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Aberrant HOXA10 Methylation in Patients
With Common Gynecologic Disorders:
Implications for Reproductive Outcomes
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Abstract
HomeoboxA10 (HOXA10) is a transcription factor that is crucial for the development and patterning of the uterus during
embryogenesis. In the adult endometrium, HOXA10 expression is regulated by steroid hormones and embryonic signals.
Expression of sufficient HOXA10 messenger RNA is essential to endometrial receptivity and embryo implantation. Aberrant
methylation is believed to alter the expression of HOXA10. Methylation of this gene may be associated with decreased fertility,
implantation defects, and/or reproductive wastage seen in certain disease states that affect the female reproductive tract. This
study describes the differences in methylation patterns of HOXA10 gene in uterine myomas, endometriosis, uterine septum,
Asherman syndrome, or uterine polyps of women undergoing hysteroscopic surgery. In the endometrium of uteri with polyps,
submucosal myomas, and intramural myomas, there were CpG sites within the HOXA10 gene that were highly methylated
compared to controls. The HOXA10 gene in women with endometriosis was hypomethylated compared to controls. DNA
methylation may be a common molecular mechanism that results in reproductive dysfunction seen in gynecologic disease.
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Introduction

Many common gynecologic conditions such as endometriosis

or uterine myomas are associated with infertility.1-3 Embryo

implantation defects are at least partly responsible for the

decreased fertility seen in women with these conditions.2,4-8

The HOX/Hox (human/rodent) family of genes encode tran-

scription factors that have a role in embryo development and

particularly in female reproductive tract.9-11 HomeoboxA10

(HOXA10) is expressed in the uterus of the developing

embryo.12 In adult humans, HOXA10 is expressed in endome-

trial glands and stroma. Its expression peaks during the mid-

luteal phase of the cycle, which coincides with the time of

endometrial receptivity to embryo implantation.13-15 Expres-

sion of sufficient HOXA10 is known to be essential to endo-

metrial receptivity and embryo implantation.16-18 This is

clearly demonstrated in the HOXA10 knockout mouse, which

is sterile secondary to impaired endometrial receptivity. The

HOXA10�/� mouse produces viable embryos, yet neither

HOXA10�/� nor wild-type embryos implant. However, when

the HOXA10�/� embryos are transferred to the wild-type

mouse, they implant and develop normally.19-21 Likewise, in

humans, cyclic expression of HOXA10 in the adult endome-

trium9,13 is required for endometrial receptivity. In several

common gynecologic disease states that are associated with

implantation defects, such as endometriosis, hydrosalpinges,

polyps, and submucosal myomas, defective HOXA10 expres-

sion has been demonstrated.22-29

DNA methylation regulates gene expression30-32 and has

been associated with several inflammatory diseases and can-

cers.33-36 Aberrant methylation is known to alter the expression

of HOXA10.37 Methylation of this gene may be associated with

decreased fertility, implantation defects, and/or reproductive

wastage seen in certain disease states that affect the female

reproductive tract.38-41 Our objective was to examine methy-

lation of the HOXA10 gene in the endometrium in disease

states that affect the female reproductive tract and embryo

implantation, specifically uterine myoma, endometriosis,

uterine septum, hydrosalpinges, uterine polyps, and Asher-

man syndrome. We hypothesized that methylation of the

HOXA10 gene may be a common mechanism explaining the
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aberrant expression of the gene and reproductive dysfunction

observed in these disorders.

Materials and Methods

Sample Collection

We collected endometrial samples from a total 84 women with

submucosal uterine myomas (n ¼ 13), intramural uterine myo-

mas (n ¼ 13), endometriosis (n ¼ 27), uterine septum (n ¼ 6),

Asherman syndrome (n ¼ 8), hydrosalpinx (n ¼ 4), or uterine

polyps (n ¼ 11) undergoing hysteroscopic surgery as well as

endometrial samples from controls (n ¼ 7) who were anon-

ymous egg donors free from gynecologic disorders undergoing

oocyte retrieval. Some women had more than 1 condition (ie,

endometriosis and hydrosalpinx) and were included separately

in each group (Table 1). This study was approved by the Yale

University Human Investigation Committee. At the time of

biopsy, each endometrial tissue sample was stored in 1 mL of

RNAlater (Qiagen, Valencia, California) at �80�C until RNA

and DNA isolation.

Quantitative Real-Time Polymerase Chain
Reaction Analysis

The RNA was extracted using the RNeasy Mini kit (Qiagen),

according to the manufacturer’s protocol. Messenger RNA

(mRNA) levels were analyzed by quantitative real-time reverse

transcriptase-polymerase chain reaction (qRT-PCR) using the

Bio-Rad iCycler iQ system (Bio-Rad Laboratories, Hercules,

California). For each sample, 500 ng of total RNA was reverse

transcribed using an iScript cDNA Synthesis Kit (Bio-Rad

Laboratories). Real-time RT-PCR was performed using a

MyiQ Single-Color Real-Time PCR Detection System and iQ

SYBR Green Supermix (both from Bio-Rad Laboratories). The

sequences of all primers and the real-time RT-PCR reaction

conditions have been described previously.42 Each assay was

run in duplicate with each set of primers, and samples without

mRNA were included as negative controls. HomeoboxA10

gene expression was normalized to the expression of b-actin

for each run. Relative mRNA expression for each gene was

calculated using the comparative cycle threshold (Ct) method

(known as 2DDCT method).43-44 Results are presented as the

mean + standard error (SE). Statistical significance was deter-

mined and analyzed by Student t test. P values less than .05

were considered statistically significant.

DNA Isolation and Methylation

DNA was isolated using the DNeasy Mini Kit (Qiagen),

according to the manufacturer’s protocol. Quantitative DNA

methylation analysis was performed on the collected tissue,

using Sequenom MassARRAY quantitative methylation anal-

ysis and EpiTyper technology, in 3 CpG-rich fragments in 2

regions of the HOXA10 gene (total 39 distinct CpG sites/

fragments), to detect differences in methylation. The first CpG

island is located 50 base pair upstream of exon 1, and 2 addi-

tional islands are located in the intron flanked by exons 1 and 2.

Briefly, genomic DNA underwent bisulfite treatment followed

by PCR amplification using a T7-promotor tag. In vitro RNA

transcription was performed followed by uracil-specific clea-

vage. Matrix-assisted laser desorption/ionization time-of-flight

mass spectrometry was used to analyze the cleavage products

and produced distinct signal pattern pairs indicating nonmethy-

lated and methylated DNA. Due to limitations of this tech-

nique, there were a few cleavage products that were

indistinguishable as they have the same mass. In fragment 1,

sites CpG37 and CpG4, sites CpG38 and CpG21, and sites

CpG17 and CpG30 could not be distinguished from each other.

Similarly, sites CpG8 and CpG9 in fragment 2 were indistin-

guishable. Differences in endometrial HOXA10 expression and

mean percentage methylation at different CpG areas between

the disease groups and controls were determined using Student

t test. P < .05 was considered statistically significant. To deter-

mine whether there was an association between the level of

methylation and gene expression, a Pearson product-moment

correlation coefficient was calculated.

Results

The CpG islands present in HOXA10 gene are shown in

Figure 1. The CpG sites or clusters present at different regions

in HOXA10 gene are designated as fragment 1 if in the pro-

moter region, while fragments 2 and 3 are located in the intron

regions. The summary of the Sequenom MassARRAY quanti-

tative methylation analysis of the CPG areas located in the 50

promoter region (fragment 1) is shown in Figure 2, while in the

intron region (fragment 2 and 3) is shown in Figures 3 and 4.

The average percentage methylation value at each numbered

CpG site or cluster of CpG sites for the 84 endometrial samples

is shown. The results show the overall low levels of methyla-

tion. There were very few CpG sites with greater than 50%
methylation. However, some individual sites were highly and

specifically methylated. The number of CpG sites with

Table 1. Patients’ Characteristics.a

Condition

Age
(Mean + SD),

years
Gravity
(Mean)

Parity
(Mean)

Controls (n ¼ 7) 34.9 + 3.9 1.7 1.1
Asherman (n ¼ 8) 33.5 + 3.3 1.4 0.5
Hydrosalpinx (n ¼ 4) 37.5 + 5.8 1.5 1
Endometriosis (n ¼ 27) 32.3 + 6.7 1.1 0.7
Intramural myoma (n ¼ 13) 39.2 + 7.6 1.5 1
Submucosal myoma (n ¼ 13) 36.6 + 6.2 0.6 0.6
Polyp (n ¼ 11) 33.8 + 3.7 0.5 0.5
Septum (n ¼ 6) 32.7 + 5.1 1.2 1.2

Abbreviation: SD, standard deviation.
a N sums to greater than 84 as there was an overlap of patients’ diagnosis.
There were 6 patients with more than 1 diagnosis: 2 with submucosal myomas
and septum, 1 with history of endometriosis and polyp, 1 with endometriosis
and hydrosalpinx, and 1 with endometriosis and submucosal myoma.
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significantly altered methylation status compared to controls

by disease is shown in Table 2. Specifically, CpG17 and CpG4

in the promoter region and CpG12 in the second intronic region

of HOXA10 were highly methylated in the control samples and

had significantly greater percentage methylation than many of

the disease states. At other CpG sites, the disease state endo-

metrium had CpG sites with significantly greater percentage

methylation compared to controls. Specifically, in polyp endo-

metrium, 4 of the 6 statistically different CpG clusters in the

promoter region had higher percentage methylation compared

to controls (Figure 2; CpG18-CpG20, CpG21, CpG26, and

CpG27-28). In endometrium of uteri with intramural myomas,

2 of the 4 statistically different CpG clusters in the promoter

region (Figure 2: CpG 21 and 22-25), as well as 1 CpG site in

the second intronic region (Figure 4: CpG13- CpG15), had

higher methylation compared to controls. In endometrium of

uteri with submucosal myomas, 3 of the 4 statistically different

CpG clusters in the promoter region had higher degrees of

methylation compared to controls. Interestingly, endometrium

of submucous and intramural myomas as well as polyp had two

of the same CpG sites or clusters, CpG21 and CpG cluster

(CpG_22.23.24.25) located in the promoter region, hyper-

methylated compared to controls. Two of the diseases (submu-

cosal myoma and polyp) shared a second CpG cluster

(CpG_12.13.14.15.16) also located in the promoter, which had

greater methylation as compared to controls in both. Submu-

cous and intramural leiomyoma also showed distinct methyla-

tion differences as well. Overall, the percentage of CpG sites or

clusters within each fragment with statistically significant dif-

ferent methylation levels between diseases and controls was

low. However, all diseases studied had at least 1 CpG cluster

in the promoter region of HOXA10, which was differently

methylated when compared to controls. Many of the diseases

also demonstrated at least 1 CpG cluster with methylation sig-

nificantly different from controls in intronic fragment 2 and

few diseases were associated with differences in methylation

in intronic fragment 3 as shown in Figures 1, 3, and 4.

When percentage methylation was averaged for each CpG

island or fragment in disease states and compared to controls, 3

diseases (submucosal myoma, polyp, and endometriosis) were

found to have significantly different CpG island wide percent-

age methylation compared to controls. In submucosal myoma,

fragment 2 had 10% methylation compared to 14% in controls

(P ¼ .008) and fragment 3 had 12% methylation compared to

16% in controls (P ¼ .014). In polyp, fragment 3 had 12%
methylation compared to 16% in controls (P ¼ .049). In endo-

metriosis, all fragments were significantly less methylated

compared to controls—fragment 1: 16% versus 21% (P ¼
.004); fragment 2: 8% versus 14% (P ¼ .002); fragment 3:

13% versus 16% (P ¼ .006). In all cases, the disease states

were found to have less overall methylation compared to con-

trols. Percentage methylation was also averaged over the whole

HOXA10 gene. Gene-wide methylation was found to be sig-

nificantly different only in 1 disease, endometriosis, compared

to controls (14% vs 17%, P ¼ .001).

Quantitative real-time reverse transcriptase-polymerase

chain reaction was performed to assess the expression levels

of HOXA10 in disease and normal endometrium. RNA was

available from 43 disease state endometrial samples. The

RT-PCR results for the disease samples were normalized to

the controls, and these data were correlated with percentage

DNA methylation at significantly different CpG sites or clus-

ters. There was a correlation between DNA methylation and

gene expression in endometrium from submucous myoma at 1

CpG cluster in the second intronic region (Figure 4; CpG

4.5.6; r ¼ .72, P ¼ .02). There was also a correlation in

endometriosis between CpG site 11 methylation in the second

intronic region and gene expression (r ¼ �.9, P ¼ .04). We

also observed that fragment-wide DNA methylation for frag-

ment 3 in endometriosis was also correlated with gene expres-

sion (r ¼ �.9, P ¼ .04).

Discussion

Our study reports the differential methylation of HOXA10 CpG

sites in human female reproductive diseases such as submuco-

sal myoma, endometriosis, intramural myoma, septum, polyps,

hydrosalpinx, and Asherman syndrome compared to normal

female samples. These data suggest that the HOXA10 gene

may be differently methylated in multiple diseases and that

DNA methylation may be a common means by which these

gynecologic diseases affect the HOXA10 gene and its expres-

sion in female reproductive track. DNA methylation has not

been well studied in most of the gynecological diseases

Figure 1. HomeoboxA10 (HOXA10) gene structure. The genomic region of HOXA10 showing the locations of the CpG islands. The CpG sites
or clusters present on the gene are designated as fragments 1, 2, and 3. Intron region containing 2 clusters of CpG islands (fragment 1 and 2),
while promoter region having 1 cluster (fragment 1).
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mentioned previously, except for endometriosis and uterine

polyps.45-48 Overall, we noted low levels of methylation of the

HOXA10 gene in both disease and control endometrium. A few

highly specific sites had high levels of methylation in controls.

Methylation is associated with the absence of disease at these

sites, and loss of methylation can signal disease. The net

absence or presence of methylation is less important than the

specific pattern of methylation measured at the level of indi-

vidual C/G base pairs.

All diseases had at least 1 CpG site that was significantly

differently methylated as compared to normal. Yet each disease

had a unique pattern of methylation of the HOXA10 gene, and

Figure 2. Summation of Sequenom MassARRAY methylation analysis of HomeoboxA10 (HOXA10) CpG islands in the promoter region in each
disease state. The percentage DNA methylation of individual CpG sites or clusters, averaged for each disease state, from controls is indicated by the
bars (blue is disease and red is controls). Each graph represents a different disease, submucosal myoma (A), endometriosis (B), intramural myoma (C),
septum (D), polyp (E), hydrosalpinx (F), and Asherman syndrome (G). The CpG positions from each genomic region analyzed are numbered in
ascending order. Some CpG sites are grouped because of the limits of the technique, which do not allow them to be resolved individually. *Particular
CpG sites or clusters with significantly different methylation levels compared to controls. An absent bar indicates that insufficient methylation data
were obtained due to very low levels of methylation. (The color version of this figure is available in the online version at http://rs.sagepub.com/)
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methylation of some CpG sites appears to be disease specific.

This suggests that there may be disease-specific mechanisms of

HOXA10 methylation and gene regulation. Further, aberrant

methylation of the HOXA10 gene is likely related to its aber-

rant expression, and this aberrant expression is thought to have

a role in the reproductive dysfunction such as implantation

failure seen in these diseases, for example, in endometriosis

as reported previously.37

CpG sites located in the promoter region of HOXA10 had

significantly increased methylation compared to normal in 3

diseases: polyp, intramural myoma, and submucosal myoma.

CpG21 was consistently methylated. CpG methylation,

Figure 3. Summation of Sequenom MassARRAY methylation analysis of HomeoboxA10 (HOXA10) CPG island intronic region 1 (fragment 2) in each
disease state, submucosal myoma (A), endometriosis (B), intramural myoma (C), septum (D), polyp (E), hydrosalpinx (F), and Asherman syndrome (G).
*Particular CpG sites or clusters with significantly different methylation levels compared to controls. Percentage DNA methylation is represented by the
bars, with disease state showed in blue and controls in red. (The color version of this figure is available in the online version at http://rs.sagepub.com/)
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especially in the promoter region of genes, typically results in

decreased gene expression.48 The diseases studied are known

to result in decreased expression of HOXA10 in the endome-

trium.49 Our findings of increased methylation at certain CpG

sites in the promoter of HOXA10 suggest that this methylation

correlates with previous reports of decreased HOXA10 gene

expression in these diseases. Interestingly, the same sites were

hypermethylated in all 3 diseases, suggesting that there may be a

common mechanism regulating HOXA10 gene expression in

uteri with endometrial polyps as well as intramural and submu-

cosal myomas. Expression of HOXA10 correlated with methy-

lation at only a few of the CpG sites tested. It is likely that a

combination of methylation/demethylation of multiple sites

determines the net change in gene expression. Promoter methy-

lation or demethylation may be a common mechanism by which

multiple pathologic processes affect endometrial receptivity.

Figure 4. Summation of Sequenom MassARRAY methylation analysis of HomeoboxA10 (HOXA10) CPG island intronic region 2 (fragment 3)
in each disease state, submucosal myoma (A), endometriosis (B), intramural myoma (C), septum (D), polyp (E), hydrosalpinx (F), and Asherman
syndrome (G). *Particular CpG sites or clusters with significantly different methylation levels compared to controls (blue is disease and red is
controls). Percentage methylation is on Y axis, and CpG site is on X axis. (The color version of this figure is available in the online version at
http://rs.sagepub.com/)
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In our study, we found hypomethylation of HOXA10 in the

endometrium of women with endometriosis. This was noted at

specific CpG sites both within the promoter as well as the CpG

islands found in the intronic regions of the gene. Further, CpG

island-wide as well as gene-wide decreased methylation was

found in the HOXA10 gene in endometriosis compared to con-

trols. This is in contrast to other studies, which have shown

increased methylation of the HOXA10 gene, especially in the

promoter region, in endometriosis.50-53 The sequenom platform

allows for precise measurement and quantification of DNA

methylation. This may explain some of the differences seen

in methylation as compared to older studies using cruder tech-

niques. However, this would not explain the overall low levels

of methylation compared to fertile controls found in our study.

Perhaps, we found a different pattern of methylation of the

HOXA10 gene because our patient population differs from

those reported previously. The patients with endometriosis in

this study were all treated. Some patients had only a documen-

ted history of endometriosis and possibly did not have active

endometriosis at the time of surgery. All patients and animals

in prior studies had active disease. Perhaps, this variation in the

spectrum of endometriosis and its treatment state affected the

average methylation of the HOXA10 gene. Epigenetic changes

such as DNA methylation, although stable through cell divi-

sions, are believed to be reversible or modifiable by lifestyle

factors.54,55 It is likely that the use of medications, such as the

hormonal medications taken by some patients in this study,

altered methylation patterns of this gene in agreement with the

results reported for other genes.56,57 This opens up the possi-

bility that prolonged therapy may reverse the epigenetic altera-

tions seen in this disease. Further, expression of HOXA10 is

known to be decreased in the endometrium of women with

endometriosis.22,27,46,49 Perhaps, the decrease in methylation

of the HOXA10 gene observed in our cohort58 would allow for

the binding of inhibitors of transcription, thus explaining the

lower expression of HOXA10 observed in this disease. Of all

the gynecologic diseases that we studied, endometriosis had the

greatest number of significant differences in HOXA10 methy-

lation compared to normal. Therefore, we demonstrate that

endometriosis is an epigenetic disease associated with aberrant

methylation of HOXA10.

Limitations of this study include the fact that all patients

were undergoing infertility evaluation and treatment. Different

changes in methylation may be seen in women who are fertile;

however, we believe that the significant differences seen with

each disease make it likely that these changes are disease

specific rather than all related to infertility. Further, many

of the patients received previous medical therapies for their

disease. We did not have sufficient numbers of patients using

each individual therapy to enable each to be analyzed sepa-

rately. Although several sites of epigenetic regulatory control

were identified, most individual changes in methylation did

not alter gene expression under the conditions tested. Changes

in methylation are likely not all functionally relevant, how-

ever, the precise combination of methylation changes that

regulate gene expression are likely more complex than the

net level of methylation. Complex combinatorial patterns of

increased and decreased methylation contribute to the control

of gene expression.

We show that the endometrium of women affected by com-

mon gynecologic diseases appears to have a unique disease-

specific pattern of methylation of the HOXA10 gene. We

anticipate that a ‘‘methylation signature’’ could be developed

for each disease. Analyzing DNA methylation patterns of spe-

cific genes may allow for a noninvasive method to identify

patients with a specific disease or at risk for certain adverse

clinical outcomes such as embryo implantation failure. Addi-

tionally, if therapies to treat disease affect DNA methylation

patterns in the endometrium, analyzing these patterns may be a

way to assess response to treatment. In conclusion, DNA

methylation, particularly HOXA10 gene methylation, may be

a common molecular mechanism that results in reproductive

dysfunction seen in gynecologic disease.
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