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Introduction
Cancer therapy has advanced dramatically in such 
a way that not only do cancer patients have 
increased life expectancy, they also have increased 
survival rates.1 Currently, there are 15.5 million 
patients living beyond a cancer diagnosis and by 
2026, that number is estimated to increase to 20.3 
million.1 However, stemming from both short- 
and long-term cancer treatment, which is often 
given in multi-drug combinations and escalating 
doses, new problems are emerging.2 One such 
problem is cardiovascular complications, which is 
the second leading cause of death in cancer survi-
vors, only after cancer recurrence, cancer progres-
sion, and secondary malignancies.3 In fact, 
cardiovascular complications have become so 
prominent that a new area of research is emerging 
within both cardiology and oncology to prevent 
and treat cancer therapy-induced cardiotoxicity; 
this field is referred to as cardio-oncology.

Interestingly, several studies have demonstrated a 
poor correlation between traditional cardiovascu-
lar risk factors such as obesity, dyslipidemia, insu-
lin resistance, and tobacco use, with the onset of 
cardiovascular disease in cancer survivors,4,5 sug-
gesting an alternative mechanism for systemic 
cardiovascular toxicity. One such mechanism 
could be inappropriate immune system activa-
tion, which has an active role in both cancer and 
cardiovascular disease.6–9 It has been well estab-
lished that the immune system not only responds 
to foreign substances (i.e. pathogens), it also 
responds to endogenously derived molecules that 
are expressed as a result of tissue damage or 
stressed cells, known as damage-associated 
molecular patterns (DAMPs).10,11 DAMPs are 
present in both cancer and cardiovascular dis-
ease; however, the roles that DAMPs play are not 
congruent. In cardiovascular disease literature, 
high and chronic levels of DAMPs have been 
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shown to be inflammogenic and are associated 
with disease pathogenesis.12,13 In cancer, the pres-
ence of DAMPs has been shown to be a sign of 
both treatment efficacy and the development of 
resistance.14,15

Mechanisms of action for therapies such as 
chemotherapy and radiation have been proposed 
and reported in the literature;16–21 however, due 
to the underlying goal of cancer therapy to reduce 
tumor size, we hypothesize that the unintentional 
release of DAMPs after any cancer therapeutic 
contributes to the development of cardiovascular 
disease, including hypertension. This review 
describes the increased prevalence of cancer 
therapy-induced cardiotoxicity after cancer ther-
apy and the possible role that DAMPs play in the 
disease process.

Cancer therapies cause cell death
Cancer is a complex disease due to the ability of 
cancer cells to adapt to changing environmental 
conditions guaranteeing growth and survival. 
Cancer is the result of one or more DNA muta-
tions, genetically predisposed or environmentally 
acquired, that allow cells to escape the normal 
mechanisms constraining cell division and 
growth. Regardless of mutation or cancer type, 
cancer cells exhibit four main characteristics, (1) 
uncontrolled proliferation, (2) de-differentiation 
and loss of function, (3) invasiveness, and (4) 
metastasis. Cancer therapies are designed to tar-
get these abnormal characteristics.

Cancer therapy type and regimen are often deter-
mined by factors specific to the patient and tumor 
characteristics, with the intention to cure, pro-
long survival, or relieve symptoms. The classic 
dogma of cancer therapy uses a continuous dos-
ing strategy to ‘kill as many cancer cells as possi-
ble’. In this type of treatment strategy, there is a 
delicate balance amid median effective dose 
(ED50), lethal dose (LD50), toxicity, and drug 
resistance.22 Currently, there are research groups 
and clinical trials studying differing dosing sched-
ules aimed at thwarting tumor evolution.22 Using 
effective treatment modality, dose, and frequency 
are several ways clinicians combat this multifac-
eted disease.22

The main treatment categories for cancer include 
surgery, radiation, chemotherapy, hormone ther-
apy, immunotherapy, and targeted therapy, 

which can be mixed and added together for aug-
mented outcomes. Excluding surgery, which 
entails the resection of a malignant tumor, all 
other forms of cancer treatment aim to destroy 
the pro-proliferative and de-differentiated cancer 
cells within the body.

Radiation is a form of cancer therapy used mainly 
against solid tumors. Radiation utilizes high-
energy particles or waves to kill cancer cells by 
inducing irreparable DNA breaks within cells. 
This method targets rapidly dividing cells; how-
ever, its effects may not take place until days or 
weeks after initiation and cell death could con-
tinue months after treatment is completed. 
Chemotherapy is another form of cancer therapy, 
which utilizes cytotoxic drugs to treat dissemi-
nated cancer; solid tumors are not as sensitive to 
this treatment option. Chemotherapy targets rap-
idly growing and dividing cells, and slows tumor 
proliferation by inhibiting specific aspects of cel-
lular replication, ultimately leading to cell death. 
As the name implies, targeted therapies are more 
specific when compared with chemotherapy, and 
are directed against specific molecules and path-
ways that drive tumor growth.23 For example, 
these types of therapies are normally small mole-
cule inhibitors or monoclonal antibodies that 
block or turn off chemical signals, modify certain 
proteins, trigger the immune response, or carry 
toxic substances to cancer cells, thus resulting in 
cancer cell death. Targeted therapies often lead to 
tolerance due to overexpression of the targeted 
protein or through acquired mutation making the 
drug useless.24 Immunotherapy reinforces or sen-
sitizes the immune system as a defense against 
tumors. The main categories of immunotherapy 
include monoclonal antibody therapy (also con-
sidered a targeted therapy), immune checkpoint 
inhibitors, cancer vaccines, and other nonspecific 
immunotherapies.25

While there is no doubt cancer therapies are effec-
tive at targeting and eliminating cancerous cells 
within the body and increasing patient survival,1 
these treatments also induce unpleasant and 
unintended side effects. These side effects not 
only include those that affect quality of life (e.g. 
drowsiness, restlessness, anxiety, loss of libido, 
etc.), they also promote other life-threatening 
complications, including cardiovascular dis-
ease.3,26 Nonetheless, the mechanisms underlying 
cancer therapy-induced cardiotoxicity remain 
relatively unexplored.
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Clinical definitions and guidelines for 
cardiotoxicity after cancer treatment
The National Cancer Institute (NCI) defines car-
diotoxicity as ‘toxicity that affects the heart’.27 
Aside from this broad definition, there are no uni-
versal guidelines for identifying and measuring 
cancer therapy-induced cardiotoxicity.28 As a 
result, multiple interpretations of the NCI defini-
tion exist. For instance, the NCI Common 
Terminology Criteria for Adverse Events 
(CTCAE)29 is considered the standard for clinical 
trial reporting of adverse events,30 and it includes 
left ventricular dysfunction (LVD) and heart fail-
ure (HF) within its terminology, but does not 
include hypertension. However, other entities 
vary in their cardiotoxicity definition. For 
instance, the Food and Drug Administration 
(FDA) defines anthracycline cardiotoxicity as 
>20% decrease in left ventricular ejection frac-
tion (LVEF) when baseline LVEF is normal, or 
>10% decrease when baseline LVEF is not nor-
mal.28,31 Multiple other studies, including the 
Herceptin Adjuvant (HERA) trial and the Breast 
Cancer International Research Group (BCIRG), 
use different measurements to define cardiotoxic-
ity, although LVD is frequently cited.32–34

Plana et al.35 offer a more structured classification 
system for cancer therapy-induced cardiotoxicity, 
grouping symptoms into two groups, type 1 or type 
2. The type 1 category of cardiotoxicity uses doxo-
rubicin as the representative agent and encom-
passes cancer therapies with dose-dependent side 
effects and induces irreversible myocardial dam-
age. Type 2 uses trastuzumab as the typical agent: 
this classification describes cancer therapy side 
effects that are not dose related and are reversible. 
Symptoms in each category can then be further 
classified as symptomatic or asymptomatic. The 
various definitions and classifications of cardiotox-
icity, paired with the lack of knowledge of cancer 
therapy-specific pathophysiological mechanisms 
have made it difficult for clinicians to detect and 
therefore prevent and manage cancer therapy-
induced cardiotoxicity.35,36

Regardless of a lack of universal classification 
guidelines, there are some established prevention 
measures in place to combat cancer therapy-
induced cardiotoxicity. For example, the American 
College of Cardiology and American Heart 
Association have together established procedures 
for chemotherapeutic agents and radiation ther-
apy that have well described cardiovascular side 

effects, in order to reduce/prevent them.37–40 To 
combat these pathologies, the first line of defense 
is traditional cardioprotective therapies (e.g. iron 
chelators, angiotensin-converting enzyme inhibi-
tors (ACE-I), beta-blockers, and statins).41 In 
fact, dexrazoxane, an iron chelator, has been 
found to be cardioprotective in women diagnosed 
with advanced breast cancer and receiving anthra-
cycline-based chemotherapy.39,42 Statin therapy 
has been noted to decrease heart failure incidence 
in breast cancer patients;43 however, given the 
potential side effect of rhabdomyolysis, statins 
should be used with caution.43,44 While the use of 
these cardioprotective agents seems to reduce car-
diotoxicity,41 the need for universal guidelines for 
cardiotoxicity identification, as well as novel pre-
vention and treatment options, is emphasized by 
the high rates of cardiovascular morbidity and 
mortality following cancer therapy.2

Evidence for cardiovascular complications 
after cancer treatment
In the United States, an estimated one in three 
adults has been diagnosed with hypertension, 15 
million people live with cardiovascular disease 
(e.g. heart failure, arrhythmias, cardiac dysfunc-
tion, etc.),45 and approximately 14 million indi-
viduals have a prior history of cancer.9 As the US 
population ages and cancer prognosis improves, 
so will the number of patients living with both 
cardiovascular disease and cancer. Not only is 
cardiovascular disease a leading cause of death 
among cancer survivors, there is an elevated risk 
of developing cardiovascular pathology which 
approaches 40% of the cancer population.36 The 
elevated risk of developing cardiovascular disease 
could be confounded by pre-existing genetic, life-
style, age, endocrine, and environmental factors 
unique to each cancer patient (Figure 1). 
However, these factors, as well as traditional car-
diovascular disease risk factors (obesity, dyslipi-
demia, insulin resistance, and tobacco use),4,5 do 
not fully account for the increased incidence of 
cancer therapy-induced cardiovascular toxicity.18

The main cancer therapies reported to induce car-
diovascular dysfunction and disease are radiation, 
vascular endothelial growth factor (VEGF) inhibi-
tors, which encompass tyrosine kinase inhibitors 
(TKIs) sorafenib and sunitinib, as well as mono-
clonal antibodies bevacizumab and ramucirumab, 
human epidermal growth factor receptor type 2 
(HER2) monoclonal antibody trastuzumab, and 
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chemotherapeutic agents such as anthracyclines, 
platinum-based antineoplastic drugs, microtubule 
inhibitors, and antimetabolites. Cardiotoxicity 
induced by these agents could be the result of 
either on-target effects (e.g. tyrosine kinases 
located on noncancerous vascular cells) or off-
target effects (e.g. implicating pathways of vascu-
lar cells differently from cancerous cells) of cancer 
therapies.23 The time-dependent effects of cancer 
therapy-induced cardiotoxicity vary according to 
the specific therapy and the patients’ baseline 
measurements. Table 1 lists the major forms of 
cancer therapy and summarizes their reported car-
diovascular side effects, as well as their proposed 
mechanisms.

Radiation
Radiation is an effective cancer therapy, neverthe-
less it has serious cardiovascular side-effects, such 
that it has been termed radiation-induced heart 
disease (RIHD) and radiation-induced vascular 
disease (RIVD).20,21 These symptoms include per-
icarditis, cardiomyopathy, myocardial fibrosis, 
coronary artery disease, peripheral vascular dis-
ease, pericardial effusion, valvular disease, arrhyth-
mias, and autonomic dysfunction.20,47 RIHD can 
have acute, subacute, and late presentation and 
may affect the entire cardiovascular system at any 
stage.21 Besides the well-known radiation effects to 
the heart, medium-sized to large-sized vessels 
demonstrate lipid accumulation, inflammation, 
thrombosis, increase in intimal thickness, and con-
nective tissue after exposure.91,92

Cardiotoxicity, secondary to radiation, is increased 
in severity and incidence with increasing doses of 
radiation (i.e. dose dependent), volume of body 
area exposed, time since exposure, and adjuvant 
therapies.19 The cancer therapy-induced cardio-
toxicity effects of radiation have been observed 
15–30 years after completion of therapy.93 The 
location of exposure has also been reported to 
affect cardiotoxicity. For example, studies show 
that radiation over the left side of the chest, com-
pared with the right, results in increased occur-
rence of cardiovascular pathology.94 In addition, 
radiation exposure of the mediastinum and neck 
causes higher rates of cerebrovascular disease and 
hypertension, which could be mediated by carotid 
baroreceptor damage.95,96 Known mechanisms of 
cardiotoxicity from radiation exposure comprise 
fibrosis, endothelial cell damage,20 and oxidative 
stress.48

Antiangiogenesis
Angiogenesis refers to the formation of new blood 
vessels, which can contribute to tumor growth 
and survival.97,98 There are two classes of antian-
giogenesis therapies for the use of cancer thera-
peutics: (1) antibodies specific for VEGF (e.g. 
bevacizumab) and (2) small molecular tyrosine 
kinase inhibitors (TKI) against the VEGF recep-
tor (e.g. sorafenib and sunitinib). Although 
VEGF contributes to the development of cancer 
via the formation of new blood vessels in tumors, 
it also has an important role in the normal physi-
ologic function of endothelial and renal cell sur-
vival, vasodilation, and cardiac contractile 
function.99 Therefore, its inhibition has signifi-
cant cardiovascular side effects. Specifically, 
VEGF inhibition induces conditions such as 
hypertension, thromboembolism, ischemia, car-
diac contractile dysfunction, and heart failure.78 
A retrospective analysis of clinical trials demon-
strated elevated blood pressure within 4 weeks of 
initiating therapy with sunitinib.81 Mechanisms 
that contribute to these pathophysiological states 
include, inhibition of nitric oxide (NO) and pros-
tacyclin, increased production of endothelin-1,79 
oxidative stress, and cell apoptosis.80 It is impor-
tant to note that the approval for the use of beva-
cizumab was revoked in 2014 for the treatment of 
breast cancer due to high incidence of heart fail-
ure.75 Interestingly, VEGF tyrosine kinase inhibi-
tion has an increased rate of cardiovascular 
toxicity, when compared with VEGF immuno-
therapy due to poor selectivity of the drugs and 
off-target effects.100

Figure 1.  Common risk factors that contribute to 
both cancer and cardiovascular disease. Adapted 
from Irvine Page’s Mosaic Theory of Hypertension.46
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Table 1.  Common cardiovascular side effects of cancer therapy and potential mechanisms leading to dysfunction.

Class Drug Drug target Cardiovascular side 
effects

Potential Mechanism

Radiation NA Rapidly growing 
cells

Pericarditis, 
hypertension, 
cardiomyopathy, 
myocardial fibrosis, 
coronary artery 
disease, pericardial 
effusion, valvular 
disease, arrhythmias,20 
autonomic dysfunction47

Fibrosis, endothelial cell 
damage,20 oxidative stress48

Chemotherapy  
Alkylating agents Carboplatin, cisplatin, 

cyclophosphamide, 
oxaliplatin, ifosfamide

Rapidly growing 
cells; intrastrand 
cross-linking of 
DNA

Hypertension, 
myocardial ischemia,49 
thromboembolism, 
cerebrovascular 
disease,18 myocardial 
infarction, 
cardiomyopathy,50 
pericarditis16

Oxidative stress,51,52 endothelial 
dysfunction, platelet 
activation,18 upregulation 
of adhesion molecule-1, 
increased plasminogen 
activator53

Antimetabolites 5-Fluorouracil, 
methotrexate, 
capecitabine, 
gemcitabine, 
cytarabine

Rapidly growing 
cells; blocking 
DNA/RNA 
synthesis

Cardiac ischemia54,55 
angina, ECG changes, 
thrombosis

Oxidative stress, myocardial 
cell damage and necrosis, 
endothelial cell damage56

Anthracyclines Daunorubicin, 
doxorubicin, 
epirubicin,
idarubicin, 
mitoxantrone

Rapidly growing 
cells; enzymes 
involved in DNA 
replication

Cardiomyopathy, 
arrhythmia, acute 
myocarditis,57 heart 
failure,58 LVD59

cardiac ischemia60,61

Oxidative stress,62,63 DNA 
damage,64 topoisomerase 
2-alpha,65 alterations in ATP 
production in myocytes, 
myocyte damage and 
apoptosis18

Topoisomerase 
inhibitors

Topotecan, irinotecan,
etoposide, teniposide

Rapidly 
growing cells; 
topoisomerase 
inhibition

Bradycardia,66 cardiac 
toxicity,67 cardiac 
ischemia16

Topoisomerase 2-a68

Mitotic inhibitors Paclitaxel, docetaxel,
estramustine, 
ixabepilone, 
vinblastine

Rapidly growing 
cells; microtubule 
assembly, 
inhibition of 
spindle formation

Myocardial ischemia,69 
coronary spasm,49 
arrhythmias, 
bradycardia, 
hypertension70

Modulation of calcium 
handling,71 cellular hypoxia18

Targeted therapy  
Tyrosine kinase 
inhibitors

Imatinib,
dasatinib, nilotinib, 
bosutinib, ponatinib, 
sorafenib, sunitinib, 
lapatinib

ABL1 kinase
KIT, PDGFRα, 
VEGF72

Cardiomyopathy,73,74 
heart failure,75–77 
hypertension, LVD,16 
thromboembolism, 
cardiac contractile 
dysfunction78

Inhibiting cell survival, 
angiogenesis, and cell 
growth,49 inhibition of NO 
and prostacyclin, increased 
production of endothelin-1,79 
oxidative stress, endothelial 
cell apoptosis,80 disruption 
of mitochondrial metabolism 
and impairment of myocardial 
function.81

Immunotherapy  

Interferons, 
interleukins

Type I-III IFNs Immune system 
activation

Hypertension, 
arrhythmias, heart 
failure, LVD,16 
myocardial infarction82

PRR activation,83 interferon-
induced coronary spasm84

 (Continued)
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Class Drug Drug target Cardiovascular side 
effects

Potential Mechanism

Monoclonal 
antibodies

 

  Trastuzumab,
lapatinib, pertuzumab

HER2 Systolic cardiac 
dysfunction,49,85 
cardiomyopathy,85 
reduced LVEF, heart 
failure, hypertension86

Cardiac myocyte dysfunction,87 
increased sympathetic output,86 
impaired cardiac repair and 
myocyte homeostasis88

  Bevacizumab, 
ramucirumab

VEGF Cardiac ischemia,89 
heart failure,75 systolic 
dysfunction, left 
ventricular dysfunction, 
hypertension,82 
thromboembolism16

Cardiac myocyte dysfunction,90 
inhibiting cell survival, 
angiogenesis, and cell 
growth,49 inhibition of NO 
and prostacyclin, increased 
production of endothelin-1,79 
oxidative stress, endothelial 
cell apoptosis80

ABL1, Abelson tyrosine-protein kinase 1; ATP, adenosine triphosphate; DNA, deoxyribonucleic acid; ECG, electrocardiogram; HER2, human 
epidermal growth factor receptor 2; IFN, interferon; KIT, stem cell factor receptor/CD117; LVD, left ventricular dysfunction; LVEF, left ventricular 
ejection fraction; NO, nitric oxide; PDGFRα, platelet-derived growth factor alpha; PRR, pattern-recognition receptor; RNA, ribonucleic acid; VEGF, 
vascular endothelial growth factor.

Table 1. (Continued)

Tyrosine kinase inhibitors
Due to the ubiquitous nature of tyrosine kinase 
receptors, the class of TKI targets several differ-
ent pathways. For example, sunitinib and 
sorafenib target VEGF, lapatinib targets epider-
mal growth factor receptor (EGFR) and HER2 
(see below), and imatinib targets Bcr-Abl tyros-
ine kinase. Inhibition of each of these tyrosine 
kinase receptors exerts a unique cardiovascular 
pathology that includes heart failure,76,101,102 car-
diomyopathy,73,74 hypertension,78 thromboem-
bolism, and cardiac contractile dysfunction. In 
addition to mechanisms of VEGF inhibition-
induced cardiovascular disease (see above), 
TKIs against VEGF have also been shown to 
disrupt mitochondrial metabolism, impair myo-
cardial function, and result in myocardial  
apoptosis.81 These cardiovascular toxicity events 
have been shown to persist for years after ther-
apy cessation.103

Human epidermal growth factor receptor type 2 
immunotherapy
The use of monoclonal antibodies such as trastu-
zumab requires routine monitoring for cardiac 
function. Trastuzumab is targeted against HER2, 
a tyrosine kinase receptor that mediates cell growth 
and survival. This type of cancer therapy has been 
shown to induce cardiac contractile dysfunction, 
reduction in left ventricular function, heart  

failure, hypertension, and increased sympathetic 
tone.49,57,85–88 Inhibition of HER2 via trastuzumab 
is associated with the development of cardiotoxic-
ity as early as 4–8 weeks after initiation of therapy, 
albeit reversible through treatment cessation.104,105 
The cardiac myocyte HER2 receptor is activated 
when bound with neuregulin 1-β resulting in the 
promotion of protein synthesis, cell survival, and 
hypertrophy.106 The mechanisms of cardiotoxicity 
are hypothesized to occur through (1) disruption 
of cardiac repair and myocyte homeostasis and (2) 
increased sympathetic tone and activation of car-
diac β-adrenergic receptors.107

Chemotherapeutics
Despite efficacy at reducing cancer, the use of 
anthracyclines is restricted by cardiotoxicity. 
Anthracyclines are a class of antibiotics that 
inhibit topoisomerase activity by intercalating 
between DNA base pairs, leading to DNA dam-
age and eventual apoptosis.108 Cardiotoxicity 
occurs both after cumulative short- and long-
term anthracycline exposure causing cardiac 
myocyte and endothelial cell injury.109–112 In a 
retrospective study of cancer patients treated 
with anthracyclines, the development of cardio-
toxicity was positively correlated with patient 
age, treatment frequency, and dosage.59 Low 
dose, standard-therapy breast cancer treatment 
with anthracyclines resulted in up to 20% of 
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patients developing cardiac systolic dysfunction 
within 6 months of treatment.113 Symptoms of 
cardiotoxicity associated with anthracycline use 
include cardiomyopathy, arrhythmia, acute myo-
carditis,57 heart failure,58 left ventricular dysfunc-
tion,59 and cardiac ischemia.60,61 Identified 
mechanisms that underlie anthracycline-induced 
cardiotoxicity include: (1) oxidative damage to 
cardiac myocytes accompanied by lipid peroxida-
tion and mitochondrial dysfunction, (2) modula-
tion of topoisomerase activity and DNA damage, 
(3) alterations in multidrug-resistant efflux pro-
teins, and (4) decreased mesenchymal and circu-
lating progenitor cells.62,112,114–116

Alkylating agents target rapidly growing cells for 
cell death by adding alkyl groups to DNA, thereby 
cross-linking the strands, resulting in the preven-
tion of replication. As a consequence of off-target 
effects, this class of therapeutics also induces sig-
nificant cardiotoxicity. Patients undergoing plati-
num-based drug treatments have been reported 
to develop hypertension, myocardial ischemia, 
thromboembolism, cerebrovascular disease, 
endothelial dysfunction, and coronary artery dis-
ease.18,117 Furthermore, patients treated with 
agents such as cyclophosphamide and ifosfamide 
have been observed to develop heart failure, 
reduction in left ventricular function, and arrhyth-
mias.118,119 Nonetheless, precise mechanisms of 
cardiovascular toxicity are less clear. Studies have 
reported increased levels of intracellular adhesion 
molecule-1 (ICAM-1) and plasminogen activator 
and inhibitor type 1,53,120 as well as exacerbated 
oxidative stress-induced cardiac cell death.51 
However, it has been shown that cisplatin is not 
completely excreted from the body and patients 
that exhibit late vascular toxicity also have meas-
urable platinum serum levels years after comple-
tion of therapy, which could contribute to 
toxicity.121

Microtubule inhibitors target and disrupt micro-
tubule structure and function, preventing cell 
separation during cell division, thereby inducing 
cell death. Microtubules not only assist with  
separation during cell division, they also pro- 
vide cytoplasmic structure. Microtubules exist 
dynamically between a monomeric and polymeric 
form through a constant state of polymerization 
and depolymerization. Paclitaxel is a microtubule 
inhibitor, which binds to tubulin and inhibits 
depolymerization. Patients undergoing treatment 
with paclitaxel have shown increased rates of 
arrhythmias,70 myocardial ischemia,69 and 

coronary spasm.49 The mechanism underlying 
this cardiovascular toxicity is largely unknown; 
however, paclitaxel has been shown to modulate 
calcium handling in cardiac myocytes. A study by 
Paul et al. (2000) demonstrated that depolymeri-
zation of microtubules increased calcium levels 
within the cytoplasm. There are also studies 
showing that disruption of the microtubule net-
work affects cellular contraction. Chitaley and 
Webb (2002) demonstrated that enhanced micro-
tubule depolymerization enhances aorta contrac-
tion in a Rho-kinase dependent manner.122 
Nonetheless, the clinical implication of increased 
vascular contraction and whether it contributes to 
cardiovascular dysfunction in cancer survivors 
remains to be determined.

Antimetabolites have an increased incidence of 
cardiotoxicity that can occur early in cancer treat-
ment and are proportional with dose and fre-
quency.123 Antimetabolites interfere with mitosis 
by substituting metabolites necessary for DNA or 
RNA synthesis, thus damaging cells. Common 
cardiovascular side effects include cardiac 
ischemia,54,55 angina, disruption of cardiac elec-
trical activity, and thrombosis.86 The underlying 
mechanism of these deleterious phenotypes has 
been proposed to be oxidative stress and endothe-
lial cell damage.56

In summary, cancer therapy undoubtedly con-
tributes to cardiovascular disease pathogenesis. 
There are multiple hypothesized mechanisms 
that have been postulated to result in cardiovas-
cular toxicity; however, these mechanisms are 
broad and could be a deleterious side effect of 
cancer treatment, as opposed to the cause. We 
would like to offer an alternative hypothesis 
whereby cancer therapy induces cardiovascular 
toxicity through the action of DAMPs.

Damage-associated molecular patterns and 
cancer
Chronic inflammation is a distinct feature of both 
cardiovascular disease and cancer.9 However, the 
precise mechanisms that mediate this inflamma-
tion are only beginning to emerge. While infec-
tion is unequivocally linked to the pathogenesis of 
both cardiovascular disease124 and cancer,125 
many patients with these diseases present sterile 
inflammation, or immune system activation in  
the absence of a pathogen. Although sterile 
inflammation has been proposed to arise through  
different mechanisms,126 DAMPs and the danger 

http://tac.sagepub.com


Therapeutic Advances in Cardiovascular Disease 11(11)

304	 http://tac.sagepub.com

theory of immunity have led to a paradigm shift in 
the understanding of not only pathophysiology, 
but physiology also.10,11

DAMPs are endogenous molecules that have spe-
cific functional purposes inside cells and as such, 
are normally compartmentalized within mem-
branes for performance of their various tasks. 
However, when these endogenous molecules are 
exposed to the extracellular environment, either 
by passive diffusion after membrane rupture or 
active secretion during stress, they unintention-
ally acquire additional immunogenic properties. 
These functions broadly include: the presentation 
of danger signals to other cells in a paracrine and 

endocrine manner, the activation of pattern-rec-
ognition receptors (PRRs) of the innate immune 
system, communication to the adaptive immune 
system and promotion of immunological mem-
ory, and finally the facilitation of tissue repair.127 
Obviously, these functions are not all mutually 
exclusive and the ability of DAMPs to both pro-
mote and resolve inflammation is an evolutionar-
ily conserved mechanism to restore immunological 
homeostasis. However, problems arise when the 
expression of DAMPs becomes excessive, 
chronic, and uncontrolled. We propose that dis-
ease progression ensues when the expression of 
DAMPs exceeds a ‘pathogenicity threshold’ 
(Figure 2).

Figure 2.  Hypothesized schematic of how damage-associated molecular patterns (DAMPs) contribute to 
the treatment and progression of cancer and cardiotoxicity. Due to the paradoxical contribution of DAMPs 
to cancer progression in the literature, we believe two key thresholds of DAMP expression exist. The first is 
the ‘anti-cancer’ threshold and this is where controlled amounts of DAMPs stimulate the immune system to 
mount an effective defense against the growing and potentially pathogenic tumor. This explains the benefits of 
immunogenic cell death (ICD) to cancer remission. The second threshold is the one of pathogenicity and this 
is when DAMP expression becomes so excessive and chronic that uncontrolled inflammation ensues, and this 
contributes to the progression of cancer, resistance to anti-cancer treatments, and cardiovascular disease.
DAMPs, damage-associated molecular patterns.
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There are a large number of endogenous mole-
cules that could potentially become DAMPs, 
which is dependent on the extracellular environ-
ment. Currently, DAMPs include a number of 
macromolecules composed of lipids, nucleic 
acids, and proteins from different sources such as 
extracellular matrix and cellular organelles. To 
add further complexity, macromolecules released 
into the extracellular environment surrounding 
stressed or decaying cells could be modified in 
such a way that their pathogenicity is either ampli-
fied or abrogated (e.g. oxidation).128 PRRs of the 
innate immune system (e.g. Toll-like receptors 
[TLRs]) are able to recognize distinct motifs 
within these macromolecules. Once these macro-
molecules are recognized, the innate immune sys-
tem responds in a manner that is motif-specific 
and promotes a pro-inflammatory milieu that is 
needed to combat the danger (e.g. upon the rec-
ognition of viral pathogen-associated molecular 
patterns (PAMPs), the major defensive strategy 
employed by the host immune system is the acti-
vation of the interferon regulatory factors). Table 
2 provides several examples of DAMPs observed 
to be released after cancer therapy, as well as their 
corresponding PRR. It should be noted that this 
list is by no means complete, as many other 
unknown molecules may fulfill the inclusion  
criteria of being DAMPs and PRR ligands, espe-
cially in the ever-changing tumorigenic microen-
vironment (e.g. neoantigens).

The participation of DAMPs as the mediators of 
the inflammation in most cases presumes that cell 
death is the initiating mechanism of their 
release.151 However, determining whether cell 
death primarily drives pathophysiology or is a sec-
ondary bystander is difficult. Although there are 
many forms of cell death,152 necrosis was origi-
nally thought of as the primary source of pro-
inflammatory DAMPs due to disintegration of 
the plasma membrane and passive release of 
intracellular constituents into the extracellular 
environment.153 However, we have come to learn 
that apoptosis can also be immunostimulatory, as 
a result of the programed release of immunogenic 
molecules,127,154 and necroptosis further refines 
the ability of cells to rapidly present DAMPs to 
the immune system with the regulated and con-
trolled breakdown of the plasma membrane.155 
Cell stress or injury can also fuel the secretion of 
DAMPs127 and this emphasizes that cell death is 
not an absolute precursor to participation of 
DAMPs in pathophysiology.

The participation of DAMPs in cancer is seem-
ingly contradictory. On one hand, DAMPs have 
been proposed to play a beneficial role in cancer 
therapy by interacting with the immune system 
and promoting an ‘anti-cancer vaccine effect’ 
(Figure 2), even in the absence of a traditional 
adjuvant.156–159 On the other hand, DAMPs could 
contribute to the progression of cancer160–167 and 
promote resistance to cancer treatments.15,147 
The former is made possible due to the ability of 
certain cancer therapies to induce immunogenic 
cell death (ICD) that is associated with the emis-
sion of DAMPs from dying cancer cells. DAMPs 
can then be trafficked by signaling pathways, 
which are instigated and regulated by a complex 
interplay between endoplasmic reticulum stress, 
reactive oxygen species, and certain metabolic/
biosynthetic processes.158 The ultimate response 
of DAMPs in cancer (i.e. antitumorigenic or pro-
tumorigenic) may depend on a number of differ-
ent factors,156 such as:

(1)	The histopathology of the cancer (and 
therefore its anatomical location).

(2)	The type of cell death modality that is trig-
gered by ICD, and the biochemical pro-
cesses activated (this, in itself, may also 
depend on a number of different and vary-
ing factors).

(3)	The types and abundance of immune cells 
present to phagocytose debris.

(4)	Finally, whether a cancer antigen is recog-
nized or not.

In summation, the conflicting contributions of 
DAMPs in cancer have revealed a Janus face.157,159 
Nonetheless, given the well-documented role of 
DAMPs in exacerbating inflammation in cardio-
vascular disease,168 we believe that DAMPs, irre-
spective of their contribution to cancer treatment 
and progression, could serve as a novel facilitator 
of cardiotoxicity during and following cancer 
therapy.49 DAMPs in cancer could arise from a 
number of different sources, including (paradoxi-
cally) tumor growth and remodeling,160–167 as well 
as carcinogenic environmental toxins.169

Damage-associated molecular patterns and 
cardiovascular disease
While it has been reviewed in more depth else-
where,168 there is ample evidence that increased 
levels of DAMPs are associated with cardio- 
vascular disease in human populations. For 
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Table 2.  Secreted or released damage-associated molecular patterns that have been measured after various anti-cancer therapies.

DAMP Cancer type Treatment Author(s) Corresponding 
PRR(s)

Actin Lung squamous cell carcinoma/
adenocarcinoma

Photodynamic therapy Tracy et al.129 DNGR-1 (CLEC9A)

Adenosine Hairy cell leukemia Pentostatin 
(2’-deoxycoformycin)

Johnston130 A1, A2A, A2B, A3

ATP Bladder carcinoma Photodynamic therapy Garg et al.131 P2X7, P2Y2

Colorectal carcinoma and 
osteosarcoma

Mitoxantrone and 
oxaliplatin

Michaud et al.132

Colorectal carcinoma and 
sarcoma

Various 
chemotherapeutic agents

Ghiringhelli 
et al.133

Fibrosarcoma Doxorubicin Ma et al.134

Cutaneous melanoma Amino acid derivative 
LTX-401

Eike et al.135

T-cell leukemia Ultraviolet light Elliott et al.136

Calreticulin Bladder carcinoma Photodynamic therapy Garg et al.131 CD91, scavenger 
receptors (LOX-1, 
SREC-1, and FEEL-
1/CLEVER-1)

Bladder carcinoma Photodynamic therapy Garg et al.137

Colorectal carcinoma Doxorubicin Obeid et al.138

Colorectal carcinoma Electrohyperthermia Andocs et al.139

Colorectal carcinoma and 
osteosarcoma

Mitoxantrone and 
oxaliplatin

Michaud et al.132

Colorectal carcinoma, cutaneous 
melanoma, lung carcinoma, 
esophageal squamous cell 
carcinoma, and pancreatic 
carcinoma

Various 
chemotherapeutic agents

Yamamura et al.140

Cytochrome c Cutaneous melanoma Amino acid derivative 
LTX-401

Eike et al.135 Unknown

Lung squamous cell carcinoma/
adenocarcinoma

Photodynamic therapy Tracy et al.129

HSP60 Squamous cell carcinoma Photodynamic therapy Korbelik et al.141 CD91, scavenger 
receptors (LOX-1, 
SREC-1, & FEEL-1/
CLEVER-1), TLR2, 
TLR4

HSP70 Bladder carcinoma Photodynamic therapy Garg et al.137

Colorectal carcinoma Oxaliplatin and 
5-fluorouracil

Fang et al.142

Colorectal carcinoma Electrohyperthermia Ma et al.134

Lung squamous cell carcinoma/
adenocarcinoma

Photodynamic therapy Tracy et al.129

Prostate adenocarcinoma Heating and UVC 
irradiation

Brusa et al.143

Squamous cell carcinoma Photodynamic therapy Korbelik et al.141

HSP90 Colorectal carcinoma Electrohyperthermia Ma et al.134

Lung squamous cell carcinoma/
adenocarcinoma

Photodynamic therapy Tracy et al.129

Myeloma cells Bortezomib Spisek et al.144

GRP78 (BiP) Squamous cell carcinoma Photodynamic therapy Korbelik et al.141

GP96 (GRP94) Squamous cell carcinoma Photodynamic therapy Korbelik et al.141

HMGB1 Colorectal carcinoma Doxorubicin and linoleic 
acid

Luo et al.145 RAGE. TIM3, TLR2, 
TLR4, TLR9

Colorectal carcinoma Electrohyperthermia Ma et al.134

Colorectal carcinoma Oxaliplatin and 
5-fluorouracil

Fang et al.142
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example, hypertensive patients have higher 
plasma levels of mitochondrial DNA, high 
mobility group box 1 (HMGB1), heat shock 
protein (HSP) 60 and HSP70, or fibrinogen, 
and each of these is capable of activating dis-
tinct PRRs that then start the immune-response 
cascade.168 Additionally, DAMPs such as 
HMGB1, advanced glycation end products 
(AGEs), hyaluronan, oxidized low-density lipo-
protein, and uric acid are present in higher lev-
els in the circulation or the plaques in patients 
with atherosclerosis and S100 proteins are 
increased in stroke.170,171 Consequently, PRRs 
such as TLRs seem to be chronically activated 
in cardiovascular disease, including atheroscle-
rosis, cardiomyopathy, hypertension and cere-
brovascular disease.12,168,172–175

There are also strong indications from basic sci-
ence studies that release of DAMPs is causative 
for cardiovascular disease. Thus, experimental 

administration of DAMPs has detrimental effects 
on cardiovascular parameters and inhibition of 
DAMPs, or their respective PRRs, improves car-
diovascular disease phenotypes and outcomes.168 
HMGB1 administration increased myocardial 
infarct size and promoted the development of 
microvascular thrombosis.176 Our group demon-
strated that mitochondrial DNA infusion leads to 
hypertension in a pre-eclampsia rodent model.177

Additionally, treatment with TLR4 or TLR9 
inhibitors decreased blood pressure in spontane-
ous hypertensive rat (SHR), and treatment with 
the TLR4 inhibitor eritoran decreased myocar-
dial ischemia-reperfusion injury;12 TLR4 and 
TLR2 deficient mice are protected from doxoru-
bicin-induced cardiomyopathy.178,179 Genetic 
deficiency in various TLRs or their common 
downstream signaling partner MyD88 protects 
apolipoprotein E (apoE) knock-out mice from 
atherosclerosis.180

DAMP Cancer type Treatment Author(s) Corresponding 
PRR(s)

Colorectal carcinoma and 
osteosarcoma

Mitoxantrone and 
oxaliplatin

Michaud et al.132

Colorectal carcinoma and 
thymoma cells

Doxorubicin and 
irradiation, respectively

Apetoh et al.146

Lung squamous cell carcinoma/
adenocarcinoma

Photodynamic therapy Tracy et al.129

Prostate adenocarcinoma Heating and UVC 
irradiation

Brusa et al.143

Prostate adenocarcinoma Various 
chemotherapeutic agents

Zhou et al.147

Cutaneous melanoma Amino acid derivative 
LTX-401

Eike et al.135

Thymoma cells X-rays Apetoh et al.148

IL-1α/β Lung squamous cell carcinoma/
adenocarcinoma

Photodynamic therapy Tracy et al.129 IL-1R

Peroxiredoxin-1 Lung squamous cell carcinoma/
adenocarcinoma

Photodynamic therapy Tracy et al.129 CD14, TLR4

S100A8/A9 Prostate adenocarcinoma Phorbol 12-myristate,13-
acetate

Hermani et al.149 RAGE

Uric acid Thymoma cells Etoposide and 
cyclophosphamide

Hu et al.150 CD14, TLR2, TLR4

ATP, adenosine triphosphate; BiP, binding immunoglobulin protein; CD, cluster of differentiation; DAMP, damage-associated molecular pattern; 
FEEL-1/CLEVER-1, Fasciclin EGF-like/common lymphatic endothelial and vascular endothelial receptor-1; GP96, glycoprotein 96; GRP, glucose-
regulated protein; HMGB1, high mobility group box 1; HSP, heat shock protein; IFN, interferon; IL, interleukin; IL-1R, interleukin-1 receptor; 
LOX-1, lectin-type oxidized LDL receptor 1; PRR, pattern-recognition receptor; P2X7, purinergic receptor P2X, ligand-gated ion channel 7; P2Y2, 
purinergic receptor P2Y, G-protein coupled 2; RAGE, receptor for advanced glycation end products; SREC-1, scavenger receptor class F member 
1; TIM3, T cell/transmembrane, immunoglobulin, and mucin; TLR, Toll-like receptor; UVC, ultraviolet C.

Table 2. (Continued)
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Hypothesis
As discussed above, there is a clear link between 
cancer therapy and cardiovascular disease. While 
it is logical to surmise that the traditional cardio-
vascular disease risk factors (e.g. obesity, dyslipi-
demia, insulin resistance, and tobacco use) 
contribute to cancer therapy-induced cardiotox-
icity (especially given that these are also risk fac-
tors to cancer itself), correlational analysis does 
not support this notion.4,5 Therefore, the clinical 
and basic science data summarized in this review 
strongly support the notion that cancer therapy 
directly causes cardiovascular toxicity that would 
not have occurred in its absence. The mecha-
nisms by which specific cancer therapies or radio-
therapy lead to cardiovascular disease is in some 
cases clearly demonstrated, for instance interfer-
ence with endothelial NO signaling in the case of 
VEGF receptor inhibitors. In the majority of 
remaining cases, however, the processes by which 
cancer therapy causes cardiovascular disease are 
unclear. We believe that DAMPs and innate 
immune-system activation are the missing con-
tributing factors for the development of cancer 
therapy-induced cardiotoxicity (Figure 3).

In support of this hypothesis, chemotherapeutic 
agents and radiotherapy are effective against can-
cer because they induce cell death in rapidly 
dividing cell populations. As a consequence of 
sudden cell death in a large number of cells simul-
taneously, there is a rapid and massive release of 
various DAMPs that enter the systemic circula-
tion and induce an inflammatory response 
through activation of the innate immune system. 
As discussed above, both in vivo and in vitro treat-
ments with chemotherapeutic agents or radiation 
induce release of DAMPs (Table 2). An increase 
in circulating DAMPs post-chemotherapy could 
contribute to the increased prevalence of throm-
bosis in cancer patients.181 Thrombosis has a 
physiological role in immune defense, where 
monocytes respond to PAMPs and DAMPs by 
releasing tissue factor and initiating coagulation 
pathways.182 Therefore, an increased presence of 
circulating DAMPs could play a role in the 
increased presence of thrombotic events in these 
patients. It has also been shown that chemo- and 
radio-therapy causes activation of innate immune 
receptors, such as PRRs.146

In a perfect illustration of the Janus face effect, 
DAMP release and PRR activation following 
administration of chemotherapy may be simulta-
neously beneficial for cancer treatment and 

detrimental for other systems and organs, including 
the cardiovascular system. Thus, ICD can drive 
both immune-mediated tumor suppression and 
pro-inflammatory cytokine-mediated tissue injury 

Figure 3.  Danger signaling in cardio-oncology. The 
nature of cancer therapy is to reduce tumor size by 
causing sudden and rapid cancer-cell death. Because 
damage-associated molecular patterns (DAMPs) 
are released from dead and dying cells (via necrosis 
or apoptosis), this results in the release of DAMPs 
from cells during cancer therapy. DAMPs activate 
the immune system through activation of pattern-
recognition receptors from cell types within the 
cardiovascular system (e.g. endothelial cells, vascular 
smooth muscle); we hypothesize that the overactivation 
of this system results in a pro-inflammatory 
cardiovascular disease following cancer therapy.
DAMPs, damage-associated molecular patterns.
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via DAMPs. Similarly, immune cells, and in par-
ticular, T cells, also present a paradox in the 
context of the pathophysiology of cardio-oncol-
ogy. While promoting T-cell expansion may be 
beneficial in diminishing cancer progression and 
tumorigenesis, they are also known to promote 
cardiovascular disease,183 and specifically, hyper-
tension and its associated hallmarks.184

The therapeutic potential of adding agonists for 
TLR9 (CpG DNA), TLR3 (poly I:C), or TLR4 
(endotoxin analogs) for a synergistic effect to 
radiotherapy or chemotherapeutics was recently 
evaluated and clear anti-tumor effects have been 
ascribed to this approach.185 On the other hand, 
long-term consequences of TLR ligand adminis-
tration on any cardiovascular parameters are only 
beginning to be investigated.186 Data from our 
group and others would suggest that high amounts 
of DAMPs, whether released from tumor cell 
death following cancer therapy or administered 
therapeutically, might have a negative impact on 
the cardiovascular system.

Potential value of damage-associated 
molecular patterns in cardio-oncology
There are continuing advances in cancer thera-
peutics; however, the challenge now exists of 
developing avenues allowing these treatments to 
be efficacious without significant cost. The preva-
lence of cancer therapy-induced cardiotoxicity 
has led to systematic monitoring and the need for 
early identification of biomarkers for high-risk 
patients.187,188 Currently, circulating cardiac tro-
ponins (TnI, TnT) are considered the gold-
standard marker for cardiac injury and are used as 
a diagnostic adjuvant to echocardiograms and 
other diagnostic modalities. TnI is sensitive and 
specific for myocardial injury allowing for early 
myocardial damage detection prior to any clinical 
detection through physical examination or imag-
ing, especially in anthracycline-based chemother-
apy regimens.189 Other studies have also  
looked at the usefulness of TnI and TnT as sur-
rogate markers for myocardial damage with  
the use of anti-VEGF TKI chemotherapeu-
tics.18,190,191 Nonetheless, cardiac troponins may 
not be the only molecules released during cardio-
vascular damage after an insult such as chemo-
therapy or radiation. Theoretically, a wide array 
of circulating DAMPs could be measured in can-
cer patients prior to, during, and after treatment. 
Therefore, DAMPs present an opportunity for 
identifying and treating cancer therapy-induced 

cardiotoxicity. For example, obvious therapeutic 
targets for DAMPs include antagonism of the 
PRR activated by a specific DAMP, or direct 
ligand neutralization, thereby reducing the 
inflammation that promotes cardiovascular dis-
ease. Given the beneficial effects of DAMPs in 
some cancers, perhaps specific PRR antagonism 
in cardiovascular tissues is warranted.156–159

In conclusion, the use of DAMPs as a diagnostic 
adjuvant (i.e. biomarker) or therapeutic drug 
could be a novel approach to decrease cardiovas-
cular morbidity and prevent premature mortality 
from cardiovascular toxicity for the millions of 
patients that have successfully outlived their ini-
tial cancer diagnosis. After all, what is the point of 
tolerating the toxicity of cancer-therapy to survive 
cancer if you subsequently succumb to cardiovas-
cular disease?
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