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Abstract
Binding of hepatocyte growth factor (HGF) to the c-MET receptor has mitogenic, motogenic, and morphogenic effects on cells.
The versatile biological effects of HGF and c-MET interactions make them important contributors to the development of
malignant tumors. We and others have demonstrated a therapeutic value in targeting the interaction of c-MET and HGF in
epithelial ovarian cancer (EOC). However, both HGF and c-MET are expressed in the normal ovary as well. Therefore, it is
important to understand the differences in mechanisms that control HGF signaling activation and its functional role in the normal
ovary and EOC. In the normal ovary, HGF signaling may be under hormonal regulation. During ovulation, HGF-converting
proteases are secreted and the subsequent activation of HGF signaling enhances the proliferation of ovarian surface epithe-
lium in order to replenish the area damaged due to expulsion of the ovum. In contrast, EOC cells that exhibit epithelial char-
acteristics constitutively express both c-MET and HGF-converting proteases such as urokinase-type plasminogen activator. In
EOC, mechanisms to control the activation of HGF signaling are absent since HGF is provided locally from the tissue micro-
environment as well as remotely throughout the body. Potential incessant HGF signaling in EOC may lead to an increase in
proliferation, invasion through the stroma, and migration to other tissues of cancer cells. Therefore, targeting the interaction of
c-MET and HGF would be beneficial in treating EOC.
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Introduction

Hepatocyte growth factor (HGF) is a multifunctional cytokine

that stimulates cell proliferation, migration, and extracellular

matrix (ECM) invasion. Versatile biological functions of

HGF are mediated through its binding to the specific receptor,

c-MET.1 Hepatocyte growth factor is primarily produced by

mesenchymal cells and acts on cells of mainly epithelial ori-

gin, mediating mesenchymal–epithelial interactions.1

Mesenchymal cells secrete HGF in an inactive form that ini-

tially binds to heparan sulfate proteoglycans within the ECMs

or cell surface.2-4 This inactive single-chain polypeptide

requires proteolytic cleavage into an active heterodimer via

hepatocyte growth factor activator (HGFA) to acquire c-MET

binding activity.5 Hepatocyte growth factor activator is a ser-

ine protease that also requires protease-mediated cleavage for

its activation.4,6 Other serine proteases including urokinase-

type plasminogen activator (uPA), tissue plasminogen activa-

tor (tPA), and plasmin also convert pro-HGF to the active

form, although they are less effective compared to HGFA.6

Matriptases have been shown to activate HGF in ovarian can-

cer cells.7,8 In addition, HGF activation is negatively

regulated by HGFA inhibitors such as HGFA inhibitor types

1 and 2 (HAI-1 and HAI-2).4,9

Due to the pleiotropic effects of HGF as a mitogen, moto-

gen, and morphogen, it has been implicated in morphogenesis

and the organization of tissues during embryonic development

and regeneration after tissue injury. Studies have demonstrated

that HGF plays an integral role in the repair of liver, lung, skin,

and kidney epithelium.10,11 Upon tissue damage, HGFA under-

goes proteolytic cleavage by downstream proteases (eg, throm-

bin) of the blood coagulation cascade and becomes activated.6

Many studies have suggested that HGF activation rather than
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local production of HGF is the rate-limiting step in HGF-

induced signaling at the damaged areas.4,9,12 As such, HGF

signaling can be influenced by the following 3 states: (1) acti-

vation of HGF by HGFA, (2) inhibition of HGFA by HAI-1 and

HAI-2, or (3) maintenance of the balance in levels of active

HGFA and HGFA inhibitors.4 This mode of regulation may

make HGF activation selective at the site of tissue damage.4

Versatile functions of HGF also make it an important con-

tributor to the onset and progression of cancer as demonstrated

in many different types of cancer.13,14 c-MET expression has

been shown to be high in a variety of tumors.13,15 c-MET

activation is primarily associated with the migratory and inva-

sive property of cancer cells.16,17 However, it has also been

demonstrated that cancer cell lines with c-MET amplification

are dependent on c-MET for their growth, and subsequently,

c-MET inhibition induces cell death.15,18,19 c-MET overex-

pression is also related to the resistance to antiangiogenic

therapy.20 Therefore, binding of HGF induces activation of

c-MET, which triggers cancer cells to proliferate, invade

through the stroma, and migrate. In addition, c-MET activation

is often related to resistance to cell death and cancer therapy.

Ovarian cancer is the seventh most common cancer in

women worldwide, with the highest incidence rate in North

America and Europe.21 There are 2 forms of the disease:

‘‘nonepithelial’’ and ‘‘epithelial.’’ Nonepithelial types are

divided into either germ cell or sex cord tumors and account

for *10% of all ovarian cancers.22 The epithelial type is a

more common and deadly form of ovarian cancer. About

90% of all ovarian cancers are epithelial; however, the origin

of this disease is still a subject of debate.23-25 A growing num-

ber of molecular-based studies have suggested that these

epithelial ovarian cancer can develop from cells not directly

related to the ovary, including the fallopian tube, gastrointest-

inal tract, cervix, and endometriosis.25,26 Other scientists still

believe that a subset of these epithelial tumors are derived from

a single-cell mesothelial layer, termed the ‘‘ovarian surface

epithelium’’ (OSE).27 Epithelial ovarian cancer encompasses

several histologically and molecularly distinct malignancies in

the ovaries, including serous, mucinous, endometrioid, and

clear cell carcinomas.28,29 Each of these distinct subtypes has

been traced back to independent cell origins. In the case of

serous ovarian cancer, there is growing evidence that epithelial

cells within the fallopian tube are the origin of many of these

tumors and grow in the ovary as a result of ovulation: The

repeated rupture and repair process during a woman’s men-

strual cycles creates a local inflammatory microenvironment

in which signals are produced at the ovulatory wound site of the

ovary that can recruit extraovarian premalignant and malignant

cells to the ovary.25,26 This may also explain why incessant

ovulation is a risk factor for ovarian cancer and why the inhi-

bitory factors of ovulation such as multiple pregnancies, breast-

feeding, late menarche, and the use of oral contraceptives

reduce ovarian cancer risk.30 The origins of mucinous ovarian

tumors are thought to be metastatic tumors from the gastroin-

testinal tract or cervix. For clear cell and endometrioid ovarian

cancers, they are considered to originate from endometriosis.

But for all of these EOC, the interplay between tumor cells and

the microenvironment of the ovary is critical in its progression.

We and others have demonstrated the importance of the tumor–

stromal interaction mediated by c-MET and HGF and the ther-

apeutic value of targeting their interaction in EOC.31-35 How-

ever, both molecules are expressed in the normal ovary as well.

Therefore, it is important to understand the differences in the

regulation of their expression and the function mediated by

their interaction at the normal ovary and EOC.

In this review, we examine the expression levels of c-MET,

HGF, and HGF-converting enzymes in both the normal ovary

and EOC and discuss their functional importance. The goal is

to highlight the importance of targeting the interactions of

c-MET and HGF in EOC and provide a rationale for targeting

c-MET in the clinic.

Expression and Functional Roles of HGF
Signaling Molecules in the Normal Ovary

The ovary is derived from multiple embryonic structures

including the coelomic epithelium, the subcoelomic mesoderm,

and the primordial germ cells from the yolk sac endoderm. The

remaining components of the female genital tract, including the

fallopian tubes, uterus, cervix, and upper vagina, are derived

from the Müllerian ducts. As a result of its complex embryo-

logic development, the ovary is composed of various cell types

that serve specific structural, hormonal, or reproductive func-

tions. Additionally, each cell type can develop into a distinctly

different neoplasm as described earlier.

Hepatocyte growth factor and c-MET are expressed in nor-

mal ovaries of various mammalian species, including human,

mouse, cow, sheep, and rat.32,36-40 Hepatocyte growth factor

signaling in the normal ovary is largely studied in granulosa

cells and theca cells. Both cell types contain HGF signaling

molecules, including c-MET, HGF, and HGFA.38,40 The local

secretion of HGF in human follicles was further demonstrated

by Osuga et al.37 In those cells, the expression levels of c-MET,

HGF, and HGFA are hormonally regulated.38,40,41 Further-

more, studies have suggested that HGF signaling in granulosa

cells functions to enhance cell proliferation and to prevent

apoptosis.38,40,42 Hepatocyte growth factor signaling downre-

gulates ovarian steroidogenesis,38,43 which may contribute to

the inhibition of apoptosis and support folliculogenesis.40

Thus, growing follicles contain the molecules necessary for

HGF signaling, and this may play a role in folliculogenesis.

Hepatocyte growth factor is also expressed in the stroma of

the ovary, and both HGF and c-MET are present in OSE, sug-

gesting the potential importance of the autocrine/paracrine

effect of HGF in OSE.39,44 Interestingly, the expression level

of HGF is greater in OSE compared to the underlying stroma.39

Although the functional role of HGF signaling in human OSE

is not well understood, it has been speculated that HGF signal-

ing may be related to the involvement of OSE in ovulation.45

An ovary undergoes cyclic disruption and repair with complex

remodeling during ovulation. Ovulation is induced by a surge

of follicle-stimulating hormone and luteinizing hormone,
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which results in follicle rupture mediated by proteolytic

enzymes of a plasmin-generating system and collagenases.46

Studies suggest that OSE, which is derived from the coelomic

epithelium, is essential in the ovulatory process and that these

epithelial cells secrete uPA and other proteolytic enzymes in

response to the rise in the concentration of locally delivered

gonadotropins via the follicular vascular wreath.45,46 We and

others have also demonstrated that immortalized OSE cells

express uPA and matrix metalloproteinases.47,48

During ovulation, extensive architectural remodeling occurs

in OSE, which includes simultaneous apoptotic degradation of

the monolayer of OSE at the apex of the ovulating follicle and

cell proliferation of OSE to cover the area affected by follicular

rupture.49-52 It has been suggested that HGF may play a role in

mediating mitogenic action on OSE by activating the c-MET

receptor during ovulation.38,39,41,53 However, studies have

found conflicting results regarding the action of HGF on cell

proliferation. In one study, it was found that extraneous HGF

did not promote the growth of ovine OSE,54 whereas others

found that HGF could stimulate proliferation of human OSE

cells.44 The factor that derived different results was later attrib-

uted to the presence of fibronectin and other extracellular com-

ponents that occur in vivo.44,55 Hepatocyte growth factor

induces the mitosis of rat OSE when they are grown on ECM

proteins, including fibronectin, but not in a serum-free condi-

tion.55 Furthermore, physiological HGF is more potent in sti-

mulating biological activities probably due to the presence of

other extracellular components such as heparan sulfate secreted

by stromal cells.33 Heparan sulfate enhances HGF association

and its mitogenic activity.56 Thus, the ovulation process may

resemble wound repair in vivo and HGF signaling may be

involved in the regeneration of OSE after the ovarian rupture.

Regulation of HGF Signaling in Normal OSE

Hepatocyte growth factor production is greatly enhanced in the

damaged tissues and to some degree in other tissues.5,6 How-

ever, conversion of the single chain form of HGF to the active

heterodimer only occurs in injured tissues.5,57 It is well estab-

lished that HGFA expression is induced in response to tissue

damage.5,6,58 In addition, during gastrointestinal tract develop-

ment, the morphogenic action of HGF is regulated not only by a

local increase in HGF production but also by an increase in

HGFA levels.12 Sisson et al59 have demonstrated that the acti-

vation of HGF by uPA is necessary for muscle regeneration and

myoblast proliferation. Likewise, uPA and tPA are required

during the reepithelialization process in keratinocytes after tis-

sue injuries.53 Thus, studies suggest that activation of HGF by

HGF-converting enzymes primarily regulates HGF action and

acts as a mechanism for localizing HGF activities to damaged

tissues during wound repair.

The ovulatory process is considered hormone-induced tissue

injury. Hepatocyte growth factor activities during ovulation

appear to be regulated similarly to other injured tissues as

described above. Although studies have not been reported in

human ovary, ovine OSE that is in close contact with the apical

wall of preovulatory follicles secretes uPA into the underlying

stroma in response to an abrupt increase in local hormone

levels during ovulation.46 Proteolytic enzymes secreted by

OSE weaken and degrade underneath connective tissues.45

Secreted proteases may also induce the release of HGF from

degrading connective tissues, increasing locally available

HGF.33,60 In addition, proteolytic enzymes may activate HGF

and trigger HGF signaling selectively in the damaged area. It

is not well understood whether the expression levels of HGF,

c-MET, and HGF-converting enzymes are also hormonally

regulated in OSE and the underneath stroma. However, stud-

ies suggest that HGF is activated during ovulation and con-

tributes to the regeneration of OSE to replenish damaged

epithelium by the extrusion of ovum,38,39,41,53 very similar

to the regeneration of epithelial cells during wound repair

observed in other tissues.

Expression of c-MET and HGF-Converting
Enzymes in EOC

High c-MET expression has been demonstrated in many can-

cers of epithelial origin including ovarian cancer. c-MET

expression has been shown to be enhanced in 11% to 60% of

EOC patient samples.31,32,61,62 Studies have also suggested that

high c-MET expression is associated with lymph node metas-

tasis, high histologic grade, and low survival rate in patients

with ovarian cancer.31,35 However, mechanisms governing

aberrant upregulation of c-MET are not well understood.

Somatic mutations on the c-MET are rarely found in most

human cancers.15,63 Overexpression of c-MET in EOC does

not appear to be related to gene amplification.32 A recent study

indicated that the high expression of c-MET in cancer cells

might be related to TP53 mutation, which occurs in most if not

all high-grade serous ovarian cancers.64 Mutant p53 enhances

c-MET trafficking mediated by Rab coupling protein-

dependent receptor recycling.65 Thus, the mechanisms contri-

buting to aberrant expression of c-MET in EOC are not fully

understood, but high levels of c-MET significantly correlate

with a poor prognosis in patients.35

Hepatocyte growth factor-converting enzymes are upregu-

lated in EOC as well. Although HGFA has not been reported to

be aberrantly expressed in EOC cells, matriptase, a serine pro-

tease of epithelial cells, is highly expressed in most malignant

ovarian cancers.7,8 Another serine protease, hepsin, was

reported to be overexpressed in over 80% of ovarian carcino-

mas.66 Urokinase-type plasminogen activator levels are

enhanced in epithelial tumors, including EOCs,67 and are asso-

ciated with tumor progression.68 In addition, studies have

shown coexpression of c-MET and HGF-converting proteases

in epithelial cells during tumorigenesis and morphogenesis.

Matsubara et al12 demonstrated that HGFA messenger RNA

(mRNA) is present only in epithelia that coexpress c-MET

mRNA, and Kwon and colleagues reported that EOC cells

expressing c-MET also contain uPA.48 Furthermore, the case-

inolytic activity of the cells that express both uPA and c-MET

is enhanced when they are cultured within 3-dimensional
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ECMs derived from fibroblasts,48 suggesting that the proteases

secreted by EOC cells are functional and secretion can be

enhanced when cells are in contact with ECMs. Therefore,

c-MET and HGF-converting proteases are coexpressed in EOC

cells instead of increasing the protease expression upon tissue

damage as is expected in the normal ovary (Figure 1).

Expression of HGF in EOC

The enhancement of c-MET expression in EOC has been well

documented39; however, cancer progression may also alter

HGF expression. Nontumorigenic OSE expresses undetectable

levels of c-MET31,44 but exhibits strong expression of HGF.39

In comparison, EOC cells contain high levels of c-MET but

little or no HGF.31,39,69 Thus, c-MET expression is enhanced

while HGF expression is diminished during ovarian cancer

progression. There are no suggested mechanisms to explain

these peculiar changes in expression levels of c-MET and HGF

as ovarian progenitor cells become malignant. However, these

changes may be associated with epithelial characteristics of

EOC. Human OSE exhibits both epithelial and mesenchymal

phenotypes,70 whereas they often lose mesenchymal character-

istics and increase E-cadherin with cancer progression.48,70-73

Another explanation may be that serous ovarian tumors origi-

nated from dysplastic lesions in the distal fallopian tube and

these progenitor cells express higher c-MET compared to OSE

and have more differentiated epithelial cell characteristics.62

In addition, EOC cells do not express both c-MET and HGF

simultaneously; EOC cell lines that demonstrate epithelial cell

phenotypes48 express c-MET and respond to extraneous

HGF.33 In contrast, the cells with mesenchymal characteristics

produce HGF but do not either express c-MET or respond to

added HGF.33 Moreover, EOC cell lines that contain constitu-

tively active c-MET receptor require extracellular HGF for the

activation of downstream signaling pathways, including AKT

and extracellular signal-regulated kinases (ERK).33 Epithelial

ovarian cancer cell lines express phospho-c-MET (Tyr1349), a

multifunctional docking site for the recruitment of multiple

transducers and adapters, only in response to the added recom-

binant HGF or fibroblast HGF.33 This is in agreement with the

observation that c-MET activation in cancer cells occurs

mostly via an HGF-dependent manner.15,74 Therefore,

c-MET activation is dependent on HGF provided from the

tumor microenvironment in EOC, and paracrine regulation of

HGF is important in EOC cells that gain features of epithelial

cells and lose their mesenchymal properties.

Considering the lack of HGF expression in EOC cells and

dependence of c-MET activation on environmental HGF, local

production of HGF in the tumor microenvironment is expected.

However, HGF expression does not appear to be prevalent in

the tumor microenvironment; its levels are higher in the stroma

of the normal ovary when compared to the tumor stroma.33,39

The mechanism associated with decreased levels of HGF in the

tumor stroma is unknown, while HGF can be provided to EOC

cells both locally and distantly. Hepatocyte growth factor is

expressed throughout the body,15 and high levels of circulating

HGF are found in patients with ovarian cancer.75 Ovarian

ascites contain significant levels of HGF to stimulate cell

migration,76 and therefore, HGF might be provided by tissues

distant from the EOC cell. Another possibility is that selective

tumor-associated fibroblasts at the invasive front may express

high levels of HGF, thereby contributing to the invasive and

migratory behavior of cancer cells.33 In addition, HGF secreted

from selective fibroblasts can be accumulated within the foca-

lized area of ECMs, leading to increase in the local concentra-

tion of HGF and the activation of HGF signaling upon

interaction with cancer cells that contain both c-MET and

HGF-converting proteases.33 Therefore, HGF can be provided

to EOC cells either locally or distantly throughout the body,

even though HGF expression is not high in the entire stromal

compartment of EOC (Figure 2).

Regulation of HGF Signaling and Therapeutic
Importance of Targeting c-MET-HGF
Interaction in EOC

In OSE, HGF signaling is activated upon secretion and acti-

vation of HGF-converting proteases during ovulation.46 In

contrast, typical EOC constitutively express both c-MET and

HGF-converting enzymes (eg, uPA) as described earlier (Fig-

ure 1). Thus, EOC cells do not have mechanisms to control

HGF activation since HGF can be constantly provided from

other tissues through the bloodstream and the release of HGF

upon pericellular proteolysis of the local ECM by EOC

cells.77,78 Whether HGF comes from the local area or distant

tissues, serine proteases secreted by EOC cells activate HGF

and activated HGF binds to the c-MET receptor of EOC cells.

Therefore, HGF and c-MET interaction constitutively occurs

and signaling mediated by their interaction is activated in

EOC cells.

Activation of c-MET via the binding of HGF triggers sig-

naling cascades that activate mitogen-activated protein kinase

(MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways,79

resulting in the enhancement of cell migratory and invasive

properties of EOC cells.69 In addition, c-MET overexpression

induces resistance to apoptosis in EOC. High expression of

Figure 1. Comparison of c-MET and hepatocyte growth factor
(HGF)-converting protease expression in the normal ovary and
epithelial ovarian cancer (EOC). Both c-MET and HGF-converting
proteases are expressed at low levels in the normal ovary, and the
expression of HGF-converting proteases is induced and secreted
upon ovulation while both molecules are constitutively high in EOC.
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c-MET was linked with high expression of antiapoptotic pro-

teins, X-chromosome-linked inhibitors of apoptosis, and Bcl-

xL, partly due to AKT activation by c-MET-HGF interaction in

Saudi EOC patient samples.61 Further, c-MET inhibition

resulted in loss of the mitochondrial membrane potential and

caspase activation, concomitantly enhancing the activation of

the mitochondrial apoptotic pathway.61 c-MET-expressing

EOC cells also acquired a notable resistance to anoikis and

apoptosis induced by chemotherapeutic drugs, cisplatin and

paclitaxel, when grown in nonadherent cell cultures.80 This

drug resistance is mediated through the PI3K/AKT and ERK

signaling pathways.80

Studies also suggest that proliferation of EOC cells at least

partly depends on the interaction of c-MET and HGF. The use

of multikinase inhibitors targeting c-MET, for example, PF-

2341066,81 foretinib,82 and DCC-2701,33 exhibited effective

antitumor activities against ovarian cancer in animal models.

Furthermore, the effectiveness of a c-MET inhibitor, DCC-

2701, appears to be dependent on the availability of HGF from

the tumor microenvironment.33 These studies suggest that

c-MET and HGF interaction, which occurs constitutively in

EOC cells, activates AKT and MAPK signaling cascade that

contributes to the invasive and migratory behavior of EOC

cells. Therefore, targeting the interaction of HGF and c-MET

is important in inhibiting development of aggressive properties

in EOC where HGF signaling is constitutively activated.

Concluding Remarks

Hepatocyte growth factor binding to the c-MET receptor

induces mitogenic, motogenic, and morphogenic activities of

the cells. These versatile biological effects of the HGF and

c-MET interaction play an important role in OSE regeneration

during ovulation in the normal ovary. However, this multifunc-

tional effect of HGF also contributes to the acquirement of

malignant behavior in EOC cells. In contrast to the regulation

of c-MET activation at the level of HGF-converting enzymes

by hormonal changes in the normal ovary, c-MET activation is

indigenous due to the capability of secretion of HGF-

converting proteases by EOC cells. Therefore, inhibition of

c-MET and HGF interaction is necessary to prevent the devel-

opment of proliferative, invasive, and metastatic behavior of

EOC cells where HGF activation is not regulated.
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