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BACKGROUND: Several per- and polyfluoroalkyl substances (PFAS) are ubiquitous anthropogenic pollutants almost universally detected in humans.
Experimental evidence indicates that PFAS alter glucose metabolism and insulin secretion. However, epidemiological studies have yielded inconsis-
tent results.

OBJECTIVE:We sought to examine associations between plasma PFAS concentrations, glycemic indicators, and diabetes incidence among high-risk adults.
METHODS: Within the Diabetes Prevention Program (DPP), a trial for the prevention of type 2 diabetes among high-risk individuals, we quantified
baseline plasma concentrations of nine PFAS among 957 participants randomized to a lifestyle intervention or placebo. We evaluated adjusted associ-
ations for plasma PFAS concentrations with diabetes incidence and key glycemic indicators measured at baseline and annually over up to 4.6 y.

RESULTS: Plasma PFAS concentrations were similar to those reported in the U.S. population in 1999–2000. At baseline, in cross-sectional analysis, a
doubling in plasma perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) concentrations was associated with higher homeostatic
model assessment of insulin resistance (HOMA-IR) [bPFOS = 0:39; 95% confidence interval (CI): 0.13, 0.66; bPFOA =0:64; 95% CI: 0.34, 0.94], b-cell
function (HOMA-b) (bPFOS = 9:62; 95% CI: 1.55, 17.70; bPFOA =15:93; 95% CI: 6.78, 25.08), fasting proinsulin (bPFOS = 1:37 pM; 95% CI: 0.50,
2.25; bPFOA = 1:71 pM; 95% CI: 0.72, 2.71), and glycated hemoglobin (HbA1c) (bPFOS = 0:03%; 95% CI: 0.002, 0.07; bPFOA = 0:04%; 95% CI: 0.001,
0.07). There was no strong evidence of associations between plasma PFAS concentrations and diabetes incidence or prospective changes in glycemic
indicators during the follow-up period.

CONCLUSIONS: At baseline, several PFAS were cross-sectionally associated with small differences in markers of insulin secretion and b-cell function.
However, there was limited evidence suggesting that PFAS concentrations are associated with diabetes incidence or changes in glycemic indicators
during the follow-up period. https://doi.org/10.1289/EHP1612

Introduction
Per- and polyfluoroalkyl substances (PFAS) are a group of fluori-
nated synthetic chemicals used in consumer products and indus-
trial applications for their stain, grease, and water-repellent
properties. In the 1950s, widescale production and use of PFAS
started in many industrialized countries with a total estimated
production of 3,200 to 7,300 tons by 2006 (Prevedouros et al.
2006). Given their widespread use and chemical stability, several

PFAS are ubiquitous and persistent in the environment, even
found in remote areas including the Arctic (Butt et al. 2010).
PFAS also have long elimination half-lives in humans, estimated
to range from 3.5 to 8.5 y, depending on the compound (Olsen
et al. 2007). Human exposure to PFAS occurs mainly through the
consumption of contaminated food and drinking water, or expo-
sure to dust and commercial products such as food packaging
containing PFAS (D’eon and Mabury 2011; Fraser et al. 2011).
Biomonitoring results from the National Health and Nutrition
Examination Surveys (NHANES) indicate that nearly the entire
U.S. general population (>95%) has detectable serum concentra-
tions of several PFAS, including perfluorooctanesulfonic acid
(PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sul-
fonic acid (PFHxS), and perfluorononanoic acid (PFNA) (CDC
2017).

By 2002, the leading manufacturer of PFOS and perfluorooc-
tanesulfonyl fluoride–related materials, the 3M corporation, had
voluntarily phased out production of its perfluorooctanyl chemis-
try, which was used to produce PFOS and related compounds
(Butenhoff et al. 2006). In 2006, eight other PFAS manufacturers
joined the U.S. Environmental Protection Agency PFOA
stewardship program to reduce production and emission of
PFOA and its precursors by 2015 (U.S. EPA 2015). However,
the production of PFOS, PFOA, and other PFAS precursors con-
tinues to increase in China and continental Asia (Jin et al. 2007;
Land et al. 2015; Xie et al. 2013).

Health concerns related to PFAS exposure include endocrine
disruption, altered lipid metabolism, and immunotoxicity (Khalil
et al. 2015). In addition, several epidemiological studies have
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investigated associations of PFAS exposure with diabetes and
markers of insulin secretion and insulin resistance (Conway et al.
2016; Lind et al. 2014; MacNeil et al. 2009; Steenland et al.
2010; Su et al. 2016). However, these studies have yielded incon-
sistent results, with some studies reporting positive associations,
no associations, or even protective associations of some PFAS.
These studies are limited due to their cross-sectional nature,
quantification of a few PFAS, relatively small sample sizes, and
limited outcomes measured. Given that cross-sectional studies
have important limitations, such as the potential for reverse cau-
sation whereby altered metabolic health may affect PFAS elimi-
nation, there is the need for prospective epidemiological studies
(Weisskopf and Webster 2017).

In the present study, we examined the association of plasma
PFAS concentrations with diabetes incidence within the Diabetes
Prevention Program (DPP) study, an adult population at high risk
of type 2 diabetes. Furthermore, we evaluated the association of
PFAS concentrations quantified at baseline with key baseline met-
abolic and glycemic measurements, such as homeostatic model
assessments for insulin resistance (HOMA-IR), b-cell function
(HOMA-b), fasting proinsulin, corrected insulin response, insuli-
nogenic index, glycated hemoglobin (HbA1c), and adiponectin, as
well as glucose and insulin levels following oral glucose tolerance
testing (OGTT). We also examined whether baseline PFAS con-
centrations were associated with longitudinal changes among these
glycemic measurements over 2 to 5 y of follow-up. We hypothe-
sized that higher plasma PFAS concentrations at baseline would
be associated with diabetes incidence, as well as higher measures
of insulin resistance at the same time point. Furthermore, we
hypothesized that higher plasma PFAS concentrations at baseline
would be associated with an increase in insulin resistance markers
over the follow-up study period. Lastly, we evaluated effect modi-
fication by treatment assignment for diabetes incidence and
changes in glycemic indicators during follow-up.

Methods

Study Population
Study subjects were participants in the DPP, a multicenter random-
ized clinical trial of individuals at high risk of developing type 2
diabetes, recruited between July of 1996 and May 1999.
Inclusion criteria included at least 25 y of age, a body mass index
(BMI) of 24 kg=m2 or greater (22 or higher for Asians), and a
fasting glucose concentration of 95 to 125 mg=dL and 140 to
199 mg=dL 2 h after a 75-gram oral glucose load. The DPP trial
recruited participants from 27 clinical centers across the United
States and randomly assigned them to three study arms: a lifestyle
intervention group receiving intensive training in diet, physical ac-
tivity, and behavior modification; a pharmacological intervention
group receiving 850 mg of metformin (Glucophage); or a placebo-
treated control group (Knowler et al. 2002). Participants assigned to
the placebo and metformin arms of the trial received standard infor-
mation about diet and exercise, but no intensive or motivational
counseling. The original aims and design of the study have been
extensively described elsewhere (Diabetes Prevention Program
Research Group 1999). The study was terminated in May of 2001,
1 y early, due to efficacy on type 2 diabetes prevention of both the
lifestyle intervention and pharmacological intervention arms of the
trial.

The current study was restricted to individuals in the intensive
lifestyle intervention and the placebo-treated control arm of
the trial with available stored plasma samples collected at base-
line. We did not include the metformin-treated group due to the
potential interaction between PFAS and the pharmacological
intervention on health outcomes and lack of experimental data

on this issue. Furthermore, metformin’s influence on PFAS
kinetics is unknown. A total of 957 participants were eligible for
quantification of plasma PFAS. The institutional review board
at each clinical center approved the protocol, and all participants
provided written informed consent for DPP. For the current
analyses, the Institutional Review Board of Harvard Pilgrim
Health Care reviewed and approved all study protocols. The
involvement of the Centers for Disease Control and Prevention
(CDC) laboratory did not constitute engagement in human sub-
jects research.

Per- and Polyfluoroalkyl Substances Plasma Concentrations
Blood was collected at baseline and plasma was stored at the
National Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK) central repository. Plasma samples were shipped from
the NIDDK central repository to the CDC for analyses. Briefly, a
modification of the online solid-phase extraction–high-perform-
ance liquid chromatography coupled to isotope dilution–tandem
mass spectrometry approach described previously (Kato et al.
2011) was used to measure: linear PFOS (n-PFOS), sum of per-
fluoromethylheptane sulfonic acid isomers (Sm-PFOS), sum of per-
fluorodimethylhexane sulfonic acid isomers (Sm2-PFOS); linear
PFOA (n-PFOA), sum of perfluoromethylheptanoic and perfluoro-
dimethylhexanoic acids (Sb-PFOA); PFHxS, N-ethyl-perfluorooc-
tane sulfonamido acetic acid (Et-PFOSA-AcOH; also known as
EtFOSAA), N-methyl-perfluorooctane sulfonamido acetic acid (Me-
PFOSA-AcOH; also known as MeFOSAA), and perfluoronona-
noic acid (PFNA). The limit of detection (LOD) was 0:1 ng=mL
for all PFAS examined.

We summed branched and linear isomers of PFOS (n-PFOS,
Sm-PFOS, Sm2-PFOS) and PFOA (n-PFOA, Sb-PFOA) to cal-
culate total concentrations of PFOS and PFOA, respectively.
Summing linear and branched isomers has been implemented in
previous epidemiological studies as well as in the U.S. national
report on human exposure to environmental chemicals, allowing
for comparability with past and future studies (CDC 2017;
Fleisch et al. 2017; Harris et al. 2017). The sum of isomers for
PFOS and PFOA was performed prior to accounting for concen-
trations below the LOD. At least one of the isomers was always
detectable for any given sample, and therefore, the sum of PFOS
and PFOA isomers was 100% detectable across samples. All
other PFAS concentrations below the LOD were replaced by the
LOD=

p
2 (Hornung and Reed 1990).

Outcome Measures
The primary outcome of the trial, as well as for the present study,
was diabetes incidence by the end of the DPP follow-up period.
Diabetes was prospectively diagnosed using either fasting plasma
glucose levels at semiannual visits or an OGTT at the scheduled an-
nual visits. Diabetes was defined as fasting glucose ≥140 mg=dL
or 2-h postchallenge glucose ≥200 mg=dL for visits through
23 June 1997, and fasting glucose ≥126 mg=dL or 2-h postchal-
lenge glucose ≥200 mg=dL for visits after 23 June 1997. If a partic-
ipant had elevated glucose levels at the annual visit (fasting or 2-h
glucose post-OGTT) or at midyear (fasting glucose only), diabetes
was confirmed in a subsequent follow-up visit within 6 wk using
the same method as the trigger visit (i.e., either OGTT or fasting
glucose for annual and semiannual visits, respectively). A few par-
ticipants had elevated glucose levels at a scheduled study visit, but
diabetes was not confirmed at the subsequent follow-up visit; we
referred to this event as first-fasting hyperglycemia.

The following laboratory measures related to metabolic function
and glycemia were included in baseline and longitudinal analyses:
fasting proinsulin (pM), fasting insulin (lU=mL), 30-min post-
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OGTT insulin (lU=mL), fasting plasma glucose (mg/dL), 30-min
post-OGTT glucose (mg/dL), 2-h post-OGTT glucose (mg/dL),
%glycatedhemoglobin (HbA1C), adiponectin (lg=mL),HOMA-IR=
½ðfasting insulin × fasting glucoseÞ=18:01�=22:5, HOMA-b= ð20×
fasting insulinÞ=fasting glucose−3:5, corrected insulin response=
ð100× 30-min insulinÞ=½30-min glucose × ð30-min glucose−70 mg=
dLÞ�, insulinogenic index= ½ð30-min insulin−fasting insulinÞ�=½ð30-
min glucose−fasting glucoseÞ�×100, and BMI measured at base-
line.Laboratorymeasurementswere evaluated annually frombase-
line, with the exception of adiponectin, which was only measured
at baseline and at the first annual visit; fasting plasma glucose,
which was measured semiannually; and HbA1C, which was meas-
ured at baseline, 6 mo after baseline, and annually thereafter.
Laboratory measures were taken prospectively at the scheduled
visits until a participant received a diagnosis of diabetes or until the
study was terminated in May of 2001. Analytical glycemic meas-
urements were performed at a central laboratory (University of
Washington, Seattle, WA) as previously described (Diabetes
PreventionProgramResearchGroup2000).

Covariates
Data were obtained from the NIDDK central database repository
and linked to plasma concentrations using unique identifiers pro-
vided by the NIDDK repository. We extracted demographic char-
acteristics such as participant sex, race/ethnicity, age, BMI,
education, smoking history, marital status, and treatment assign-
ment. To protect participants’ identities, age was only available
in 5-y age groups with truncation of those <40 and ≥65 y of age.
We calculated BMI in kg=m2 for every subjects using the average
of two or three weight measures reported in the initial data
release and subsequently linking it to the average of two or three
height measures from the NIDDK repository. We report educa-
tional attainment into <high school, high school/GED, college
graduate, and graduate school and greater. Self-reported smoking
was obtained from baseline questionnaires and classified as
never, former, and current smoker. Covariates were selected for
adjustment a priori, and follow-up time was recorded as the num-
ber of days from randomization to the scheduled visit and trans-
formed to years to ease interpretability.

Statistical Analyses
We calculated geometric means (GMs) and interquartile ranges
for all PFAS. For two of the most prevalent PFAS, PFOS and
PFOA, we report their distributions across participant characteris-
tics. We used a nonparametric Wilcoxon rank sum test and a
Kruskal-Wallis test a to evaluate unadjusted exposure differences
across participants’ characteristics. We calculated Spearman cor-
relation coefficients among PFAS plasma concentrations.

The distribution of all PFAS plasma concentrations were right
skewed, and therefore, we log2-transformed them for statistical
analyses (log base 2). We used adjusted linear regression models
to estimate associations of individual baseline PFAS plasma con-
centrations with baseline metabolic and glycemic clinical meas-
urements adjusting for sex, race/ethnicity, BMI (continuous), age
(categorical), marital status, education, and smoking history.
Additionally, we used longitudinal mixed-effects regression mod-
els with random intercepts and slopes to estimate the association
of baseline plasma PFAS concentrations with prospective meta-
bolic and glycemic clinical measurements to test if concentrations
at baseline influenced glycemic or metabolic changes over the
study period. Longitudinal mixed models included the fixed
effects of plasma PFAS independently, sex, race/ethnicity, BMI
(continuous), age (categorical), marital status, education, and
smoking history as well as treatment arm and follow-up time in

years. Visual inspection of scatterplots for the glycemic outcomes
over the study period suggested nonlinear time trends. Therefore,
we also included the fixed effects of follow-up time squared as
well as the interaction between treatment and follow-up time and
treatment and follow-up time squared as necessary. We report the
longitudinal association for each PFAS separately with glycemic
outcomes using a two-way interaction between follow-up time in
years and log2-PFAS plasma concentrations measured at baseline,
using repeated measures models. A second longitudinal model
tested the two-way interaction between PFAS at baseline and treat-
ment assignment to evaluate effect modification by treatment over
time. Lastly, a third longitudinal regression model tested the pro-
spective association between baseline plasma PFAS concentra-
tions over time by treatment using a three-way interaction of each
individual PFAS, follow-up time, and treatment assignment when-
ever there was a significant interaction between treatment and
follow-up time. Additionally, longitudinal models for HOMA-IR,
HOMA-b, fasting insulin, fasting glucose, and HbA1C included
two-way interactions between follow-up time and treatment as
well as follow-up time squared and treatment. The fasting proinsu-
lin model only required an interaction between follow-up time and
treatment. The corrected insulin response model did not require
any interactions between follow-up time and treatment. Changes
in adiponectin from baseline to the first-year follow-up were mod-
eled using linear regression adjusted for baseline covariates.
Longitudinal regression model equations used are specified in
Appendix A of the Supplemental Material.

We used Cox proportional hazards models to estimate hazard
ratios (HRs) and 95% confidence intervals (95% CI) for the risk
of developing diabetes relative to plasma baseline log2-PFAS
concentrations adjusted for participant’s sex, race/ethnicity, BMI
(continuous), age (categorical), marital status, education, smok-
ing history, and treatment assignment. We evaluated effect modi-
fication by treatment assignment by stratifying on treatment
group as well as testing for statistical interaction of each PFAS
and treatment. Kaplan-Meier survival plots were generated for
PFAS observed to be significantly associated with diabetes inci-
dence. We also conducted a secondary analysis for time to first-
fasting hyperglycemia using Cox proportional hazards models for
participants for which a trigger visit for elevated glucose was not
confirmed during the subsequent follow-up visit (nevents =47).
The proportional hazards assumption was evaluated by inspecting
the Schoenfeld residuals and using a global test of the propor-
tional hazards assumption.

We evaluated effect modification between baseline PFAS
plasma concentrations and treatment assignment by testing the
interaction term in longitudinal models. We also considered
three-way interactions between each individual PFAS, time
squared, and treatment arm in longitudinal models (results not
shown). Data management and analyses were performed using R
(version 3.3.0; R Development Core Team).

Results

Participant Characteristics and Plasma Per- and
Polyfluoroalkyl Substances at Baseline
From the 2,054 total participants randomized to the lifestyle
intervention (n=1,024) or the placebo-control group (n=1,030)
in the DPP, 957 (46.6%) had sufficient stored plasma for PFAS
quantification and thus were included in this study. Most partici-
pants included in our study were female (65.3%), Caucasian
(57.7%), obese or overweight (97.7%), with a college or graduate
education (74.4%), nonsmokers (56.8%), between 40 and 64 y of
age (76.5%), and who reported being married or cohabitating
(67.6%). In this sample, participants were equally assigned to the
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intensive lifestyle intervention arm of the trial (50.3%) or the
placebo-treated control group (49.7%), and a total of 204 (21.3%)
developed diabetes by the end of the DPP trial period. These
include 47 participants (4.9%) who had a hyperglycemic glucose
level that was not confirmed during the immediate follow-up
visit, although all were eventually diagnosed as diabetic and
included in the time-to-diabetes analysis. DPP participants
excluded from this analysis had similar incidence of diabetes
(21.5%) and did not differ by sex, age, or BMI distribution.
However, our sample included a lower proportion of individuals
from other races (4.4%) compared to excluded DPP participants
(7.3%).

Plasma PFOS and PFOA concentrations differed by sex, race/
ethnicity, and education, but were similar across BMI classifica-
tion, smoking history, and treatment assignment. The distribution
of PFOA but not PFOS concentration was significantly different
across age groups and marital status (Table 1). At least one PFOS
and PFOA isomer was detected in 100% of the samples, and both
PFOS and PFOA had the highest total concentrations of all com-
pounds measured. Among branched isomers, Sm2-PFOS was
undetectable in 58.9% of the samples and Sb-PFOA in 16.6% of
samples. PFHxS was below the LOD for one participant (0.1%),
while Et-PFOSA-AcOH, Me-PFOSA-AcOH, and PFNA were
undetectable in 3.3%, 2.6%, and 6.8% of participants, respectively
(Table 2). All plasma PFAS concentrations were positively corre-
lated (Figure 1). GMs of plasma PFAS concentrations measured
at baseline in DPP (1996–1999) were similar to those measured

in NHANES in 1999–2000, but higher compared to more recent
serum PFAS concentrations as reported by NHANES in 2013–
2014 (CDC 2017), except for PFNA concentrations that were
higher compared to DPP (Table S1 and Figure S1).

Baseline Cross-Sectional Associations
We observed cross-sectional associations between several PFAS
and glycemia measurements (Table 3). In adjusted linear regres-
sion models, a doubling in plasma PFOS concentration was asso-
ciated with 1:37 lU=mL higher fasting insulin (95% CI: 0.41,
2.34), 4:63 lU=mL higher 30-min post-OGTT insulin levels
(95% CI: 0.89, 8.36), 1:37 pM higher fasting proinsulin (95% CI:
0.50, 2.25), 0:55 mg=dL higher fasting glucose (95% CI: 0.03,
1.06), and 0.03% higher HbA1C (95% CI: 0.002, 0.07). Consistent
with the insulin and glucose results, a doubling in plasma PFOS
concentration was associated with 0.39 higher HOMA-IR (95%
CI: 0.13, 0.66) and 9.62 higher HOMA-b (95% CI: 1.55, 17.70).
No associations were observed for plasma PFOS and post-OGTT
glucose levels.

Similarly, a doubling in plasma PFOA concentration was
associated with 1:71 pM higher fasting proinsulin (95% CI: 0.72,
2.71), 2:26 lU=mL higher fasting insulin (95% CI: 1.16, 3.35),
7:85 lU=mL higher 30-min post-OGTT insulin (95% CI: 3.63,
12.07), 0:66 mg=dL higher fasting glucose (95% CI: 0.07, 1.24),
0.04 higher corrected insulin response (95% CI: 0.001, 0.07),
0.08 higher insulinogenic index (95% CI: 0.01, 0.15), 0.04%
higher HbA1C (95% CI: 0.001, 0.07), and 0:29 lg=mL lower adi-
ponectin levels (95% CI: −0:54, −0:04). Consistent with the in-
sulin and glucose results, a doubling in plasma PFOA was
associated with 0.64 higher HOMA-IR (95% CI: 0.34, 0.94) and
15.93 higher HOMA-b (95% CI: 6.78, 25.08). No associations
were observed between PFOA and post-OGTT glucose levels.
Results for all glycemia endpoints for PFOA and PFOS are
shown in Table 3. Associations among individual isomers of
PFOS (n-PFOS, Sm-PFOS, Sm2-PFOS) and PFOA (n-PFOA
and Sb-PFOA) were similar (Table S2).

A doubling in plasma PFHxS concentration was associated
with 0.34 higher HOMA-IR (95% CI: 0.12, 0.55) and 7.96 higher
HOMA-b (95% CI: 1.46, 14.47). Plasma PFHxS concentrations
were also positively associated with fasting insulin, 30-min post-
OGTT insulin levels, fasting proinsulin, corrected insulin response,
and insulinogenic index. Interestingly, PFHxS concentrations were
not associated with fasting glucose, but a doubling in exposure was
associated with 0:64 mg=dL higher 30-min post-OGTT glucose
(95% CI: 0.05, 2.79) and 1:26 mg=dL lower 2-h post-OGTT glu-
cose (95% CI: −2:23, −0:29).

Both Et-PFOSA-AcOH and Me-PFOSA-AcOH were associ-
ated with higher HOMA-IR and fasting insulin and lower adipo-
nectin levels. Only Et-PFOSA-AcOH was associated with higher
HOMA-b. Plasma PFNA concentrations were associated with
higher fasting proinsulin and fasting glucose levels.

Baseline Per- and Polyfluoroalkyl Substances
Concentrations and Longitudinal Glycemic Measurements
There was no evidence that baseline plasma PFAS concentrations
were associated with changes in HOMA-IR, fasting insulin, fast-
ing glucose, HbA1c, fasting proinsulin, corrected insulin response,
insulinogenic index, or adiponectin over time or by treatment
group (Figure 2 and Table S3).

A doubling in plasma Et-PFOSA-AcOH concentration was
associated with a 1.96 decrease in HOMA-b over the study period
(95% CI: −3:81, −0:11) after adjusting for sex, race/ethnicity,
BMI, age, marital status, education, smoking history, treatment
assignment, and the fixed effect of the interaction of treatment

Table 1. Participant characteristics, geometric means (GMs), and interquar-
tile ranges (IQR) for perfluorooctanesulfonic acid (PFOS) and perfluoroocta-
noic acid (PFOA) in plasma (ng/mL).

Characteristics (n=957) n (%)
PFOS GM
(IQR)

PFOA GM
(IQR)

Participant sex p=8:0× 10−3 p=7:32× 10−4

Male 332 (34.7%) 28.3 (22.1) 5.2 (3.3)
Female 625 (65.3%) 25.4 (22.4) 4.6 (3.3)
Race/ethnicity p=6:69× 10−4 p=2:04× 10−6

Caucasian 552 (57.7%) 25.7 (20.7) 5.2 (3.2)
African American 184 (19.2%) 31.2 (28.6) 4.6 (3.4)
Hispanic of any race 179 (18.7%) 23.6 (20.4) 4.1 (2.7)
All other 42 (4.4%) 29.3 (25.4) 4.5 (2.1)
Age (years) p=0:15 p=9:08× 10−3

<40 112 (11.7%) 27.5 (22.2) 4.7 (3.0)
40–44 107 (11.2%) 24.6 (20.7) 4.3 (3.8)
45–49 213 (22.3%) 26.2 (25.0) 4.5 (2.9)
50–54 167 (17.5%) 28.8 (23.1) 4.9 (3.2)
55–59 137 (14.3%) 28.3 (22.9) 5.5 (3.2)
60–64 107 (11.2%) 23.3 (21.6) 4.8 (2.8)
≥65 114 (11.9%) 24.8 (19.6) 5.3 (3.6)

BMI classification (kg=m2) p=0:14 p=0:24
Normal (18.5–24.9) 22 (2.3%) 21.4 (22.6) 4.0 (2.2)
Overweight (25.0–29.9) 287 (30.0%) 25.5 (22.2) 4.9 (3.1)
Obese (>30:0) 648 (67.7%) 27.0 (22.9) 4.8 (3.2)
Education p=5:40× 10−4 p=5:41× 10−6

<High school 45 (4.7%) 19.0 (20.4) 3.2 (2.4)
High school/GED 200 (20.9%) 28.6 (22.4) 4.9 (3.1)
College 469 (49.0%) 26.8 (24.4) 5.0 (3.1)
Graduate school 243 (25.4%) 25.5 (19.3) 4.8 (3.1)
Smoking history p=0:53 p=0:17
Nonsmoker 544 (56.8%) 26.3 (22.2) 4.7 (3.5)
Former smoker 356 (37.2%) 28.9 (20.5) 5.5 (2.9)
Current smoker 57 (6.0%) 26.1 (22.9) 5.0 (2.9)
Marital status p=0:56 p=7:0× 10−3

Married/cohabitating 647 (67.6%) 26.5 (21.6) 4.9 (3.0)
Single 114 (11.9%) 27.7 (22.8) 5.1 (3.8)
Divorced/separated 152 (15.9%) 24.8 (24.6) 4.2 (3.3)
Widowed 44 (4.6%) 29.0 (34.5) 5.7 (4.4)
Treatment arm p=0:07 p=0:41
Lifestyle intervention 481 (50.3%) 27.2 (23.5) 4.9 (3.1)
Placebo 476 (49.7%) 25.6 (20.9) 4.7 (3.1)
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over time. For fasting-glucose levels, there was a significant statis-
tical interaction between treatment assignment and plasma PFHxS
concentrations over the study period (pinteraction = 0:04). Adjusted
analyses stratified by treatment were marginal for the association
of PFHxS with longitudinal changes in fasting glucose among the
placebo (bplacebo = − 0:25; 95% CI: −0:59, 0.08; p=0:14) and the
intensive lifestyle intervention (bLifestyle = 0:15; 95% CI: −0:10,
0.41; p=0:24) arm. Lastly, there was a significant statistical inter-
action between Me-PFOSA-AcOH plasma concentrations and
treatment arm for the change in adiponectin levels from baseline
to the first-year study visit (pinteraction = 0:05). Namely, in stratified
analyses, a doubling in plasma Me-PFOSA-AcOH concentration
was associated with a marginal decrease for the difference in adi-
ponectin levels from baseline to year 1 among the placebo group
(b= − 0:09 lg=mL; 95% CI: −0:18, 0.01; p=0:08), but not in
the intensive lifestyle intervention arm (b=0:02 lg=mL; 95% CI:
−0:12, 0.17; p=0:72).

Per- and Polyfluoroalkyl Substances Plasma Concentrations
and Diabetes Incidence
Median follow-up time was 2.9 y (range 0.2 to 4.6 y), and 204
participants (21.3%) developed diabetes by the end of the study.
Baseline plasma concentrations of Sb-PFOA were associated

with diabetes risk after adjusting for sex, race/ethnicity, BMI,
age, marital status, education, smoking history, and treatment
assignment; for every doubling in Sb-PFOA plasma concentra-
tion, the hazard of developing diabetes increased by 11% (HR=
1:11; 95% CI: 1.00, 1.23). In stratified analyses, the incidence of
diabetes among participants with detectable concentrations of Sb-
PFOA was 22.6% (180/798) compared to 15.1% (24/159) for par-
ticipants with undetectable Sb-PFOA concentrations (log-rank
P=0:04), Figure 3. All other PFAS were not associated with dia-
betes incidence (Table 4). In a secondary analysis of time to first-
fasting hyperglycemia (i.e., measured elevated glucose levels at
the scheduled visit, but diabetes was not confirmed at the immedi-
ate follow-up visit), a doubling in plasma Sb-PFOA concentration
was associated with a 29% increase in the hazard of developing
hyperglycemia during the study period (HR=1:29; 95% CI: 1.03,
1.63) (Table S4).

We observed a significant statistical interaction (pinteraction =
0:036) between Me-PFOSA-AcOH concentration and treatment
assignment. Stratified analyses suggested that higher plasma Me-
PFOSA-AcOH concentration might be inversely associated with
diabetes incidence among participants assigned to the placebo
group (HR=0:89, 95% CI: 0.77, 1.03), but positively associated
with diabetes for individuals in the intensive lifestyle intervention
group (HR=1:14, 95% CI: 0.91, 1.42). All analyses stratified by
treatment assignment were not statistically significant within either
the placebo or lifestyle intervention arms of the trial, and therefore,
these results should be cautiously interpreted (Table S5).

Lastly, in sensitivity analyses, we evaluated effect modification
by both sex and BMI at baseline. Neither sex nor BMI at baseline
modified the association between baseline PFAS plasma concen-
trations and diabetes incidence (Tables S6 and S7). All final
adjusted Cox models met the proportional hazards assumption
(global test p>0:10), and visual inspection of the Schoenfeld
residuals also supported appropriate model fit.

Discussion
In this study of adults at high risk of type 2 diabetes, plasma con-
centrations of several PFAS measured at baseline were cross-
sectionally associated with higher markers of insulin resistance
and b-cell function at baseline. These associations were largely
consistent across similar key glycemic indicators across multiple
PFAS biomarkers. Although the magnitude of effect estimates
were relatively small and thus of uncertain clinical significance,
at the population level, they may be an important modifiable risk
factor of metabolic risk. However, there was no strong evidence
that baseline plasma PFAS influenced trajectories of insulin re-
sistance and b-cell function during up to 4.6 y of follow-up.
Concentrations of the branched isomers of PFOA (Sb-PFOA)
were associated with incident diabetes, but this association
should be interpreted with caution, as this was only one of

Table 2. Distribution of per- and polyfluoroalkyl substances (PFAS) plasma concentrations measured at baseline in the Diabetes Prevention Program trial.

PFAS analyte Chemical name Below LODa n (%) Geometric mean (ng/mL) (IQR)

PFOS Perfluorooctane sulfonic acid 0 26.38 (22.80)
n-PFOS Linear perfluorooctane sulfonic acid 0 18.42 (16.90)
Sm-PFOS Perfluoromethylheptane sulfonic acids 0 7.32 (6.50)
Sm2-PFOS Perfluorodimethylhexane sulfonic acids 564 (58.93%) 0.13 (0.23)
PFOA Perfluorooctanoic acid 0 4.82 (3.20)
n-PFOA Linear perfluorooctanoic acid 0 4.29 (2.90)
Sb-PFOA Branched perfluorooctanoic acids 159 (16.61%) 0.44 (0.50)
PFHxS Perfluorohexane sulfonic acid 1 (0.10%) 2.41 (2.40)
Et-PFOSA-AcOH N-ethyl-perfluorooctane sulfonamido acetic acid 32 (3.34%) 1.13 (1.50)
Me-PFOSA-AcOH N-methyl-perfluorooctane sulfonamido acetic acid 29 (2.59%) 0.94 (1.10)
PFNA Perfluorononanoic acid 65 (6.79%) 0.53 (0.40)
aLimit of detection ðLODÞ=0:1 ng=mL for all PFAS.

Figure 1. Spearman correlation coefficients for plasma per- and polyfluor-
oalkyl substances (PFAS) concentrations measured at baseline in the Diabetes
Prevention Program. Note: Et-PFOSA-AcOH, N-ethyl-perfluorooctane sul-
fonamido acetic acid; Me-PFOSA-AcOH, N-methyl-perfluorooctane sul-
fonamido acetic acid; PFHxS, perfluorohexane sulfonic acid; PFNA,
perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluor-
ooctanesulfonic acid.
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several associations examined, and the concentrations of these
isomers were relatively low and carry higher measurement
error due to the moderate proportion of nondetectable values
among participants.

PFAS are structural homologs of fatty acids, and scientific
evidence suggests PFAS can disrupt metabolism and endocrine
function (Guruge et al. 2006; Pedersen et al. 2016). Experimental
studies and animal models have shown that PFAS can act as ago-
nists of the peroxisome proliferator–activated receptor-alpha
(PPARa), which might lead to liver damage (Intrasuksri et al.
1998; Lau et al. 2007; Sohlenius et al. 1993). Specifically, activa-
tion of PPARa can regulate peroxisome proliferation, lipid me-
tabolism, and cell growth, and this receptor is experimentally
shown to be activated by PFAS treatment (Shipley et al. 2004).
In mice, PFOA exposure altered normal glucose metabolism and
increased insulin sensitivity (Yan et al. 2015). Also in mice, pre-
natal and lactational exposure to PFOS resulted in impaired glu-
cose tolerance and higher levels of insulin later in life (Lv et al.
2013). Although such experimental evidence suggests that PFAS
can disrupt the endocrine system, epidemiologic evidence for
effects on human health at environmentally relevant concentra-
tions remains conflicted.

Several epidemiological studies have investigated the associa-
tion between exposure to PFAS, diabetes incidence, and markers
of both metabolism and glycemia with inconsistent results. For
example, DuPont Washington Works workers occupationally
exposed to some PFAS had an increased risk in mortality from
diabetes compared to other workers (Leonard et al. 2008).
Similarly, another occupationally exposed population had a
higher than expected risk of diabetes-related deaths compared to
nonexposed workers (Lundin et al. 2009). However, these two
occupational studies lacked objective measurements of exposure
and might be subject to exposure misclassification and bias. In a
cohort study among elderly Swedish, serum PFNA and PFOA
concentrations showed a nonlinear association with diabetes prev-
alence (Lind et al. 2014). Another study conducted in Taiwanese
adults found a positive association between serum PFOS concen-
trations and diabetes prevalence. However, in this same study, a
protective association was observed between PFOA, PFNA, and
perfluoroundecanoic acid (PFUA) and prevalence of diabetes (Su
et al. 2016). A large case-control study of individuals living in
areas of West Virginia and Ohio where drinking water had been
contaminated with high levels of PFOA, the C8 Health Project
reported a protective association for PFOA serum concentrations

Table 3. Adjusted cross-sectional associations between baseline plasma per- and polyfluoroalkyl substances (PFAS) concentrations and glycemic outcomes in
the Diabetes Prevention Program trial.

Outcome n mean±SD
Adjusted estimated change in the outcome per doubling in PFASs concentration (ng/mL) (95% CI)
PFOS PFOA PFHxS Et-PFOSA-AcOH Me-PFOSA-AcOH PFNA

HOMA-IR 956 6:91± 3:99 0.39 0.64 0.34 0.25 0.23 0.20
(0.13, 0.66) (0.34, 0.94) (0.12, 0.55) (0.08, 0.41) (0.03, 0.43) (−0:02, 0.42)
p=3:92× 10−3 p=3:07× 10−5 p=2:06× 10−3 p=4:36× 10−3 p=0:03 p=0:12

Fast insulin (lU=mL) 956 26± 14:6 1.37 2.26 1.17 0.87 0.80 0.59
(0.41, 2.34) (1.16, 3.35) (0.39, 1.95) (0.26, 1.48) (0.06, 1.54) (−0:21, 1.38)
p=5:38× 10−3 p=5:62× 10−5 p=3:18× 10−3 p=5:10× 10−3 p=0:03 p=0:15

30-min insulin (lU=mL) 945 96:5± 53:6 4.63 7.85 6.07 1.42 1.07 1.30
(0.89, 8.36) (3.63, 12.07) (3.09, 9.06) (−0:95, 3.78) (−1:77, 3.92) (−1:76, 4.37)

p=0:02 p=2:77× 10−4 p=7:14× 10−5 p=0:24 p=0:46 p=0:40
Fast proinsulin (pM) 954 17:9± 13 1.37 1.71 1.31 0.45 0.41 0.89

(0.50, 2.25) (0.72, 2.71) (0.61, 2.01) (−0:11, 1.00) (−0:26, 1.08) (0.18, 1.61)
p=2:10× 10−3 p=7:0× 10−4 p=2:71× 10−4 p=0:11 p=0:23 p=0:02

HOMA-b 956 217± 120 9.62 15.93 7.96 6.28 5.40 3.56
(1.55, 17.70) (6.78, 25.08) (1.46, 14.47) (1.21, 11.36) (−0:76, 11.56) (−3:09, 10.2)

p=0:02 p=6:59× 10−4 p=0:02 p=0:02 p=0:09 p=0:29
Corrected insulin response 945 0:60± 0:39 0.03 0.04 0.03 0.01 0.001 0.005

(−0:001, 0.05) (0.01, 0.07) (0.01, 0.05) (−0:01, 0.02) (−0:02, 0.02) (−0:02, 0.03)
p=0:06 p=0:01 p=0:01 p=0:43 p=0:84 p=0:61

Insulinogenic index 945 1:03± 0:84 0.05 0.08 0.06 0.01 −0:004 0.01
(−0:005, 0.11) (0.01, 0.15) (0.02, 0.11) (−0:03, 0.05) (−0:05, 0.04) (−0:03, 0.06)

p=0:07 p=0:02 p=7:67× 10−3 p=0:68 p=0:84 p=0:57
Fast glucose (mg/dL) 957 106:9± 7:4 0.55 0.66 0.29 0.30 0.19 0.45

(0.03, 1.06) (0.07, 1.24) (−0:13, 0.70) (−0:02, 0.63) (−0:21, 0.58) (0.03, 0.87)
p=0:04 p=0:03 p=0:17 p=0:06 p=0:35 p=0:04

30-min glucose (mg/dL) 947 170± 24:3 0.64 1.69 0.64 0.31 0.49 0.46
(−1:06, 2.35) (−0:24, 3.63) (0.05, 2.79) (−0:76, 1.39) (−0:80, 1.79) (−0:94, 1.86)

p=0:46 p=0:08 p=0:04 p=0:56 p=0:45 p=0:52
2-h glucose (mg/dL) 940 164:6± 17 0.02 −0:42 −1:26 0.57 0.58 −0:33

(−1:80, 0.95) (−1:80, 0.95) (−2:23, −0:29) (−0:18, 1.30) (−0:34, 1.50) (−1:33, 0.66)
p=0:97 p=0:55 p=0:01 p=0:14 p=0:22 p=0:51

HbA1c (%) 954 5:9± 0:5 0.03 0.04 0.02 0.004 0.01 0.01
(0.002, 0.07) (0.001, 0.07) (−0:004, 0.05) (−0:02, 0.03) (−0:02, 0.03) (−0:01, 0.04)

p=0:04 p=0:05 p=0:11 p=0:68 p=0:68 p=0:28
Adiponectin (lg=mL) 956 8:1± 3:5 −0:11 −0:29 −0:01 −0:15 −0:24 −0:13

(−0:33, 0.11) (−0:54, −0:04) (−0:19, 0.17) (−0:29, −0:02) (−0:40, −0:07) (−0:31, 0.05)
p=0:32 p=0:02 p=0:92 p=0:03 p=5:74× 10−3 p=0:15

BMIa 957 32:6± 6:6 0.25 0.15 0.16 0.06 0.26 0.25
(−0:19, 0.70) (−0:35, 0.65) (−0:20, 0.52) (−0:22, 0.33) (−0:07, 0.60) (−0:12, 0.61)

p=0:26 p=0:56 p=0:38 p=0:70 p=0:13 p=0:18

Note: Adjusted for participant sex, race/ethnicity, BMI (body mass index; continuous), age (categorical), marital status (categorical), education (categorical), and smoking history (cat-
egorical). Et-PFOSA-AcOH, N-ethyl-perfluorooctane sulfonamido acetic acid; HbA1c, glycated hemoglobin; HOMA-b, b-cell function; HOMA-IR, homeostatic model assessment of
insulin resistance; Me-PFOSA-AcOH, N-methyl-perfluorooctane sulfonamido acetic acid; PFHxS, perfluorohexane sulfonic acid; PFNA, perfluorononanoic acid; PFOA, perfluorooc-
tanoic acid; PFOS, perfluorooctanesulfonic acid; SD, standard deviation.
aNot adjusted for BMI.
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and type 2 diabetes (MacNeil et al. 2009). Within this same
population, implementing a retrospective longitudinal study with
estimated exposure measures of PFOA, no association was
observed for incident diabetes or fasting glucose levels (Karnes

et al. 2014). Additionally, in a cross-sectional survey of the C8
Health Project, protective associations for serum concentration
of PFOS, PFOA, PFHxS, and PFNA and diabetes prevalence
were observed (Conway et al. 2016). However, studies from the

Figure 2. Adjusted estimated change in glycemic outcomes per year for each doubling in per- and polyfluoroalkyl substances (PFAS) plasma concentrations
measured at baseline in the Diabetes Prevention Program. Note: Longitudinal models adjusted for participant sex, race/ethnicity, baseline body mass index
(BMI) (continuous), age (categorical), marital status (categorical), education (categorical), smoking history (categorical), time to follow-up in years, and treat-
ment assignment (placebo/lifestyle). Et-PFOSA-AcOH, N-ethyl-perfluorooctane sulfonamido acetic acid; Me-PFOSA-AcOH, N-methyl-perfluorooctane sulfo-
namido acetic acid; PFHxS, perfluorohexane sulfonic acid; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid.
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C8 Health Project may not be generalizable to other populations,
including ours, as PFOA exposures were much higher as a result
of drinking water contamination in this region (Frisbee et al.
2009).

Associations for markers of insulin resistance and metabolism
are also conflicting across epidemiological studies. For example,
in a cross-sectional analysis of a U.S. representative sample from
NHANES 1999–2000 and 2003–2004, higher serum PFNA was
associated with hyperglycemia but with lower risk of metabolic
syndrome, while PFOA was associated with higher b-cell func-
tion, and PFOS was associated with higher insulin, HOMA-IR,
and b-cell function (Lin et al. 2009). However, an analysis lim-
ited to the 2003–2004 NHANES cycle found no evidence of an
association of PFAS with HOMA-IR (Nelson et al. 2010).
Similarly in the 2007–2008 Canadian Health Measures Survey,
PFOS, PFOA, and PFHxS serum concentrations were not associ-
ated with plasma insulin, HOMA-IR, or metabolic syndrome
(Fisher et al. 2013). In a study of Taiwanese adults, only PFOS
was associated with higher glucose levels post-OGTT, but
PFOA, PFNA, and PFUA were inversely associated with post
glucose-load measurements, suggesting a protective effect (Su
et al. 2016). In the elderly Swedish cohort, no associations were
observed for seven of the PFAS measured with HOMA-IR, but
PFOA was positively associated with the ratio of proinsulin to in-
sulin (Lind et al. 2014). In a U.S.-based birth cohort (Project
Viva), prenatal PFAS plasma concentrations were not associated
with metabolic or glycemic measurements in in midchildhood
(∼ 8 y of age). However, in Project Viva, higher midchildhood
PFAS concentrations were cross-sectionally associated with lower
HOMA-IR at the same time point, suggesting a protective cross-
sectional association (Fleisch et al. 2017). Conversely, in a Danish
cohort of children, higher PFOS and PFOA plasma concentrations
were cross-sectionally associated with higher HOMA-IR and
HOMA-b among overweight children (Timmermann et al. 2014).
It is important to highlight that the majority of these studies were
cross-sectional, and some lacked accurate biomarkers of exposure,
had limited information on metabolic or glycemic biomarkers,
and/or relied on self-reported diabetes prevalence not confirmed

with OGTT or fasting glucose levels. Although we observed ro-
bust cross-sectional associations between higher PFOS, PFOA,
PFHxS, and Et-PFOSA-AcOH and higher HOMA-b, only PFOA
and PFHxS remained associated with the corrected measure of in-
sulin response as well as the insulinogenic index. These two meas-
ures reflect insulin secretion and b-cell function more accurately
(Hanson et al. 2000; Herzberg-Schäfer et al. 2010). A prospective
study found that higher prenatal plasma PFOA concentrations
were associated with increased overweight prevalence and greater
waist circumference in females but not male offspring at age 20 y
(Halldorsson et al. 2012). This study also showed that prenatal
concentrations of PFOA, but not PFOS, PFNA, or perfluorooctane
sulfonamide were associated with elevated insulin and leptin and
a decrease in adiponectin levels among female offspring at 20 y of
age. Another prospective study among women planning to become
pregnant found a significant association between serum PFOA con-
centrations and risk of gestational diabetes, but not for other PFAS
(Zhang et al. 2015). A recent prospective cohort of European chil-
dren reported prospective associations between childhood PFOS
concentration and increase adiposity in adolescence, as well as
childhood PFOA concentration and a large decrease in b-cell func-
tion in adolescence (Domazet et al. 2016). Furthermore, a computa-
tional modeling approach combining genomic information, disease
similarities, and high-quality scientific literature significantly associ-
ated PFOA, among other chemicals, such as arsenic, hexachloro-
benzene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin, with type 2
diabetes (Audouze et al. 2013). This is consistent with our results
in which we observed robust positive associations of plasma
PFOA concentrations at baseline with higher glycemic measure-
ments and lower adiponectin levels measured at the same time
point. Furthermore, the effect sizes for the estimated associations
with the metabolic or glycemic measurements were greater for
PFOA compared to any other PFAS measured. Likewise, only
branched isomers of PFOA (Sb-PFOA) were associated with dia-
betes incidence in our study, suggesting that PFOA might be more
tightly related to glycemic control compared to other PFAS.
However, this result should be interpreted with caution, as concen-
trations of Sb-PFOA were relatively low and nondetectable in
approximately 17% of participants. Our findings highlight the im-
portance of distinguishing branched and linear isomers of PFOA

Figure 3. Kaplan-Meier plot of diabetes-free incidence in the study sample
by plasma concentrations of Sb-PFOA categorized as undetectable (<LOD)
and detectable plasma Sb. PFOA concentrations (≥LOD). Note: Limit of
detection ðLODÞ=0:1 ng=mL. Sb-PFOA, sum of perfluoromethylheptanoic
and perfluorodimethylhexanoic acids.

Table 4. Adjusted hazards ratios (HRs) for the risk of developing diabetes
during study period relative to log2-per- and polyfluoroalkyl substances
(PDFAS) plasma concentrations in the Diabetes Prevention Program
(n=957; nevents = 204).

PFAS (log2-scale)

Hazard ratio (HR)

HR (95% CI) p-Value

PFOS 0.87 (0.74, 1.02) 0.08
n-PFOS 0.87 (0.75, 1.02) 0.08
Sm-PFOS 0.91 (0.78, 1.06) 0.21
Sm2-PFOS 1.00 (0.89, 1.12) 0.95

PFOA 1.06 (0.89, 1.28) 0.50
n-PFOA 1.03 (0.85, 1.24) 0.77
Sb-PFOA 1.11 (1.00, 1.23) 0.04

PFHxS 0.98 (0.86, 1.12) 0.79
Et-PFOSA-AcOH 0.97 (0.88, 1.08) 0.58
Me-PFOSA-AcOH 0.96 (0.84, 1.08) 0.49
PFNA 0.99 (0.87, 1.12) 0.82

Note: Adjusted for participant sex, race/ethnicity, BMI (continuous), age (categorical),
marital status (categorical), education (categorical), smoking history (categorical), and
treatment assignment (placebo/lifestyle). CI, confidence interval; Et-PFOSA-AcOH, N-
ethyl-perfluorooctane sulfonamido acetic acid; Me-PFOSA-AcOH, N-methyl-perfluor-
ooctane sulfonamido acetic acid; n-PFOA, linear perfluorooctanoic acid; n-PFOS, linear
perfluorooctanesulfonic acid; PFHxS, perfluorohexane sulfonic acid; PFNA, perfluoro-
nonanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid;
Sb-PFOA, sum of perfluoromethylheptanoic and perfluorodimethylhexanoic acids; Sm-
PFOS, sum of perfluoromethylheptane sulfonic acid isomers; Sm2-PFOS, sum of per-
fluorodimethylhexane sulfonic acid isomers.
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and PFOS in experimental and epidemiological studies along with
the ascertainment of potential sources of exposure. Telomerization
primarily produces linear PFAS, and electrochemical fluorination
(ECF) yields a mixture of both linear and branched isomers (Buck
et al. 2011). Human exposure to PFAS from ECF is hypothesized
to be declining due to changes in manufacturing processes, includ-
ing phase out (Beesoon et al. 2011). However, in animal models,
excretion of branched PFOA isomers is favored, and this could
lead to quantification of exposure biomarkers that are predomi-
nately linear in population studies (Benskin et al. 2010), making it
difficult to distinguish the exposure source(s) without collecting
other information such as home environment, drinking water con-
tamination, dietary patterns, and proximity to industrial facilities,
among other factors. Furthermore, source characterization is also
complicated by exposure to precursors of PFAS found in serum
(D’eon and Mabury 2011).

Despite their cross-sectional consistent associations with key
glycemic indicators, most baseline PFAS concentrations were not
prospectively associated with glycemic indicators in this analysis.
Cross-sectional associations observed in our study might be
prone to reverse causation. For example, previous studies have
argued that physiological factors such as glomerular filtration
rate (GFR), which affects PFAS concentration in blood, might
confound associations between PFAS concentration and health
outcomes such as birthweight (Verner et al. 2015) and age at
menopause (Dhingra et al. 2017). Even though there is no direct
evidence of potential confounding for diabetes, glycemic indica-
tors, and PFAS, there is evidence that GFR is associated with
both diabetes progression and risk as well as metabolic dysfunc-
tion (Hu et al. 2017; Naderpoor et al. 2017). It is possible that in
this prediabetic cohort, altered GFR might confound cross-
sectional associations between baseline glycemic indicators and
measured PFAS serum concentrations. Therefore, cross-sectional
results must be interpreted with caution, as reverse causation can-
not be ruled out.

As previously demonstrated in the DPP, the effect of the life-
style intervention was strongly associated with diabetes incidence
and had a large influence on metabolic and glycemic markers
over time (Kitabchi et al. 2005). Although we controlled for treat-
ment effect in all longitudinal models, the treatment effect could
have explained almost all of the variation observed in the longitu-
dinal data. Stratified analyses by treatment and interaction models
might be underpowered to detect these associations for diabetes
incidence or glycemic and metabolic markers in the placebo-
control group. It is also possible that the length of follow-up time
could have been too short to capture the effects of PFAS prospec-
tively, and this could explain the effects observed at baseline, but
not during the follow-up period. Correspondingly, the moderate
associations at baseline may reflect metabolic damage already
caused by past PFAS exposure, and no further alterations over
time could have been observed during this short study period.
Additionally, timing of exposure could also play a role in the
association of PFAS and metabolic markers, as some prospective
studies of prenatal and childhood exposure have reported pro-
spective associations not observed in this obese and overweight
adult prediabetic population. It has been suggested that develop-
mental periods may present heightened susceptibility windows
for endocrine disruption during fetal and infant development that
could explain the lack of prospective associations in our study
(Landrigan et al. 2003). Alternatively, our baseline cross-
sectional results could have been also due to chance, but we con-
sider this to be highly unlikely, as we observed consistent robust
associations among many glycemic and metabolic markers in the
direction hypothesized a priori, consistent with experimental
studies.

This study has many strengths that include the objective ascer-
tainment of plasma PFAS coupled with a strong prospective study
design with stringent clinical diagnosis of diabetes that was con-
firmed during a secondary follow-up clinical visit. Furthermore, we
have high-quality information on multiple metabolic and glyce-
mic clinical markers during approximately 3 y of follow-up.
Detailed covariate information was also available and adjusted
for in multivariate models, reducing the chance for confounding.
However, we lacked important information from hypothesized
sources of exposures such as drinking water concentrations, diet,
home environment, or other information on potential sources of
PFAS exposure. The sample size available was moderate, and
the number of participants that developed diabetes during the
study period was substantial due to the high-risk preselection cri-
teria. About two-thirds of participants were women, and outreach
for the inclusion of minorities was also performed by DPP, mak-
ing our results more generalizable. However, all individuals in
this study had some level of abnormal endocrine function at
enrollment as abnormal glucose levels, and being overweight or
obese were among the selection criteria used. Therefore, our
results may not be generalizable to healthy individuals with nor-
mal endocrine function or children. Finally, although we adjusted
for many important demographic confounders, residual con-
founding may remain.

Conclusion
In summary, our findings show that plasma PFAS concentrations
in prediabetic individuals are consistently but modestly associated
cross-sectionally with higher markers of metabolic dysfunction.
However, in this population of individuals at high risk for type 2
diabetes, there was limited evidence suggesting that plasma PFAS
concentrations at baseline influenced glycemic measurements over
a median follow-up time of approximately 3 y. Furthermore, there
was limited evidence for an association of plasma PFAS concen-
trations and incidence of diabetes, as only branched isomers of
PFOA in serum were associated with incident diabetes.

Thus, our study supports a cross-sectional association
between plasma PFAS concentrations and several markers of
metabolic damage measured among individuals with prediabetes,
but their ability to influence metabolic markers or diabetes inci-
dence during the follow-up time was not found in this population.
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