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Abstract

To plan experiments, a biologist needs to evaluate a growing set of empirical findings and

hypothetical assertions from diverse fields that use increasingly complex techniques. To

address this problem, we operationalized principles (e.g., convergence and consistency)

that biologists use to test causal relations and evaluate experimental evidence. With the

framework we derived, we then created a free, open-source web application that allows

biologists to create research maps, graph-based representations of empirical evidence

and hypothetical assertions found in research articles, reviews, and other sources. With our

ResearchMaps web application, biologists can systematically reason through the research

that is most important to them, as well as evaluate and plan experiments with a breadth and

precision that are unlikely without such a tool.

Introduction

Information in biology falls into at least two categories: (1) the information that individual biol-

ogists curate from articles they read, and (2) the vast body of other information that biologists

can access, at least in principle, through resources like PubMed. Most informatics tools target

the second category: the literature’s accelerating growth makes it exceedingly impractical for

biologists to find all the information that is relevant to their work. But even within the first cate-

gory, it is ever more difficult for biologists to synthesize the information that they personally

curate. Part of this challenge is caused by the increasing complexity of biological research.

Individual biologists must now keep track of empirical findings and hypothetical assertions

from diverse fields that use a growing number of sophisticated techniques. Perhaps an even

PLOS ONE | https://doi.org/10.1371/journal.pone.0195271 May 3, 2018 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Matiasz NJ, Wood J, Doshi P, Speier W,

Beckemeyer B, Wang W, et al. (2018)

ResearchMaps.org for integrating and planning

research. PLoS ONE 13(5): e0195271. https://doi.

org/10.1371/journal.pone.0195271

Editor: Roeland M.H. Merks, Centrum Wiskunde &

Informatica (CWI) & Netherlands Institute for

Systems Biology, NETHERLANDS

Received: August 24, 2017

Accepted: March 19, 2018

Published: May 3, 2018

Copyright: © 2018 Matiasz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper, its Supporting Information files,

and available at ResearchMaps.org and www.

github.com/ResearchMaps.

Funding: This work was supported by the Leslie

Chair in Pioneering Brain Research to AJS, an NIH

T32 (T32EB016640-02) to NJM, an NIH-NCI T32

(T32CA201160) to JW, and NIH/NCATS UCLA

Clinical and Translational Science Institute (CTSI)

UL1TR000124 to both NJM and WH. The funders

had no role in study design, data collection and

https://doi.org/10.1371/journal.pone.0195271
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195271&domain=pdf&date_stamp=2018-05-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195271&domain=pdf&date_stamp=2018-05-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195271&domain=pdf&date_stamp=2018-05-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195271&domain=pdf&date_stamp=2018-05-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195271&domain=pdf&date_stamp=2018-05-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195271&domain=pdf&date_stamp=2018-05-03
https://doi.org/10.1371/journal.pone.0195271
https://doi.org/10.1371/journal.pone.0195271
http://creativecommons.org/licenses/by/4.0/
http://www.github.com/ResearchMaps
http://www.github.com/ResearchMaps


greater problem is that biologists are tasked with synthesizing this complex web of information

with little help from machines. Thus, biologists could benefit from methods to help them

track the information they deem critical for integrating and planning experiments. Given the

unmatched ability of computers to index, retrieve, and process information, biologists could

benefit enormously from a software tool capable of helping them to track and reason through

causal assertions; such a tool could help biologists to synthesize empirical findings and plan

future experiments.

Building on our previous discussions of these general concepts [1–3], we introduce an

updated research map representation and an accompanying web application, ResearchMaps
(http://researchmaps.org/), designed to help biologists integrate and plan experiments. A

research map graphically represents hypothetical assertions and empirical findings. To weigh

the evidence encoded in a research map, we present a novel Bayesian calculus of evidence that

allows researchers to formally synthesize empirical results. This Bayesian approach expresses

integration principles, including convergence and consistency, commonly used by many biol-

ogists to judge the strength of causal assertions. Thus, our goal with research maps was not to

build another ontology but rather to formalize aspects of biologists’ epistemology [3].

Biologists traditionally find research summaries in reviews and opinion articles. Although

these articles are useful, they have clear limitations: they are not dynamically updated; it is

cumbersome to personalize them; and they usually reflect the state of a field as it existed

at least one to two years before the publication date. These limitations are particularly a prob-

lem in rapidly changing fields like neuroscience. By comparison, digital lab notebooks are

extremely useful for tracking and sharing experiments and findings between collaborators,

but they are not designed to track large amounts of causal information in a representation that

facilitates evidence synthesis, knowledge discovery, or causal reasoning.

Existing representations such as Knowledge Engineering from Experimental Design

(KEfED) provide a way to model experimental procedures and findings in a detailed and

machine-readable manner [4]. Here, we present a complementary approach for representing

and querying high-level assertions that characterize connections among phenomena. More-

over, formalisms such as probabilistic graphical models (e.g., Bayesian networks) have been

shown to be effective at conveying relations among biological phenomena using a graph struc-

ture, as they compactly encode the joint probability distribution across variables [5]. However,

conditional probabilities are often missing in reports of experiments designed to test causal

assertions. Pathway analysis tools such as BioCarta [6] and Ingenuity Pathways Analysis

(QIAGEN Redwood City, Redwood City, CA, USA) provide graphical representations of pos-

sible causal connections, but they do not keep track of the classes of experiments carried out

to arrive at those conclusions, and they are usually restricted to specific domains of biological

phenomena (e.g., molecular interactions).

The research-map framework shares some similarities with the recent WatsonPaths™
system, in which an assertion graph is constructed to reason through medical information

[7]. Unlike a WatsonPaths assertion graph, a research map reflects a personally curated knowl-

edge representation for a specific domain or sequence of experiments. Thus, a research map

requires no training examples or external knowledge bases to be created.

Results

Research maps

A research map is a directed graph that represents information concerning possible causal

relations between biological phenomena [1]. Each node in the graph represents the identity

and properties of a biological phenomenon, and each directed edge—from an Agent node to
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a Target node—represents a relation between phenomena (e.g., A!B). In an experiment, an

Agent is either intervened on or observed; this Agent may or may not act on another phe-

nomenon, the Target, which is measured in the experiment. An Agent for one edge can be a

Target for another. The key concepts captured in research maps reflect common epistemic

practices in many fields of biology, represented in areas as diverse as neuroscience, develop-

ment, immunology, and cancer. Thus, research maps should be useful to represent informa-

tion in these and other areas of biology. See Fig 1 for an example of a research map of a

published article [8].

The framework of research maps

In research maps, biological experiments are categorized according to a hierarchical frame-

work [9]. We propose that experiments in many fields of biology can be classified into three

general classes: (1) Identity Experiments attempt to identify phenomena and their properties;

(2) Connection Experiments, the subject of research maps, test causal hypotheses; and (3) Tool
Development Experiments develop and evaluate tools for performing Identity and Connection

Experiments.

Within the class of Connection Experiments, we propose that there are four subclasses of

experiments used to test a hypothesized connection between an Agent A and a Target B: (1)

Positive Intervention, (2) Negative Intervention, (3) Positive Non-intervention, and (4) Negative
Non-intervention. In a Positive Intervention experiment, the quantity or probability of the

Fig 1. Research map of the results in a published article [8]. Each node in a research map has three properties: What (top), Where (middle), and When (bottom).

Nodes are connected by edges that represent relations: Excitatory (sharp arrowhead), Inhibitory (blunt arrowhead), and No-connection (dotted line, circular arrowhead).

Each empirical edge also has a score that reflects the amount of evidence represented, as well as symbols that reflect the experiment classes recorded for that edge. Scores

and experiment symbols are not assigned to hypothetical edges. Users can highlight edges that reflect the main idea(s) discussed in the article, so that they are more

apparent. In cases where no one relation has received dominant evidence, the corresponding edge is represented by a diamond arrowhead and is not assigned a score.

https://doi.org/10.1371/journal.pone.0195271.g001
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Agent A is increased, and the change (or lack of change) in Target B is measured. For example,

to determine whether the activity of cell type A affects memory B, one could increase the activ-

ity of cell type A and then study the impact on memory B. In this case, the activity of cell type

A is actively increased via an intervention—for instance, optogenetically.

A Negative Intervention experiment decreases the quantity or probability of A and mea-

sures B. For example, we could study how memory B is effected by a manipulation that inhibits

cell type A. Positive and Negative Intervention experiments thus complement each other: the

two use different approaches to probe the strength of the hypothesized connection between A
and B.

Using only Positive and Negative Intervention experiments raises a number of problems

that could confound the interpretation of those experiments. For example, such experiments

always impose a change in an Agent A with methods that could have unintended effects.

Therefore, any change observed in Target B may not necessarily result from a causal connec-

tion between A and B that is observable under specific conditions (e.g., during a spatial learn-

ing task); the change in B could instead be caused by experimental side effects of artificially

intervening on A. The experimental process of intervening on A may inadvertently affect

another phenomenon, C, even if C is not normally affected by A outside of the experimental

setting. Although C may be the true cause of B, it may appear to the experimenter, who is

oblivious to C’s involvement, that A causes B. This possibility demonstrates the need for Non-

intervention experiments to complement Positive and Negative Interventions.

A Non-intervention experiment measures A and B without intervening on either. In a Posi-

tive Non-intervention experiment, the quantity or probability of A is observed to increase, and

the change (or lack of change) in B is measured. In a Negative Non-intervention experiment,

the quantity or probability of A is observed to decrease, and B is measured. These experiments

help us to learn whether the relation between A and B identified by Intervention experiments

exists outside of the experimental setting used to intervene on A. Without Non-intervention

experiments, it is difficult to be sure that experimental results are not mere artifacts caused by

the interventions used to change A. In many fields of biology, Non-intervention experiments

alone are usually judged to be insufficient to determine whether two phenomena are causally

connected, as they are thought to merely document the correlation between these phenomena.

However, elegant methods have been developed to identify specific causal structures solely

from patterns of correlations derived from observational (i.e., non-interventional) data [10].

From the four classes of experiments described above, we can glean evidence for three types

of relations between phenomena. A relation between an Agent and a Target is defined as Excit-
atory when an increase in the Agent leads to an increase in the Target, or a decrease in the

Agent leads to a decrease in the Target. In an Excitatory relation, a Positive Intervention exper-

iment would result in an increase in the Target, and a Negative Intervention experiment

would result in a decrease of the Target. In an Inhibitory relation, an increase in the Agent

leads to a decrease in the Target, while a decrease in the Agent leads to an increase in the Tar-

get. When changes in the Agent fail to affect the Target, there is evidence for the absence of a

connection between the two phenomena. In this last case, although the Agent and Target do

not appear to be connected, this independence is represented explicitly with a relation denoted

as No-connection.

Rules of integration

In biology—and in research maps—a key approach to determine the reliability of results and

the usefulness of hypotheses is to look for convergence and consistency in a set of findings. For

instance, we can ask whether A reliably affects B or whether A and B are consistently
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independent of each other. We refer to the process that attempts to combine a series of experi-

mental results as Integration [9].

Integration methods determine the strength of the evidence for a particular connection,

which is quantified and expressed as a score for a particular edge in a research map. The evi-

dential strength of a connection is not to be confused with the magnitude of the causal effect

that A has on B, where A may be one of many possible causes of B. Integration methods

include (but are not limited to) Convergence Analysis and Consistency Analysis [9]. By gauging

the extent to which evidence is convergent and consistent, these Integration methods help to

distinguish hypotheses with strong support from those with weak support. The principles of

convergence and consistency are thus used for instantiating and scoring empirical edges in

research maps.

Convergence Analysis assesses whether the outcomes of the different kinds of Connection

Experiments (Positive and Negative Interventions, and Positive and Negative Non-interven-

tions) are consistent with each other—i.e., whether they support a single connection type

(either Excitatory, Inhibitory or No-connection). Suppose we find that optogenetically inhibit-

ing cell type A is associated with a deficit in spatial learning. Suppose also that enhancing the

activity of cell type A enhances the same form of learning. If we also found that cell type A is

activated during spatial learning, and that this cell type is inactive when the animal is not learn-

ing, then our combined results would make a compelling argument that the activation of cell

type A is causally connected to spatial learning. This convergence between these four classes of

experiments would yield a relatively high score for the Excitatory connection in a research

map representing the relation between cell type A and spatial learning. On the other hand,

contradictions among the data would lower the score of the connection. Convergence Analysis

thus encompasses the notions that multiple lines of evidence are preferable to one, and that

different experiment classes make unique contributions to testing the reliability of a hypothe-

sized connection between two phenomena.

In addition to gauging the convergence of experimental results across multiple classes of

experiments, it is also important to gauge the consistency of experimental results within each

class of experiment. For this purpose, Consistency Analysis assesses whether experimental

results are reproducible. For example, we might ask whether different kinds of Positive Inter-

ventions on the activity of cell type A (e.g., chemogenetic and optogenetic) always result in an

enhancement of spatial learning. This question can refer to multiple iterations of the exact

same experiment, or to a set of experiments that are similar in principle—e.g., two Positive

Interventions of receptor A, one chemogenetic and the other optogenetic, that test two differ-

ent forms of spatial learning.

Calculating scores

To convey the amount of evidence for a particular empirical edge in a research map, a score

for the edge is calculated using an algorithm based on the Integration methods above. These

methods reflect epistemological rules and commonsense intuitions found in fields that use

molecular and cellular approaches to biological problems, including neurobiology, biochemis-

try, cell biology, and physiology. In designing an approach to scoring such evidence, we strove

to express quantitatively the following axioms: the principles of (1) convergence and (2) con-

sistency, as described above; (3) the principle that convergence carries greater epistemological

weight than consistency; and (4) the principle that we have no a priori reason to prefer one

class of experiment to another when aggregating evidence. (In areas of science where one type

of experiment is favored over others for technical reasons, our approach allows for a non-uni-

form weighting of evidence from different experiment classes.) There are other axioms used in

ResearchMaps.org for integrating and planning research

PLOS ONE | https://doi.org/10.1371/journal.pone.0195271 May 3, 2018 5 / 25

https://doi.org/10.1371/journal.pone.0195271


science that have not been expressed in the scoring algorithm of research maps [9] because we

see them to be secondary to the ones above.

The central idea of our scoring approach is that convergent and consistent results increase

the score of an edge, while conflicting results decrease the score. Each score falls in the range

(0, 1), and each experiment class (Positive Intervention, Negative Intervention, Positive Non-

intervention, and Negative Non-intervention) contributes an amount in the range (0, 0.25) to

the overall score. Multiple experiments of the same kind contribute progressively smaller

scores to the edge. As experiments are recorded, a Bayesian approach is used to update the

degrees of belief attributed to each type of relation. The scores thus reflect an approach for

gauging the strength of the convergent and consistent evidence supporting a given connection;

their semantics are derived not from their absolute values but from their relative values. In

addition to p-values from statistical tests and associated meta-analyses, this scoring method

could conceivably be used to evaluate the strength of evidence across various types of experi-

ments testing a single causal assertion.

The score for an edge in a research map is calculated as follows. Let C = {",⌀",⌀#, #}
denote the set of all experiment classes, where c = " denotes the class Positive Intervention;

C =⌀" denotes the class Positive Non-intervention; C =⌀# denotes the class Negative Non-

intervention; and c = # denotes the class Negative Intervention. Let R ¼ fE;N ; Ig denote the

set of relations that can exist between two phenomena and for which an experiment can pro-

vide evidence, where E denotes an Excitatory relation; N denotes a No-connection relation;

and I denotes an Inhibitory relation. Thus, an experiment of class C 2 {",⌀",⌀#, #} can yield

evidence in support of relation r 2 fE;N ; Ig.
Let αc ¼ ðac;E ; ac;N ; ac;IÞ; let θc ¼ ðyc;E ; yc;N ; yc;IÞ, and let xc ¼ ðxc;E ; xc;N ; xc;IÞ, where

ðyc;E ; yc;N ; yc;IÞ � Dirðac;E ; ac;N ; ac;IÞ ; ð1Þ

ðxc;E ; xc;N ; xc;IÞ � Multðyc;E ; yc;N ; yc;I ; ncÞ : ð2Þ

Here, αc,r is the prior weight given to relation r supported by experiments of class c; θc,r is the

probability that the next experiment of class c will yield evidence in support of relation r; xc,r is

the number of experiments of class c that have yielded evidence in support of relation r, and nc
is the number of experiments of class c that have been performed. For each class of experiment

c, we can define xc (compare to the table in Fig 2):

x" ¼ ½x";E ; x";N ; x";I � ; ð3Þ

x⌀" ¼ ½x⌀" ;E ; x⌀" ;N ; x⌀" ;I � ; ð4Þ

x⌀# ¼ ½x⌀# ;E ; x⌀# ;N ; x⌀# ;I � ; ð5Þ

x# ¼ ½x#;E ; x#;N ; x#;I � : ð6Þ

The score of an edge is based on the values of θc for each of the experiment classes, which

are updated as additional experiments are recorded, thereby changing the values of xc. We are

thus interested in estimating each θc in light of the evidence represented by each xc. Applying
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Bayes theorem yields

pðθc j xc;αcÞ / pðxc j θcÞpðθc j αcÞ ; ð7Þ

/ y
ac;Eþxc;E � 1

c;E y
ac;Nþxc;N � 1

c;N y
ac;Iþxc;I � 1

c;I ; ð8Þ

The posterior distribution is in the form of a Dirichlet distribution, so we have that

yc j xc; ac � Dirðac þ xcÞ : ð9Þ

The expected value of this distribution is thus expressed as

E½yc;r j xc; ac� ¼
ac;r þ xc;rP
r ac;r þ nc

: ð10Þ

If αc,r = 1 for all c and r, the above expression becomes

E½yc;r j xc; ac;r ¼ 1� ¼
1þ xc;r
jRj þ nc

; ð11Þ

which is an implementation of Laplace (add-one) smoothing.

In the absence of evidence (i.e., before any experiments are performed), xc,r = 0 for all c, r.
We denote this state by θo:

yo ¼ E½yc;r j xc ¼ ð0; 0; 0Þ; ac;r ¼ 1� ¼
1

jRj
¼

1

3
: ð12Þ

Let �y denote the set of mean r-components across all experiment classes (an expression of

convergence):

�y ¼
1

jCj

X

c

E½yc;E j xc; ac;E ¼ 1�;
X

c

E½yc;N j xc; ac;N ¼ 1�;
X

c

E½yc;I j xc; ac;I ¼ 1�

" #

: ð13Þ

The relation assigned to the research-map edge is the relation with the largest component in �y:

argmax
r

�yr : ð14Þ

Fig 2. A shorthand method for calculating the score of an edge in a research map. A table representing the model

space of experiments is instantiated with a pseudocount of one (a form of Laplace smoothing). The symbols along the

left indicate the classes of experiments involving an Agent, A: Positive Intervention (A "), Positive Non-intervention

(A⌀"), Negative Non-intervention (A⌀#), and Negative Intervention (A #). The symbols along the top indicate the

results recorded in a Target, B: increase (B+), no change (B0), and decrease (B−). This particular instantiation of the

scoring table encodes four (5 − 1) Positive Interventions that caused the Target to increase, one (2 − 1) Positive Non-

intervention that caused the Target to decrease, and one (2 − 1) Negative Non-intervention that caused the Target to

decrease. There are thus five experiments suggesting an Excitatory relation (green regions), and one experiment

suggesting an Inhibitory relation (red region).

https://doi.org/10.1371/journal.pone.0195271.g002
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The score assigned to the research-map edge is

max �y � yo

1 � yo

; ð15Þ

where max �y denotes the largest component of �y. In cases where two or more components of

�y are equal, neither a relation nor a score is assigned to the edge.

See Fig 2 for a depiction of a shorthand calculation of an edge’s score. See Fig 3 for plots of

how the score of an edge increases with each subsequent experiment due to the principles of

consistency and convergence.

It is worth noting that the scores derived from the above scoring algorithm, which is based

on Bayesian principles, closely resemble those derived from a heuristic scoring approach used

in early versions of research maps, which expressed scientists’ intuitions regarding the integra-

tion of evidence [2]. See S1 Fig for a comparison of these two scoring approaches; see Sed S2

Fig for the derivation of the earlier heuristic scoring approach.

A scoring example

To develop an intuition for the above scoring approach, consider the following example,

which uses the experiments involving CREB and the number of Arc neurons that are depicted

in Fig 4. In this research map, the edge connecting these two nodes represents three experi-

ments: two Positive Interventions of CREB resulting in no change in the number of Arc neu-

rons, and one Negative Intervention of CREB, again resulting in no change. Together, these

Fig 3. The growth of an edge’s score due only to consistency (left) and due to convergence (right). These plots show

how the score of a research-map edge increases with each subsequent experiment (all with agreeing results), due to the

principle of consistency (left) and due to the principle of convergence (right). The plot on the left represents repeated

iterations of the same class of experiment (e.g., Positive Intervention) with consistent results. The plot on the right

represents multiple iterations of experiments in which, at each iteration, one of the least-represented classes of

experiments was performed, leading to consistent results. These two plots express an axiom of research maps: the

principle of convergence carries greater epistemological weight than the principle of consistency.

https://doi.org/10.1371/journal.pone.0195271.g003

Fig 4. An example of an edge in a research map. This research map encodes three experiments—two Positive

Interventions (") and one Negative Intervention (#)—involving CREB and the number of Arc neurons. This map is

part of a larger one that is discussed below.

https://doi.org/10.1371/journal.pone.0195271.g004
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three experiments provide evidence for a No-connection edge between the two nodes. Before

any of these experiments were performed, θc was uniform for all c. After the first experiment,

in which a Positive Intervention produced no change in the Target, θc = (0.25, 0.50, 0.25) and

the score of the edge was 0.0625. After the second Positive Intervention (with the same result

as the first), the score of the edge became 0.1000.

The first Positive Intervention thus changed the score by 0.0625, while the second experi-

ment changed the score by 0.0375. These two changes in the score demonstrate a common-

sense intuition regarding evidence that is expressed quantitatively by the scoring algorithm:

each subsequent experiment that yields consistent results increases the score, albeit by an

amount that is less than the amount contributed by the previous consistent experiment.

After the third experiment, in which a previously unrepresented experiment class (Negative

Intervention) yielded a consistent result (no change), the score increased to 0.1625, for a net

change of 0.0625. This change demonstrates another desirable feature of the scoring algorithm:

when consistent results are obtained across multiple experiment classes, each sequence of

experiments within a class contributes the same set of decaying amounts to the score, such that

results across the four experiment classes are weighted independently of the order in which

they were obtained.

If a fourth experiment with conflicting evidence were recorded—for example, a Positive

Non-intervention yielding an increase in the Target—the score would drop to 0.1313. Appro-

priately, the conflicting evidence would undermine the still-dominant evidence that the rela-

tion between the two nodes is No-connection. Had this conflicting evidence come from

another Positive Intervention, an experiment class already represented in the score, the score

would drop to 0.1250. This larger drop (compared to the one incurred for a conflicting Positive

Non-intervention) reflects the idea that scientists tend to trust evidence from a particular

experiment class to the extent that experiments within this class yield consistent results.

ResearchMaps

ResearchMaps is a web application that implements the above algorithms and framework, thus

allowing users to create, integrate, and interact with research maps. Below we review (1) how

we implement research maps in a web interface, and (2) how users can interact with research

maps to explore both empirical and hypothetical information.

Components of ResearchMaps. In ResearchMaps, an Agent or Target is defined in three

complementary ways: what the phenomenon is, where the phenomenon exists, and when the

phenomenon acts. ResearchMaps stores this information as three properties for each node: (1)

What describes a key identifier of the phenomenon involved (e.g., the name by which the

gene, protein, cell, organ, behavior, etc. is known); (2) Where describes the location of the

What (e.g., the organ, species, etc.); and (3) When provides temporal information that is criti-

cal to the identity of the What (e.g., the time, age, phase, etc.). For example, if the protein neu-

rofibromin is measured in multiple locations, a corresponding research map would include

multiple nodes for neurofibromin with different Where properties. This approach is instruc-

tive, as neurofibromin could have different biological characteristics in different cellular loca-

tions (e.g., excitatory neurons versus inhibitory neurons) or at different stages of development.

ResearchMaps displays the What, Where, and When properties on separate lines within each

node.

In ResearchMaps, the four experiment classes are represented by symbols above each

empirical edge. As given in set C above, Positive Interventions are represented by an upward

arrow ("); Negative Interventions are represented by a downward arrow (#); Positive Non-

interventions are represented by the empty set symbol and a superscript upward arrow (⌀");
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and Negative Non-interventions are represented by the empty set symbol and a superscript

downward arrow (⌀#). Although we have not yet defined a formal representation for experi-

ments involving more than two nodes, ResearchMaps accommodates intervention experi-

ments with two Agents. At the time of this writing, such experiments comprise approximately

fourteen percent of the experiments logged. The putative mechanisms underlying the results

of these multi-intervention experiments can be visualized using hypothetical edges among the

three entities involved (two Agents and one Target); the structure of these hypothetical edges

is provided by the user.

ResearchMaps can accommodate information about the statistical test used to establish

each finding and its associated p-value. Such information is of course valuable in evaluating

experiments; however, as the areas covered by research maps are diverse, and there are no

standards as to which statistics are used and how to report them, p-values do not currently

affect the score of research-map edges, and they are optionally tracked by each user. See Fig 1

for an example of a research map.

Empirical and hypothetical edges. ResearchMaps allows the user to input both empirical

and hypothetical edges between any two phenomena (and, by extension, empirical and hypo-

thetical nodes). A hypothetical edge represents a putative connection with no direct experi-

mental evidence. Hypothetical edges are usually implied by empirical edges, and they are often

key in interpreting and reporting the results of a research article. Since hypothetical edges do

not represent empirical evidence, they are assigned neither scores nor experiment symbols. To

visually differentiate hypothetical edges, they are shown in a lighter color and without a score

or experiment symbols.

Beyond allowing users to track various hypotheses, hypothetical edges can also help to

structure research maps of empirical evidence, as illustrated with the following example.

Consider a signaling pathway (e.g., a biochemical cascade), which we will represent as

A!B!C!D. Just as hypotheses help to frame and organize the results of research articles,

hypothetical edges help to structure and contextualize empirical edges in a research map. For

instance, a map that represents the connections A!C, A!D, and B!D (Fig 5) would not

explicitly reflect the putative A!B!C!D pathway because not all connections in this path-

way are part of that map. By including in the resulting map the hypothetical edges A!B,

B!C, and C!D, the underlying hypothesis for the experiments carried out is immediately

Fig 5. Using hypothetical edges to organize research maps. The example above shows how hypothetical edges (in

gray) help to organize empirical edges in a research map, thus framing the empirical results in light of a specific

hypothesis.

https://doi.org/10.1371/journal.pone.0195271.g005
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obvious (Fig 5). To further illustrate this point, S3 Fig displays the research map of Fig 1 with-

out its hypothetical edges.

Generating maps for research articles

Fig 6 shows the application’s interface for creating research maps. The fields include the

What, Where, and When properties for both the Agent and the Target, the class of experi-

ment, the type of result, and, for empirical edges, succinct descriptions of the approaches used

to (1) observe or intervene on the Agent and (2) measure changes in the Target. When infor-

mation is entered into the form, the research map is updated accordingly. When a research

map is created for an article that is indexed on PubMed, that research map is made public to

all users. However, being first and foremost a tool for the personal curation of research infor-

mation, ResearchMaps can also be used to create private maps, visible only to the users who

entered them. These private maps can include unpublished experiments of ongoing projects,

purely speculative models, etc.

There are multiple steps to make a research map for a given research article. The first step is

to identify all the nodes that will be included in the research map. This process entails the iden-

tification of Agent–Target pairs involved in the reported experiments. For any one Agent–Tar-

get pair, the next step is to find the experiment class that was performed to test their relation.

In addition to the class of the experiment, the user can record the result that was obtained, as

well as the key techniques that were used to observe (or manipulate) the Agent and observe the

result in the Target. Once the empirical edges are entered (ones for which an experiment is

reported), any hypothetical edges suggested by the article can be added, thereby helping to

structure the map and contextualize the empirical results. Finally, because research maps can

become large and complex, it is instructive to highlight the main connections, whether they

are hypothetical or empirical.

Combining research maps from multiple research articles

In addition to viewing the research maps of individual research articles, users can interact with

all of the public data and their individual private data via the Global Map page. On this page,

users can search the application’s database either for a specific node (with a What, Where,

and When) or simply for a term—e.g., the transcription factor CREB (Fig 7). Additionally,

users can search not only for a single entity but also for specific Agent–Target pairs, whether

they are empirical or hypothetical.

To constrain the visualizations produced by queries, users can modify each global search

with several parameters, including a minimum and maximum threshold for filtering empirical

edges based on their scores. By filtering out edges with low scores, for example, users can visu-

alize only those connections with the highest levels of evidence (i.e., those that are likely to be

more reliable). Similarly, by filtering out edges with high scores, users can quickly identify

those connections with the least amount of evidence (i.e., those in greatest need of further

investigation). Users can also limit the number of edges that must be traversed between a

given query term and its results. Additionally, users can limit global searches to only the infor-

mation that they personally entered, thus focusing searches to specific domains of interest.

This dynamic interaction with the information in ResearchMaps provides critical hypothesis-

building tools, allowing users to explore the ramifications of different hypotheses.

Clicking on any edge in the Global Map generates a table (see Fig 8) that lists all of the infor-

mation represented by that edge. Also provided are hyperlinks that establish the provenance of

any edge in the Global Map by connecting the user to the research map(s) where that edge was

originally entered.
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Fig 6. Entering information in ResearchMaps. The left panel shows the interface used to input information. The citation on the top refers to the article

whose research map is displayed. Highlighted in yellow are the edges that reflect the main findings in that article. Users can double-click on any edge in the

research map to retrieve PubMed citations that are potentially relevant to the edge’s Agent–Target relation.

https://doi.org/10.1371/journal.pone.0195271.g006
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Research maps at work

As stated above, research maps are designed to facilitate the personal curation of information

derived from detailed analyses of research articles, reviews, and other sources central to the

activities of scientists. The derived maps are designed to function at the interface between the

large body of information that could potentially be relevant to any one individual scientist,

and that subset of empirical and hypothetical assertions that an individual scientist judges to

be directly relevant to ongoing work. For example, in the space of three years, one of our users

created public research maps for 125 articles with 2,251 experiments, 1,293 nodes, and 1,693

edges. Even in this relatively small set of articles, the sheer number of empirical and hypotheti-

cal relations is too large for most individual scientists to remember, objectively integrate, and

systematically reason through.

Fig 7. Interacting with the information in ResearchMaps. This screenshot shows the interface used to interact with the information in the app. The panel on the left is

used for entering the details for a particular query (e.g., CREB). The map shown on the right includes only a fraction of the edges that this query returned. This map

represents integrated data from many different research articles.

https://doi.org/10.1371/journal.pone.0195271.g007
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Fig 8. Establishing the provenance of edges in the Global Map page. The table in the bottom right of the screenshot appeared in response to clicking on the edge above

the table. Hyperlinks in the left column of the table direct users to the individual research maps for each empirical and hypothetical assertion represented in that edge.

https://doi.org/10.1371/journal.pone.0195271.g008
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Additionally, the process of mapping information critical for a project affords a clarity that

is harder to come by any other way. For instance, a few years ago some of us were involved in

experiments that suggested that the expression of the cAMP responsive element binding

(CREB) transcriptional factor in a small subset of neurons in the lateral amygdala of mice

could lead to enhancements of memory for both auditory and contextual fear conditioning.

These results were surprising, and they led to a series of experiments that explored the nature

of these memory enhancements. One of the motivations for these experiments was the hypoth-

esis that the cellular levels of CREB may be one factor that determines the subset of lateral

amygdala neurons that go on to store a given fear memory [11]. The initial research map of

the experiments designed to explore the CREB memory enhancement is shown in Fig 9. While

thinking of the connections in that article with the help of research maps, we realized that

there may be a more fundamental concept that could both provide a better structure for the

map and a more useful framework for future experiments (Fig 10).

In our initial experiments [11], we used positive and negative manipulations of CREB, and

determined which lateral amygdala cells were involved in memory by using the immediate

early gene Arc, a gene whose expression is thought to tag cells involved in memory [12]. Map-

ping these findings helped us to realize that we needed to identify a phenomenon that captured

the idea that CREB was instrumental in determining which cells were involved in memory. To

this end, we borrowed a term from computer science—memory allocation—and the process of

defining this new neuroscience phenomenon in our research maps also helped us to identify

the need for other methods to measure it [13].

Research maps also helped us to focus our attention on the mechanisms by which CREB

modulated memory allocation [13, 14] and aided us in defining a research plan to tackle this

new complex problem. Although it is possible that we and others could have arrived at similar

research decisions without the help of research maps, the ability to precisely map information

imparted a degree of clarity that helped us to think through these experiments and develop our

past and current research on memory allocation. The concept of memory allocation [15] that

emerged out of these efforts led to a number of research articles [13, 14, 16–18] that explored

the mechanistic basis of this concept and tested its possible role in other brain structures, such

as the insular cortex [19] and in processes such as memory linking [8, 20].

When reading new research articles, the underlying mechanisms are not always apparent.

However, in our experience, the process of extracting and formalizing information about pos-

sible connections tested in these articles has always enhanced our understanding of the

reported findings. This formalization process also brings the information from disparate arti-

cles into a shared framework that facilitates integration of this information, as well as experi-

ment planning.

Using research maps to visualize our work in memory allocation has also provided insight

into how these experiments are connected to research in related areas. Fig 11 shows a research

map of our work in memory allocation and all other research maps of articles that connect to

it. Fig 12 shows a bar graph indicating the number of nodes in our ResearchMaps database

that are connected to nodes pertaining to work in memory allocation. Analysis of the data

represented in Figs 11 and 12 suggests that research maps provide a rich platform in which to

generate and evaluate hypotheses about the mechanisms that may be modulating memory

allocation.

In the context of evidence synthesis and experiment planning, another use case facilitated

by ResearchMaps is conflict detection. The research map in Fig 13 illustrates an example in

which pathways that conflict with other results are shown in red. The black edges of this

research map show that the pairs (A, B) and (C, D) were found to be independent; additionally,

A was found to excite C, and D was found to excite B. The red edges show the excitatory
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Fig 9. Initial map of experiments exploring the role of CREB in amygdala memory enhancements. This research map represents a series

of experiments designed to explore the role of CREB expressed in a subset of lateral amygdala neurons in an enhancement of auditory and

contextual conditioning.

https://doi.org/10.1371/journal.pone.0195271.g009
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Fig 10. Map of experiments exploring the role of CREB in memory allocation. Inventing the concept of memory allocation

with the help of research maps not only helped to structure our experiments to test the role of CREB in the amygdala during

memory formation but also helped us to plan future experiments. The edge highlighted in orange points to the key

experiments in the map representing early experiments on memory allocation. All the other edges represent control

experiments that helped us to interpret the memory allocation experiments.

https://doi.org/10.1371/journal.pone.0195271.g010
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Fig 11. Global research map of experiments in memory allocation and other related work. This is a personally curated research map of work in the field of memory

allocation and other related work that either overlaps or connects to the work in memory allocation. To minimize the number of nodes, only the What property of each

node is shown, so that nodes with different Where and When properties (but identical What properties) are collapsed into one. Nodes in orange appear only in research

maps for articles on memory allocation. Nodes in red appear not only in research maps for articles on memory allocation but also in research maps for related work. This

research map has helped us to contextualize work in memory allocation and propose hypotheses concerning the mechanistic basis of this process.

https://doi.org/10.1371/journal.pone.0195271.g011
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Fig 12. Connectivity characteristics in the Global Map for memory allocation. The plot shows the surprisingly

extensive connectivity between papers in memory allocation and other related work, which can be visualized in the

Global Map of ResearchMaps. For example, the graph shows that within three edge traversals, there are over 500 nodes

that connect with nodes in individual memory allocation research maps. This extensive connectivity provides

abundant opportunities for hypothesis building, since any one of the connected nodes could modulate unknown

features of memory allocation (and vice versa).

https://doi.org/10.1371/journal.pone.0195271.g012

Fig 13. An example of how the structural information in a research map can help to identify conflicting results.

The edges in red are in conflict with the edges in black—all the edges cannot be true simultaneously. (For simplicity,

the scores and experiment symbols in this research map have been omitted).

https://doi.org/10.1371/journal.pone.0195271.g013
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pathways A!E!D and D!E!A. Note that the edges shown in red and black cannot all be

true: the excitatory pathway A!E!D!B conflicts with the finding of independence between

A and B; by symmetry, the excitatory pathway D!E!A!C conflicts with the finding of inde-

pendence between C and D. One insight that comes out of this analysis is that nodes A and D
cannot be causes of each other—either direct or indirect. In one of the author’s research maps

for a published article, exactly this conflict emerged (the biological details are omitted here for

brevity), leading us to revise our interpretation of the article’s results.

We note two advantages of this approach to conflict detection. The first is that these types

of analyses can be “recycled”: once an inference has been made, a database of research maps

can be queried for other instances of the structural template—the specific configuration of

nodes and edges—that permitted the original inference; note that the inference will hold

regardless of the identity of the nodes involved. The second advantage is that combining struc-

tural information from multiple articles allows one to make inferences about biological phe-

nomena that may have never even appeared together in the same experiment, or which were

never discussed together in a single article. Although conflicts among results may be apparent

if they occur in a single article, the various components of the structural template behind a con-

flict may be spread out across many articles, making it difficult to find. It it thus extremely dif-

ficult to anticipate where such conflicts might arise, and it is challenging to notice ones derived

from the synthesis of many articles, unless one is already looking for a specific pattern—partic-

ularly as the patterns become increasingly complex.

Another use case facilitated by ResearchMaps is the collection of structured evidence for

meta-analytic causal discovery—that is, the identification of causal structures that are consis-

tent with evidence drawn from research articles [21]. Causal discovery algorithms usually take

primary data as their input; less explored is the problem of generalizing these methods to

meta-analytic techniques that can incorporate multiple forms of causal information, including

qualitative knowledge from literature. For this approach, ResearchMaps structures causal

information not only with a vocabulary that biologists recognize but also in a way that is ame-

nable for use in constraint-based causal discovery methods (e.g., [22]).

Discussion

Here we describe the operationalization of experimental strategies to gauge the strength of spe-

cific connections between biological phenomena. The derived algorithms and framework are

implemented in ResearchMaps, a web application that generates graph-based representations

(research maps) of empirical results and hypotheses. This web application enables individual

biologists to track, evaluate, and systematically reason through proposed connections between

biological variables that are most important to them with a breadth and precision that are

unlikely without such a tool.

Beyond organizing experiments, ResearchMaps can be used to determine which additional

experiments could be done to further test any connection in a research map. Thus, one of

ResearchMaps’s key practical applications is to organize experimental evidence designed to

test specific connections, and thereby reveal those supported by the strongest evidence. For

example, knowing which specific connections have weak support and which experimental evi-

dence could strengthen them is helpful in determining which experiments to perform next.

The more systematically and explicitly we can render this knowledge, the more thorough the

basis is for these choices. By making scientific interpretations of the literature explicit, research

maps formalize aspects of knowledge representation and experiment planning via shareable

maps that can help to derive consensus in a research community.

ResearchMaps.org for integrating and planning research

PLOS ONE | https://doi.org/10.1371/journal.pone.0195271 May 3, 2018 20 / 25

https://doi.org/10.1371/journal.pone.0195271


In addition to empirical information, ResearchMaps also provides an interface that individ-

ual biologists can use to systematically capture complex networks of hypothetical connections

among biological variables, thus easing their integration. Such a tool is particularly useful for

biological disciplines (e.g., neuroscience) in which individual scientists are asked to integrate

information and results from multiple disparate fields. Integration in these fields is especially

challenging because of the different terminologies and paradigms used; ResearchMaps meets a

need for a shared framework and vocabulary for information that bridges the integrated fields.

For example, it is not uncommon for articles in neuroscience to include information from

fields as diverse as molecular and cellular biology, physiology, and behavioral neuroscience.

Although research maps have been specifically designed to accommodate experiments in fields

as diverse as molecular and cellular biology, immunology, developmental biology, and neuro-

science, we imagine that future modifications to the representation will enable it to accommo-

date experimental designs in other fields.

Beyond curating experiments that test possible connections between variables considered

in individual projects or articles, ResearchMaps allows individual researchers to integrate

experiments from many different sources, thus affording the opportunity for a macro level of

integration that would be difficult without it. The Global Map allows investigators to integrate

not only their own maps but also the public maps contributed by the entire user base. This fea-

ture provides a rich platform for collaboration and cross-fertilization of ideas and findings.

ResearchMaps’s entries are not restricted by a formal ontology. Our current user base con-

sists mostly of neuroscience researchers and thus, in this initial release of the application, we

use the Neuroscience Information Framework’s (NIF’s) NeuroLex lexicon (http://nif-services.

neuinfo.org/ontoquest/reconcile) to suggest auto-completions as users enter data. However,

the lexicon in NeuroLex is limited, so we chose to allow users to enter their own terms. As the

user base expands, we can envision creating an evolving ontology that facilitates sharing and

integration of research maps across users [23, 24]. In principle, the nodes of a research map

can refer to concepts drawn from a variety of ontologies. In future iterations of ResearchMaps,

we plan to use APIs to link the What, Where, and When properties to ontological concepts,

such as those of Gene Ontology [25].

The What, Where, and When properties for each node may not be sufficiently descriptive

in all contexts; however, such ontological issues are well known and thus the subject of much

research in computer science—we do not claim to resolve any significant challenges in this

specific domain. Although the What, Where, and When properties do not address all ontolog-

ical issues, they represent a pragmatic compromise between the demands placed on users and

the ability to unambiguously define each node. As ResearchMaps was designed to be a per-

sonal tool, users are free to adhere to their own vocabularies and naming conventions to

achieve ontological consistency across the research maps they create.

When graphical representations grow too large, their growing complexity limits their use-

fulness. However, ResearchMaps mitigates this issue in two key ways. First, users can choose

to highlight critical edges that convey the gist of a particular research project or article. Addi-

tionally, in the Global Map, users can constrain the visualizations of the resulting maps with a

variety of queries and filters—e.g., searching for specific Agent–Target pairs, filtering edges

by their scores, and choosing whether to consider the Where and When properties of nodes

when aggregating research maps. ResearchMaps simplifies much of the information in

research articles at the expense of some key experimental details, such as a full account of the

relevant background conditions of each experiment. However, this design limits the complex-

ity of the representation, yielding a graph structure that is amenable to human exploration.

ResearchMaps thus represents a compromise between detail and utility. Our representation

captures what we judge to be the minimum amount of information that is essential for
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helping biologists to record and integrate experiments. For instance, although we use a Bayes-

ian approach to calculate each score, the evidence calculus that we employ is meant to be rep-

resentative of epistemic (not probabilistic) reasoning, and is not meant to substitute for

formal causal models. The edges of a research map do not correspond to the edges in a formal

causal graph (e.g., they do not differentiate between ancestral and direct relations). Instead,

the edges in research maps represent experimental results in a manner familiar to many biolo-

gists and in a way that we believe may facilitate the specification of more traditional and quan-

titative representations of causality.

Although at this point research maps is an individual, personally curated tool, we can imag-

ine a future where many components of this process will be automated. Natural language pro-

cessing and machine learning algorithms could conceivably be used to automate the process of

entering experiments into ResearchMaps. This automation would provide scientists easy

access to structured information from the entire literature and would further efforts to use

computers to aid and even augment the creative process in science [26]. Nevertheless, manual

data entry does have its benefits. First, the user has complete freedom over which experiments

and hypothetical assertions are represented, thus enabling the inclusion of only experimental

and hypothetical information that they trust when integrating findings and planning experi-

ments. Automation would limit users’ ability to judge the reliability of previously published

information—a critical component of experiment planning. Although automation would pro-

vide easy access to graphical representations of Connection Experiments in the ever-growing

deluge of biological information, it may distance researchers from the laboratory results that

are most directly relevant to them. For example, details not captured by these graphical repre-

sentations could be critical in evaluating how best to interpret and use this information in

experiment planning [2].

In future work, we plan to perform usability studies with ResearchMaps to further dem-

onstrate the utility and reproducibility of its annotation schema. To evaluate the app’s

reproducibility, we will ask a group of biologists to individually annotate a corpus of

research articles; we will then assess whether their annotations diverge significantly. To

evaluate the app’s utility for experiment planning, we propose the following evaluation: a

group of biologists will use ResearchMaps to annotate a corpus of articles published before a

given cutoff date. With the research maps that the biologist create, we will use the research-

map scoring approach to identify which next experiments would be most instructive. We

will then assemble two lists of experiments: (1) those that were published in the literature

after the cutoff date and (2) those that were identified as optimal, based on the scoring

approach. The biologists, who will be blinded to the source of each experiment, will then

evaluate the appropriateness of each experiment, given the work that is reported in the pre-

cutoff corpus.

The principles used in research maps were developed for scientific purposes, but their use-

fulness is not restricted to biology or even science. The principles that govern the detection

and structure of connections in science, such as convergence and consistency, are likely to be

generally useful. Given that information of varying quality and dependability now spreads

widely, the approaches used in research maps could be used to ferret out the potential connec-

tions in the social, political, and economic forces that shape our world. For example, maps of

information inspired by research maps could be used together with other evolving strategies to

advance the Semantic Web. Information, whether in science, politics, economics, or elsewhere,

is likely to play by some of the same rules. Therefore, the principles behind research maps

could be used to bring structure and order to the morass of confusion and contradictions that

characterize our age of information.

ResearchMaps.org for integrating and planning research

PLOS ONE | https://doi.org/10.1371/journal.pone.0195271 May 3, 2018 22 / 25

https://doi.org/10.1371/journal.pone.0195271


Methods

The choice of implementation technologies was driven by the need for the server side web

application to be scalable, efficient, and cross-platform. Since the entire web application is

open-source, with expected community involvement, only open-source components were

used.

ResearchMaps is hosted by Amazon Web Services (AWS) Elastic Compute Cloud (EC2)

(Amazon.com, Inc., Seattle, Washington, USA) with the Ubuntu 12.04 64-bit operating sys-

tem. This web application is accessible at http://www.researchmaps.org, and the source code is

publicly available at https://github.com/ResearchMaps/. Node.js (https://nodejs.org/) is the

runtime environment responsible for client requests. The HTML is supplemented by the Boot-

strap framework (http://getbootstrap.com/) for standard components, while D3.js [27] is used

to modify the visualized graphs, which are created as SVG files using Graphviz [28]. Scripting

is handled by JavaScript, often accompanied by the jQuery library (https://jquery.com/). We

use PubMed’s interface (http://eutils.ncbi.nlm.nih.gov) to retrieve information about research

articles and the NeuroLex API (http://nif-services.neuinfo.org/ontoquest/reconcile) provided

by the Neuroscience Information Framework [29] to retrieve suggested auto-completions for

users’ input.

ResearchMaps uses the Neo4j 2.2.1 graph database and its query language, Cypher (Neo

Technology, Inc., San Mateo, CA, USA). Graph databases store data in nodes and edges (as

opposed to the tuples used in relational databases) and are well-suited to our application [30].

Our Neo4j schema is designed as follows. Each user is assigned a User node, which is con-

nected to Paper nodes that represent each research article (or private project) for which a

user creates a research map. Each Paper node is connected to a number of Experiment
nodes—one for each experiment (or hypothetical assertion) that is entered for a given map.

Each Experimentnode is connected to two NeurolexTermnodes representing the

Agent and the Target for that particular experiment. Agent and Target (NeurolexTerm)

nodes are connected by edges with properties to store the information used to calculate each

edge’s score.

Supporting information

S1 Fig. The Bayesian scoring approach closely resembles an earlier heuristic approach that

captured scientists’ intuitions regarding empirical evidence. These plots are reproduced

from Fig 3, with a second data series (in gray) showing how an earlier heuristic scoring

approach [2] compares to the Bayesian one presented in this article.

(EPS)

S2 Fig. The heuristic approach for calculating an evidence score, which was used in early

versions of research maps. These equations were used to calculate the second data series (in

gray) in S1 Fig Each cell in the table starts with a value of zero, and each empirical result incre-

ments the appropriate cell by one. The function MaxðE;N ; IÞ returns the maximum value

from the set fE;N ; Ig. The edge’s relation is assigned according to this maximum value:

either Excitatory (E), No-connection (N ), or Inhibitory (I).

(EPS)

S3 Fig. The research map of Fig 1 with its hypothetical edges removed. This modified

research map, when compared with the one in Fig 1, illustrates how hypothetical edges help to

structure research maps with empirical edges, thereby augmenting the interpretation of results.

(EPS)
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