingly, the antioxidant capacity of amniotic fluid

increases in the third trimester, adding biologic mechanism to

the decreased association of cigarette smoking and PPROM

near term.97 Further research is needed to determine whether

the antioxidant capacity of membranes parallel that of amniotic

fluid.

Uterine Overdistention

Uterine overdistention results from rapid uterine growth fol-

lowing multiple gestations (ie, twins) or polyhydramnios. Poly-

hydramnios, excessive accumulation of amniotic fluid, occurs

secondary to a variety of conditions including fetal anomalies,

maternal diabetes, hydrops fetalis, or idiopathic etiologies.

Women with uterine anomalies (eg, bicornuate uterus) may

also experience overdistention, as anomalous uteri may have

a smaller capacity to carry a pregnancy. Not only are multiple

gestations affected more frequently by PPROM than singleton

pregnancies (7%-8% vs 2%-4%), but PPROM also occurs at

earlier gestations.9 Of PPROM cases prior to 24 weeks, 26%
are multiple gestations.98 This suggests that both the rate of

uterine distension and the total uterine volume contribute to

pathologic membrane rupture.

An ex vivo model of myometrial and placental tissues

demonstrates that mechanical stretch, as with uterine overdis-

tention, increases inflammation, upregulates MMPs and

increases catabolism of collagen. Mechanical stretch of myo-

metrial cells upregulated messenger RNA expression of

COX-2 and the oxytocin receptor, both of which are associated

with prostaglandin-driven uterine activity.99,100 Further studies

support increased cytokines (IL-8) and chemokines (CCL2)

with myometrial stretch.101,102 Although an ex vivo study
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demonstrated that progesterone inhibited increased chemokine

IL-8 and MMP-1 from cyclic stretch of human decidual

cells,103 a clinical trial of progesterone (17a-hydroxyprogester-

one caproate) administration to women with twins did not

reduce preterm birth.104 This discrepancy may be a function

of inappropriate dosing. Alternatively in vivo uterine stretch

may present unaccounted for factors preventing a progesterone

effect. Myometrial stretch is also associated with increases in

prostaglandin production, another activator of MMP.99,105

These studies demonstrate that myometrial stretch leads to

myometrial activation, upregulation of chemokines, and activa-

tion of MMPs, common factors among pathways to PPROM.

Further research is needed to determine whether these factors

contribute to PPROM associated with uterine overdistention.

Genetic Predisposition

Connective tissue weakening due to single gene defects, as in

Ehlers-Danlos syndrome, represents a unique pathway to

PPROM with an exceptionally high risk of rupture.106,107 The

initial report of women with Ehlers-Danlos syndrome found

that 78% of 18 affected women delivered prematurely;

PPROM occurred in 13 of the 14 preterm births.107 Interest-

ingly, the risk doubled among women with an affected fetus

(50%) compared to women with an unaffected fetus (20%). The

mutations in Ehlers-Danlos syndrome affect collagen or col-

lagen processing, likely substantially lowering the biomechani-

cal threshold for rupture. Case reports link PPROM to other

connective tissue disorders like restrictive dermopathy and

osteogenesis imperfecta type II.106 Notably, there is no associ-

ated risk of PPROM with Marfan syndrome, a genetic disorder

with mutations in fibrillin 1 leading to abnormal collagen struc-

ture.108 Fetal genetics are a strong risk factor for PPROM, par-

ticularly in connective tissue disorders with defects in several

collagen genes (COL1A1, COL1A2, and COL5A1), cartilage-

associated protein (CRTAP), leucine proline-enriched proteo-

glycan (leprecan) 1 (LEPRE1), and zinc metallopeptidase

STE24 (ZMPSTE24).106

More recently, single-nucleotide polymorphisms (SNPs)

were investigated as predisposing factors to PPROM. Studies

targeted women of African ancestry in their investigations due

to a disproportionate number of preterm births. Compelling

evidence exists that a functional SNP in the promoter of the

SERPINH1 gene (�656 C/T), enriched in women of West Afri-

can ancestry, leads to a reduction in stable fibrillar collagen

thus increasing the risk of PPROM.110 The SERPINH1 �656

T allele was significantly increased in African American neo-

nates born from pregnancies with PPROM in both an initial and

a subsequent case–control study (combined P value < .001).

Modulation by SNPs of MMP (MMP1, MMP8, and MMP9)

and other immune or apoptosis genes (TNF-a, IL-10, CD14,

and Fas) are also implicated in PPROM.110-116

Several other genetic loci are hypothesized to contribute to

the risk of preterm birth and PPROM. A large genetic associa-

tion study in a homogenous Chilean population was performed

to investigate the association between PPROM and 775 SNPs

in 190 candidate genes.117 After correction for multiple testing,

the maternal carriage of TIMP2 rs2277698 SNP (adjusted OR

2.12; P < .001) remained significantly associated with PPROM.

Interestingly, no associations with fetal SNP in this population

could withstand multiple hypothesis correction.

Recurrence of PPROM and Progesterone

Although spontaneous preterm birth recurs in approximately

25% of subsequent pregnancies, reports of PPROM recurrence

vary significantly (20%-32%).118-121 The use of progesterone

among some at-risk populations is associated with a reduction

in spontaneous preterm birth.122-127 However, there is little evi-

dence to support that it specifically reduces the risk of recurrent

PPROM. In 2003, publication of 2 trials of women at risk of

preterm birth suggested that progesterone supplementation

reduces the rate of a subsequent preterm birth. The first trial did

not report whether the index preterm birth occurred after

PPROM or spontaneous preterm labor.123 The latter trial

excluded women developing PPROM in the index pregnancy

from their analysis,124 for which they were highly criticized.128

Three additional randomized controlled trials of progesterone

to delay preterm birth were published in 2007.125-127 Of the 3

studies, 1 reported the rate of PPROM among women receiving

vaginal progesterone (37 of 309; 12.0%) versus controls (38 of

302; 12.6%), which was not statistically different.125 Not sur-

prisingly, the use of progesterone after the occurrence of

PPROM does not delay preterm birth as the chorioamnion does

not contain nuclear progesterone receptors.129,130 Therefore,

any impact of progesterone on membrane function is likely

indirect or mediated by nongenomic pathways.

The mechanisms by which progesterone prolongs preg-

nancy in women at high risk of preterm birth possibly include

oxytocin antagonism, support of cervical integrity, anti-

inflammatory effects, and a reduction in gap–junction forma-

tion.131,132 One study cultured fetal membranes in vitro and

demonstrated progesterone inhibition of apoptosis by reducing

caspase-3 activity in the fetal membranes at baseline and also

after TNF-a stimulation. Interestingly, progesterone did not

inhibit lipopolysaccharide induction of apoptosis in this study

suggesting that progesterone does not block all apoptotic path-

ways in the membranes.133 Despite the paucity of data support-

ing the use of progesterone as secondary prophylaxis for

recurrent PPROM, its use in women with a history of PPROM

to prevent preterm labor is reasonable given the large contribu-

tion of PPROM to preterm labor.

Future Directions

Over the last 15 years, studies identified new pathways to mem-

brane weakening and PPROM including thrombin, oxidative

stress, and likely apoptosis. Improved microbial detection tech-

niques demonstrate increased diversity of microbes contribut-

ing to PPROM as well as a higher prevalence of microbes in

association with PPROM than previously thought. The activa-

tion of MMPs by infection, thrombin, ROS, and mechanical
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stretch implies their critical role in membrane weakening as a

common downstream mediator for several pathways. However,

integration of the many pathways leading to PPROM in a uni-

fying model is challenging, as most studies studied a single bio-

logical mechanism or risk factor in isolation. Here, we propose

that PPROM occurs through the cumulative effect of several

activated pathways leading to a common downstream process

of MMP and cytokine activation.

New drugs that have anti-inflammatory or antioxidant prop-

erties that target PPROM and preterm birth pathways are being

actively investigated in vitro and in animal models. The inves-

tigation of microbial communities within the upper and lower

genital tract is another area likely to yield new strategies for

PPROM prevention. The discovery of microbes within the pla-

cental basal plate of normal pregnancies suggests that we must

further define which organisms might normally reside within

placental tissues. Commensal microbial communities within

the vagina, cervix, and placenta may play an important role

in preventing the trafficking of pathogenic bacteria into the

amniotic fluid. Identification of new pathogenic factors

involved in breach of the chorioamnion, such as the ornithine

rhamnolipid pigment of GBS, may lead to vaccine targets. Fur-

ther study of the heterogeneity in the human inflammatory

response to these microbes (eg, SERPINH1 �656 C/T) will

better identify women at risk of PPROM.

PPROM represents a common end point for several unique

pathologic events. Like preterm birth, complex pathways are

involved in PPROM that likely act synergistically to weaken

the membranes and predispose to rupture. Future research

should integrate the study of membrane biomechanics with

MMP and cytokine activation, oxidative stress, and apoptosis

to better understand the sequence and relative importance of

biological events leading to membrane weakening according

to clinical risk factors.
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